Vinberg's problem for classical Lie algebras

Alexander Molev

University of Sydney

Joint work with Oksana Yakimova

Invariants in the symmetric algebra

Invariants in the symmetric algebra
Let \mathfrak{g} be a Lie algebra over \mathbb{C}.

Invariants in the symmetric algebra

Let \mathfrak{g} be a Lie algebra over \mathbb{C}.
The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}
$$

Invariants in the symmetric algebra

Let \mathfrak{g} be a Lie algebra over \mathbb{C}.
The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k} .
$$

The subalgebra of invariants is

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\{P \in \mathrm{~S}(\mathfrak{g}) \mid Y \cdot P=0 \quad \text { for all } \quad Y \in \mathfrak{g}\} .
$$

Poisson commutative subalgebras

Poisson commutative subalgebras

The symmetric algebra $S(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

Poisson commutative subalgebras

The symmetric algebra $\mathrm{S}(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

If \mathfrak{g} is a simple Lie algebra, then there exist invariants P_{k}
such that $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right], \quad$ where $n=$ rank \mathfrak{g}.

Poisson commutative subalgebras

The symmetric algebra $S(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

If \mathfrak{g} is a simple Lie algebra, then there exist invariants P_{k}
such that $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right], \quad$ where $n=$ rank \mathfrak{g}.
The subalgebra $S(\mathfrak{g})^{\mathfrak{g}} \subset S(\mathfrak{g})$ is Poisson commutative.

Poisson commutative subalgebras

The symmetric algebra $S(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

If \mathfrak{g} is a simple Lie algebra, then there exist invariants P_{k}
such that $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right], \quad$ where $n=$ rank \mathfrak{g}.
The subalgebra $S(\mathfrak{g})^{\mathfrak{g}} \subset S(\mathfrak{g})$ is Poisson commutative.

Integrability problem: Extend $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ to a big Poisson
commutative subalgebra of $S(\mathfrak{g})$.

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $S(\mathfrak{g})$ of degree d.

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments

$$
X_{i} \mapsto X_{i}+s \mu\left(X_{i}\right),
$$

where s is a variable:

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments

$$
X_{i} \mapsto X_{i}+s \mu\left(X_{i}\right),
$$

where s is a variable:

$$
\begin{aligned}
P\left(X_{1}+s \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+s \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} s+\cdots+P_{(d)} s^{d}
\end{aligned}
$$

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments

$$
X_{i} \mapsto X_{i}+s \mu\left(X_{i}\right),
$$

where s is a variable:

$$
\begin{aligned}
P\left(X_{1}+s \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+s \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} s+\cdots+P_{(d)} s^{d}
\end{aligned}
$$

Denote by $\overline{\mathcal{A}}_{\mu}$ the subalgebra of $S(\mathfrak{g})$ generated by all the μ-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$.

Properties:

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko, 1978].

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko, 1978].
- If $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ is regular, then $\overline{\mathcal{A}}_{\mu}$ is a free polynomial algebra [A. Bolsinov, 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010].

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$ [A. Mishchenko and A. Fomenko, 1978].
- If $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ is regular, then $\overline{\mathcal{A}}_{\mu}$ is a free polynomial algebra [A. Bolsinov, 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010].
- Moreover, $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$ [D. Panyushev and O. Yakimova, 2008].

Vinberg's problem

Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.

Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.

E. B. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g})$?

Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.
E. B. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$?

We would like to find a commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$
(together with its free generators) such that $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Approaches: Yangians

Approaches: Yangians

First construct a certain commutative subalgebra of $\mathrm{U}(\mathfrak{g}[t])$ then use an evaluation homomorphism $\mathrm{U}(\mathfrak{g}[t]) \rightarrow \mathrm{U}(\mathfrak{g})$.

Approaches: Yangians

First construct a certain commutative subalgebra of $\mathrm{U}(\mathfrak{g}[t])$ then use an evaluation homomorphism $\mathrm{U}(\mathfrak{g}[t]) \rightarrow \mathrm{U}(\mathfrak{g})$.

The algebra $\mathrm{U}(\mathfrak{g}[t)$ is a quasi-classical limit of the Drinfeld Yangian $\mathrm{Y}(\mathfrak{g})$. Construct a commutative subalgebra of $\mathrm{Y}(\mathfrak{g})$ known as the Bethe subalgebra.

Approaches: Yangians

First construct a certain commutative subalgebra of $\mathrm{U}(\mathfrak{g}[t])$ then use an evaluation homomorphism $\mathrm{U}(\mathfrak{g}[t]) \rightarrow \mathrm{U}(\mathfrak{g})$.

The algebra $\mathrm{U}(\mathfrak{g}[t)$ is a quasi-classical limit of the Drinfeld Yangian $\mathrm{Y}(\mathfrak{g})$. Construct a commutative subalgebra of $\mathrm{Y}(\mathfrak{g})$ known as the Bethe subalgebra.

In the classical types, a direct evaluation homomorphism from the Olshanski twisted Yangians $\mathrm{Y}^{\mathrm{tw}}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g})$ can be used [M. Nazarov and G. Olshanski, 1996].

Vertex algebras

Vertex algebras

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a certain commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Vertex algebras

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a certain commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: X t^{r} \mapsto X z^{r}+\delta_{r,-1} \mu(X)
$$

defines a homomorphism $\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})$.

Vertex algebras

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a certain commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: X t^{r} \mapsto X z^{r}+\delta_{r,-1} \mu(X)
$$

defines a homomorphism $\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})$.
The image \mathcal{A}_{μ} of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}(\mathfrak{g})$.

Vertex algebras

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a certain commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: X t^{r} \mapsto X z^{r}+\delta_{r,-1} \mu(X),
$$

defines a homomorphism $\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})$.
The image \mathcal{A}_{μ} of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}(\mathfrak{g})$.
FFTL-conjecture (2010): $\quad \operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Symmetrization map

Symmetrization map

The canonical symmetrization map

$$
\omega: \mathrm{S}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g}),
$$

Symmetrization map

The canonical symmetrization map

$$
\omega: \mathrm{S}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g}),
$$

defined by

$$
\omega: X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} X_{\sigma(1)} \ldots X_{\sigma(k)}
$$

Symmetrization map

The canonical symmetrization map

$$
\omega: \mathrm{S}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g}),
$$

defined by

$$
\omega: X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} X_{\sigma(1)} \ldots X_{\sigma(k)}
$$

is a \mathfrak{g}-module isomorphism.

Symmetrization map

The canonical symmetrization map

$$
\omega: \mathrm{S}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g}),
$$

defined by

$$
\omega: X_{1} \ldots X_{k} \mapsto \frac{1}{k!} \sum_{\sigma \in \mathfrak{G}_{k}} X_{\sigma(1)} \ldots X_{\sigma(k)}
$$

is a \mathfrak{g}-module isomorphism.

In particular, this gives a vector space isomorphism

$$
\omega: \mathrm{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathrm{Z}(\mathfrak{g}) .
$$

Conjecture [A.M. and O. Yakimova, 2017].
There exist free generators H_{1}, \ldots, H_{n} of the algebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that for any $\mu \in \mathfrak{g}^{*}$ the ω-images of their μ-shifts generate the algebra \mathcal{A}_{μ}.

Conjecture [A.M. and O. Yakimova, 2017].
There exist free generators H_{1}, \ldots, H_{n} of the algebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that for any $\mu \in \mathfrak{g}^{*}$ the ω-images of their μ-shifts generate the algebra \mathcal{A}_{μ}.

Theorem 1. The conjecture holds for all classical Lie algebras.

Conjecture [A.M. and O. Yakimova, 2017].
There exist free generators H_{1}, \ldots, H_{n} of the algebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that for any $\mu \in \mathfrak{g}^{*}$ the ω-images of their μ-shifts generate the algebra \mathcal{A}_{μ}.

Theorem 1. The conjecture holds for all classical Lie algebras.
Type A: [A. Tarasov, 2000, 2003].

Conjecture [A.M. and O. Yakimova, 2017].
There exist free generators H_{1}, \ldots, H_{n} of the algebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that for any $\mu \in \mathfrak{g}^{*}$ the ω-images of their μ-shifts generate the algebra \mathcal{A}_{μ}.

Theorem 1. The conjecture holds for all classical Lie algebras.
Type A: [A. Tarasov, 2000, 2003].

Theorem 2. The FFTL-conjecture holds for types A and C.

Conjecture [A.M. and O. Yakimova, 2017].
There exist free generators H_{1}, \ldots, H_{n} of the algebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ such that for any $\mu \in \mathfrak{g}^{*}$ the ω-images of their μ-shifts generate the algebra \mathcal{A}_{μ}.

Theorem 1. The conjecture holds for all classical Lie algebras.
Type A: [A. Tarasov, 2000, 2003].

Theorem 2. The FFTL-conjecture holds for types A and C.
Type A: [V. Futorny and A.M., 2015].

Symmetrized minors and permanents

Symmetrized minors and permanents

Let M be an $N \times N$ matrix with entries in an associative algebra.

Symmetrized minors and permanents

Let M be an $N \times N$ matrix with entries in an associative algebra.
For any $m=1, \ldots, N$ define the m-th symmetrized minor of M by

Symmetrized minors and permanents

Let M be an $N \times N$ matrix with entries in an associative algebra.
For any $m=1, \ldots, N$ define the m-th symmetrized minor of M by

$$
\operatorname{Det}_{m}(M)=\frac{1}{m!} \sum_{1 \leqslant a_{1}<\cdots<a_{m} \leqslant N} \sum_{\sigma, \tau \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \tau \cdot M_{a_{\sigma(1)} a_{\tau(1)}} \ldots M_{a_{\sigma(m)} a_{\tau(m)}}
$$

Symmetrized minors and permanents

Let M be an $N \times N$ matrix with entries in an associative algebra.
For any $m=1, \ldots, N$ define the m-th symmetrized minor of M by

$$
\operatorname{Det}_{m}(M)=\frac{1}{m!} \sum_{1 \leqslant a_{1}<\cdots<a_{m} \leqslant N} \sum_{\sigma, \tau \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \tau \cdot M_{a_{\sigma(1)} a_{\tau(1)}} \ldots M_{a_{\sigma(m)} a_{\tau(m)}} .
$$

If the algebra is commutative then $\operatorname{Det}_{m}(M)$ is the sum of all principal m-minors of M.

For any $m \geqslant 1$ define the m-th symmetrized permanent of M by

For any $m \geqslant 1$ define the m-th symmetrized permanent of M by

$$
\begin{aligned}
\operatorname{Per}_{m}(M)=\frac{1}{m!} \sum_{1 \leqslant a_{1} \leqslant \cdots \leqslant a_{m} \leqslant N} & \frac{1}{\gamma_{1}!\ldots \gamma_{N}!} \\
& \times \sum_{\sigma, \tau \in \mathfrak{S}_{m}} M_{a_{\sigma(1)} a_{\tau(1)} \ldots M_{a_{\sigma(m)}} a_{\tau(m)}}
\end{aligned}
$$

For any $m \geqslant 1$ define the m-th symmetrized permanent of M by

$$
\begin{aligned}
\operatorname{Per}_{m}(M)=\frac{1}{m!} \sum_{1 \leqslant a_{1} \leqslant \cdots \leqslant a_{m} \leqslant N} & \frac{1}{\gamma_{1}!\ldots \gamma_{N}!} \\
& \times \sum_{\sigma, \tau \in \mathfrak{S}_{m}} M_{a_{\sigma(1)} a_{\tau(1)}} \ldots M_{a_{\sigma(m)} a_{\tau(m)}}
\end{aligned}
$$

where γ_{k} denotes the multiplicity of $k \in\{1, \ldots, N\}$
in the multiset $\left\{a_{1}, \ldots, a_{m}\right\}$.

Type A

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the basis $\left\{E_{i j}\right\}$ and set

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the basis $\left\{E_{i j}\right\}$ and set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the basis $\left\{E_{i j}\right\}$ and set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Regarding the $E_{i j}$ as elements of $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$, write

$$
\operatorname{det}(u 1+E)=u^{N}+\Phi_{1} u^{N-1}+\cdots+\Phi_{N} .
$$

Type A

Take the Lie algebra $\mathfrak{g l}_{N}$ with the basis $\left\{E_{i j}\right\}$ and set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Regarding the $E_{i j}$ as elements of $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$, write

$$
\operatorname{det}(u 1+E)=u^{N}+\Phi_{1} u^{N-1}+\cdots+\Phi_{N} .
$$

The coefficients $\Phi_{1}, \ldots, \Phi_{N}$ are free generators of $\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}$.

All coefficients Ψ_{m} of the series

$$
\operatorname{det}(1-q E)^{-1}=1+\Psi_{1} q+\Psi_{2} q^{2}+\ldots
$$

belong to $\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}$ and $\Psi_{1}, \ldots, \Psi_{N}$ are its free generators.

All coefficients Ψ_{m} of the series

$$
\operatorname{det}(1-q E)^{-1}=1+\Psi_{1} q+\Psi_{2} q^{2}+\ldots
$$

belong to $\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}$ and $\Psi_{1}, \ldots, \Psi_{N}$ are its free generators.

We have

$$
\Phi_{m}=\operatorname{Det}_{m}(E) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(E)
$$

All coefficients Ψ_{m} of the series

$$
\operatorname{det}(1-q E)^{-1}=1+\Psi_{1} q+\Psi_{2} q^{2}+\ldots
$$

belong to $\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}$ and $\Psi_{1}, \ldots, \Psi_{N}$ are its free generators.

We have

$$
\Phi_{m}=\operatorname{Det}_{m}(E) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(E)
$$

This follows by taking the Chevalley images.

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

The μ-shifts of the invariants Φ_{m} and Ψ_{m} are found as the coefficients of the polynomials

For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

The μ-shifts of the invariants Φ_{m} and Ψ_{m} are found as the coefficients of the polynomials

$$
\operatorname{Det}_{m}(E+s \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+s \mu) .
$$

Lemma. Under the symmetrization map we have

Lemma. Under the symmetrization map we have

$$
\omega: \operatorname{Det}_{m}(E+s \mu) \mapsto \operatorname{Det}_{m}(E+s \mu)
$$

Lemma. Under the symmetrization map we have

$$
\omega: \operatorname{Det}_{m}(E+s \mu) \mapsto \operatorname{Det}_{m}(E+s \mu)
$$

and

$$
\omega: \operatorname{Per}_{m}(E+s \mu) \mapsto \operatorname{Per}_{m}(E+s \mu)
$$

Lemma. Under the symmetrization map we have

$$
\omega: \operatorname{Det}_{m}(E+s \mu) \mapsto \operatorname{Det}_{m}(E+s \mu)
$$

and

$$
\omega: \operatorname{Per}_{m}(E+s \mu) \mapsto \operatorname{Per}_{m}(E+s \mu)
$$

where we assume that $E_{i j} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)$ on the left and $E_{i j} \in \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ on the right.

Theorem [Tarasov, 2000, 2003; M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g l}_{N}^{*}$ is arbitrary.

Theorem [Tarasov, 2000, 2003; M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g l}_{N}^{*}$ is arbitrary. The subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+s \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+s \mu)
$$

with $m=1, \ldots, N$.

Theorem [Tarasov, 2000, 2003; M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g l}_{N}^{*}$ is arbitrary. The subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+s \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+s \mu)
$$

with $m=1, \ldots, N$.

Proof. Use the generators of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$ found by [A. Chervov and D. Talalaev, 2006] and
[A. Chervov and A. M., 2009] to get explicit generators of \mathcal{A}_{μ}.

Types B, C and D

Types B, C and D

Define the orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ and $N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

Types B, C and D

Define the orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ and
$N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as
subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

We use the involution $i \mapsto i^{\prime}=N-i+1$ on the set $\{1, \ldots, N\}$, and in the symplectic case set

$$
\varepsilon_{i}=\left\{\begin{aligned}
1 & \text { for } \quad i=1, \ldots, n \\
-1 & \text { for } \quad i=n+1, \ldots, 2 n
\end{aligned}\right.
$$

Introduce the matrix

Introduce the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

Introduce the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

Taking $N=2 n$ and regarding $F_{i j}$ as elements of $\mathrm{S}\left(\mathfrak{s p}_{2 n}\right)$, write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Phi_{2} u^{2 n-2}+\cdots+\Phi_{2 n} .
$$

Introduce the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

Taking $N=2 n$ and regarding $F_{i j}$ as elements of $\mathrm{S}\left(\mathfrak{s p}_{2 n}\right)$, write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Phi_{2} u^{2 n-2}+\cdots+\Phi_{2 n} .
$$

The coefficients $\Phi_{2}, \Phi_{4}, \ldots, \Phi_{2 n}$ are free generators of the algebra $\mathrm{S}\left(\mathfrak{s p}_{2 n}\right)^{\mathfrak{s p}_{2 n}}$.

The invariants $\Psi_{2 m} \in \mathrm{~S}\left(\mathfrak{o}_{N}\right)^{\mathfrak{o}_{N}}$ are defined by

$$
\operatorname{det}(1-q F)^{-1}=1+\Psi_{2} q^{2}+\Psi_{4} q^{4}+\ldots .
$$

The invariants $\Psi_{2 m} \in \mathrm{~S}\left(\mathfrak{o}_{N}\right)^{\mathfrak{o}_{N}}$ are defined by

$$
\operatorname{det}(1-q F)^{-1}=1+\Psi_{2} q^{2}+\Psi_{4} q^{4}+\ldots .
$$

$\Psi_{2}, \Psi_{4}, \ldots, \Psi_{2 n}$ are free generators of $\mathrm{S}\left(\mathfrak{o}_{2 n+1}\right)^{\mathfrak{o}_{2 n+1}}$.

The invariants $\Psi_{2 m} \in \mathrm{~S}\left(\mathfrak{o}_{N}\right)^{\mathfrak{o}_{N}}$ are defined by

$$
\operatorname{det}(1-q F)^{-1}=1+\Psi_{2} q^{2}+\Psi_{4} q^{4}+\ldots .
$$

$\Psi_{2}, \Psi_{4}, \ldots, \Psi_{2 n}$ are free generators of $\mathrm{S}\left(\mathfrak{o}_{2 n+1}\right)^{\mathfrak{o}_{2 n+1}}$.

For $N=2 n$ define the Pfaffian by

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}} .
$$

The invariants $\Psi_{2 m} \in \mathrm{~S}\left(\mathfrak{o}_{N}\right)^{\mathfrak{o}_{N}}$ are defined by

$$
\operatorname{det}(1-q F)^{-1}=1+\Psi_{2} q^{2}+\Psi_{4} q^{4}+\ldots .
$$

$\Psi_{2}, \Psi_{4}, \ldots, \Psi_{2 n}$ are free generators of $\mathrm{S}\left(\mathfrak{o}_{2 n+1}\right)^{\mathfrak{o}_{2 n+1}}$.

For $N=2 n$ define the Pfaffian by

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}} .
$$

$\Psi_{2}, \Psi_{4}, \ldots, \Psi_{2 n-2}, \operatorname{Pf} F$ are free generators of $\mathrm{S}\left(\mathfrak{o}_{2 n}\right)^{\mathfrak{o}_{2 n}}$.

For even values of m we have

$$
\Phi_{m}=\operatorname{Det}_{m}(F) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(F)
$$

For even values of m we have

$$
\Phi_{m}=\operatorname{Det}_{m}(F) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(F)
$$

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

For even values of m we have

$$
\Phi_{m}=\operatorname{Det}_{m}(F) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(F)
$$

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

For even values of m we have

$$
\Phi_{m}=\operatorname{Det}_{m}(F) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(F)
$$

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

The μ-shifts of the invariants are the coefficients of the polynomials $\operatorname{Pf}(F+s \mu)$ (for $\left.\mathfrak{o}_{2 n}\right)$ and

For even values of m we have

$$
\Phi_{m}=\operatorname{Det}_{m}(F) \quad \text { and } \quad \Psi_{m}=\operatorname{Per}_{m}(F)
$$

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

The μ-shifts of the invariants are the coefficients of the polynomials $\operatorname{Pf}(F+s \mu)$ (for $\left.\mathfrak{o}_{2 n}\right)$ and

$$
\operatorname{Det}_{m}(F+s \mu) \quad \text { and } \quad \operatorname{Per}_{m}(F+s \mu) .
$$

Theorem [M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g}^{*}$ is arbitrary.

Theorem [M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g}^{*}$ is arbitrary.

- The coefficients of the polynomials $\operatorname{Det}_{m}(F+s \mu)$ with
$m=2,4, \ldots, 2 n$ generate the algebra \mathcal{A}_{μ} in type C.

Theorem [M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g}^{*}$ is arbitrary.

- The coefficients of the polynomials $\operatorname{Det}_{m}(F+s \mu)$ with $m=2,4, \ldots, 2 n$ generate the algebra \mathcal{A}_{μ} in type C.
- The coefficients of the polynomials $\operatorname{Per}_{m}(F+s \mu)$ with $m=2,4, \ldots, 2 n$ generate the algebra \mathcal{A}_{μ} in type B.

Theorem [M., Yakimova, 2017].
Suppose that $\mu \in \mathfrak{g}^{*}$ is arbitrary.

- The coefficients of the polynomials $\operatorname{Det}_{m}(F+s \mu)$ with $m=2,4, \ldots, 2 n$ generate the algebra \mathcal{A}_{μ} in type C.
- The coefficients of the polynomials $\operatorname{Per}_{m}(F+s \mu)$ with $m=2,4, \ldots, 2 n$ generate the algebra \mathcal{A}_{μ} in type B.
- The coefficients of the polynomials $\operatorname{Pf}(F+s \mu)$ and
$\operatorname{Per}_{m}(F+s \mu)$ for the values $m=2,4, \ldots, 2 n-2$ generate the algebra \mathcal{A}_{μ} in type D.

Free generators of \mathcal{A}_{μ} : type A

Free generators of $\mathcal{A}_{\mu}:$ type A

Suppose that the distinct eigenvalues of μ are $\lambda_{1}, \ldots, \lambda_{r}$.

Free generators of $\mathcal{A}_{\mu}:$ type A

Suppose that the distinct eigenvalues of μ are $\lambda_{1}, \ldots, \lambda_{r}$.
To each λ_{i} associate the Young diagram $\alpha^{(i)}$ whose rows are the sizes of the Jordan blocks with the eigenvalue λ_{i}.

Free generators of $\mathcal{A}_{\mu}:$ type A

Suppose that the distinct eigenvalues of μ are $\lambda_{1}, \ldots, \lambda_{r}$.
To each λ_{i} associate the Young diagram $\alpha^{(i)}$ whose rows are the sizes of the Jordan blocks with the eigenvalue λ_{i}.

Introduce another Young diagram by

$$
\Pi=\alpha^{(1)}+\cdots+\alpha^{(r)}
$$

the sum is taken by rows.

Write the numbers $1,2, \ldots, N$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

Write the numbers $1,2, \ldots, N$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

For each $m \in\{1, \ldots, N\}$ define $r(m)$ as the row number of m.

Write the numbers $1,2, \ldots, N$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

For each $m \in\{1, \ldots, N\}$ define $r(m)$ as the row number of m.

Introduce another Young diagram by

$$
\varrho=(r(N)-1, \ldots, r(1)-1) .
$$

Example. For $\Pi=(3,2,1)$ we have

1	2	3
4	5	
6		

Example. For $\Pi=(3,2,1)$ we have

\[

\]

Therefore

$$
r(1)=r(2)=r(3)=1, \quad r(4)=r(5)=2, \quad r(6)=3
$$

Example. For $\Pi=(3,2,1)$ we have

\[

\]

Therefore

$$
r(1)=r(2)=r(3)=1, \quad r(4)=r(5)=2, \quad r(6)=3
$$

and

$$
\varrho=(2,1,1)
$$

Associate the coefficients $\Phi_{m k}$ of the polynomials $\operatorname{Det}_{m}(E+s \mu)$ with boxes of the diagram $\Gamma=(N, N-1, \ldots, 1)$ by

Associate the coefficients $\Phi_{m k}$ of the polynomials $\operatorname{Det}_{m}(E+s \mu)$ with boxes of the diagram $\Gamma=(N, N-1, \ldots, 1)$ by

$$
\Gamma=
$$

$$
\begin{array}{lclc}
\Phi_{N N-1} & \Phi_{N N-2} & \cdots & \Phi_{N 1} \\
\Phi_{N-1 N-2} & \Phi_{N-1 N-3} & \cdots & \Phi_{N 0} \\
\ldots & \ldots & \cdots & \\
& & & \\
\Phi_{21} & \Phi_{20} & & \\
\Phi_{10} & & & \\
& & &
\end{array}
$$

Theorem [Futorny, M., 2015; M., Yakimova, 2017].

Theorem [Futorny, M., 2015; M., Yakimova, 2017].
The elements $\Phi_{m k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Theorem [Futorny, M., 2015; M., Yakimova, 2017].

The elements $\Phi_{m k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Moreover, the FFTL-conjecture holds:
the subalgebra \mathcal{A}_{μ} is a quantization of $\overline{\mathcal{A}}_{\mu}$ so that
$\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

Then $\Pi=(3,2,1)$ so that $\varrho=(2,1,1)$

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

Then $\Pi=(3,2,1)$ so that $\varrho=(2,1,1)$ and Γ / ϱ is

Example. Take $N=6$ and let μ have two distinct eigenvalues with the associated Young diagrams

Then $\Pi=(3,2,1)$ so that $\varrho=(2,1,1)$ and Γ / ϱ is

Thus we exclude $\Phi_{65}, \Phi_{64}, \Phi_{54}$ and Φ_{43}.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{m k}$ are algebraically independent.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{m k}$ are algebraically independent.

Example. If μ is a scalar matrix then $\varrho=(N-1, N-2, \ldots, 1)$.

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{m k}$ are algebraically independent.

Example. If μ is a scalar matrix then $\varrho=(N-1, N-2, \ldots, 1)$.
The skew diagram Γ / ϱ is

Example. If μ is regular, then it is associated with row diagrams $\alpha^{(i)}$. Hence, $\varrho=\varnothing$ and all elements $\Phi_{m k}$ are algebraically independent.

Example. If μ is a scalar matrix then $\varrho=(N-1, N-2, \ldots, 1)$.
The skew diagram Γ / ϱ is

Thus $\mathcal{A}_{\mu}=\mathbb{C}\left[\Phi_{10}, \ldots, \Phi_{N 0}\right]=\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.

Free generators of \mathcal{A}_{μ} : type C

Free generators of \mathcal{A}_{μ} : type C

The nonzero eigenvalues of μ occur in pairs $(\lambda,-\lambda)$ which correspond to the same Young diagram. Moreover, the Young diagram corresponding to the zero eigenvalue has the property that each row of odd length occurs an even number of times.

Free generators of \mathcal{A}_{μ} : type C

The nonzero eigenvalues of μ occur in pairs $(\lambda,-\lambda)$ which correspond to the same Young diagram. Moreover, the Young diagram corresponding to the zero eigenvalue has the property that each row of odd length occurs an even number of times.

Let $\alpha^{(1)}, \ldots, \alpha^{(r)}$ be the diagrams associated with the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$.

Free generators of \mathcal{A}_{μ} : type C

The nonzero eigenvalues of μ occur in pairs $(\lambda,-\lambda)$ which correspond to the same Young diagram. Moreover, the Young diagram corresponding to the zero eigenvalue has the property that each row of odd length occurs an even number of times.

Let $\alpha^{(1)}, \ldots, \alpha^{(r)}$ be the diagrams associated with the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$.

Introduce the Young diagram П by

$$
\Pi=\alpha^{(1)}+\cdots+\alpha^{(r)} .
$$

Write the numbers $1,2, \ldots, 2 n$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

Write the numbers $1,2, \ldots, 2 n$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

For each $m \in\{1, \ldots, n\}$ define $r(2 m)$ as the row number of $2 m$.

Write the numbers $1,2, \ldots, 2 n$ consecutively from left to right in the boxes of each row of the Young diagram Π beginning from the top row.

For each $m \in\{1, \ldots, n\}$ define $r(2 m)$ as the row number of $2 m$.

Introduce the Young diagram ϱ by

$$
\varrho=(r(2 n)-1, \ldots, r(2)-1) .
$$

Associate the coefficients $\Phi_{2 m k}$ of the polynomials
$\operatorname{Det}_{2 m}(F+s \mu)$ with boxes of the diagram $\Gamma=(2 n, 2 n-2, \ldots, 2)$
by

Associate the coefficients $\Phi_{2 m k}$ of the polynomials

$$
\operatorname{Det}_{2 m}(F+s \mu) \text { with boxes of the diagram } \Gamma=(2 n, 2 n-2, \ldots, 2)
$$ by

$$
\begin{array}{ccccc}
\Phi_{2 n 2 n-1} & \Phi_{2 n 2 n-2} & \cdots & \Phi_{2 n 2} & \Phi_{2 n 1}
\end{array} \Phi_{2 n 0}
$$

Theorem [M., Yakimova, 2017].
The elements $\Phi_{2 m k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Theorem [M., Yakimova, 2017].
The elements $\Phi_{2 m k}$ corresponding to the boxes of the skew diagram Γ / ϱ are free generators of the subalgebra \mathcal{A}_{μ}.

Moreover, the FFTL-conjecture holds:
the subalgebra \mathcal{A}_{μ} is a quantization of $\overline{\mathcal{A}}_{\mu}$ so that
$\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Example. In the case of regular μ we have $\varrho=\varnothing$ and all elements $\Phi_{2 m k}$ are algebraically independent.

Example. In the case of regular μ we have $\varrho=\varnothing$ and all elements $\Phi_{2 m k}$ are algebraically independent.

Example. If $\mu=0$ then $\varrho=(2 n-1,2 n-3, \ldots, 1)$ and \mathcal{A}_{μ} is the center of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{s p}_{2 n}\right)$.

Example. In the case of regular μ we have $\varrho=\varnothing$ and all elements $\Phi_{2 m k}$ are algebraically independent.

Example. If $\mu=0$ then $\varrho=(2 n-1,2 n-3, \ldots, 1)$ and \mathcal{A}_{μ} is the center of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{s p}_{2 n}\right)$.

It is freely generated by the elements $\Phi_{20}, \Phi_{40}, \ldots, \Phi_{2 n 0}$.

Outline of the proof

Outline of the proof

For any simple Lie algebra \mathfrak{g} and any $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ we have

$$
\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})^{\mathfrak{g}_{\mu}} \Longrightarrow \operatorname{gr} \mathcal{A}_{\mu} \subset \mathrm{S}(\mathfrak{g})^{\mathfrak{g}_{\mu}}
$$

Outline of the proof

For any simple Lie algebra \mathfrak{g} and any $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ we have

$$
\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})^{\mathfrak{g}_{\mu}} \Longrightarrow \operatorname{gr} \mathcal{A}_{\mu} \subset \mathrm{S}(\mathfrak{g})^{\mathfrak{g}_{\mu}}
$$

where \mathfrak{g}_{μ} is the centralizer of μ in \mathfrak{g}.

Outline of the proof

For any simple Lie algebra \mathfrak{g} and any $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ we have

$$
\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})^{\mathfrak{g}_{\mu}} \Longrightarrow \operatorname{gr} \mathcal{A}_{\mu} \subset \mathrm{S}(\mathfrak{g})^{\mathfrak{g}_{\mu}}
$$

where \mathfrak{g}_{μ} is the centralizer of μ in \mathfrak{g}.
On the other hand,

$$
\overline{\mathcal{A}}_{\mu} \subset \operatorname{gr} \mathcal{A}_{\mu}
$$

Outline of the proof

For any simple Lie algebra \mathfrak{g} and any $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ we have

$$
\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})^{\mathfrak{g}_{\mu}} \Longrightarrow \operatorname{gr} \mathcal{A}_{\mu} \subset \mathrm{S}(\mathfrak{g})^{\mathfrak{g}_{\mu}}
$$

where \mathfrak{g}_{μ} is the centralizer of μ in \mathfrak{g}.
On the other hand,

$$
\overline{\mathcal{A}}_{\mu} \subset \operatorname{gr} \mathcal{A}_{\mu}
$$

In types A and C :
$\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}_{\mu}}$.
Hence $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

