Higher order Hamiltonians for the trigonometric Gaudin model

Alexander Molev

University of Sydney

Joint work with Eric Ragoucy

Let \mathfrak{g} be a simple Lie algebra over $\mathbb{C}\,.$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

Consider the polynomial current Lie algebra $t^{-1}\mathfrak{g}[t^{-1}]$ which spanned by the elements $X[r] = Xt^r$ with $X \in \mathfrak{g}$ and r < 0.

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

Consider the polynomial current Lie algebra $t^{-1}\mathfrak{g}[t^{-1}]$ which spanned by the elements $X[r] = Xt^r$ with $X \in \mathfrak{g}$ and r < 0.

Given any element $\chi \in \mathfrak{g}^*$ and a nonzero $z \in \mathbb{C}$, the mapping

 $\mathbf{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \mathbf{U}(\mathfrak{g}), \qquad X[r] \mapsto Xz^r + \delta_{r,-1} \chi(X),$

defines a (shifted) evaluation homomorphism.

Using the coassociativity of the standard coproduct on $U(t^{-1}\mathfrak{g}[t^{-1}])$ defined by

 $\Delta: Y \mapsto Y \otimes 1 + 1 \otimes Y, \qquad Y \in t^{-1}\mathfrak{g}[t^{-1}],$

Using the coassociativity of the standard coproduct on $U(t^{-1}\mathfrak{g}[t^{-1}])$ defined by

$$\Delta: Y \mapsto Y \otimes 1 + 1 \otimes Y, \qquad Y \in t^{-1}\mathfrak{g}[t^{-1}],$$

for any $\ell \ge 1$ we get the homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\otimes \ell}$$

as an iterated coproduct map.

Now fix distinct complex numbers z_1, \ldots, z_ℓ and let u be a complex parameter.

Now fix distinct complex numbers z_1, \ldots, z_ℓ and let *u* be a complex parameter. Applying the evaluation homomorphisms to the tensor factors, we get another homomorphism

 $\Psi: \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big) \to \mathrm{U}(\mathfrak{g})^{\otimes \ell},$

Now fix distinct complex numbers z_1, \ldots, z_ℓ and let *u* be a complex parameter. Applying the evaluation homomorphisms to the tensor factors, we get another homomorphism

 $\Psi: \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \mathrm{U}(\mathfrak{g})^{\otimes \ell},$

given by

$$\Psi: X[r] \mapsto \sum_{a=1}^{\ell} X_a (z_a - u)^r + \delta_{r,-1} \chi(X) \in \mathbf{U}(\mathfrak{g})^{\otimes \ell},$$

where $X_a = 1^{\otimes (a-1)} \otimes X \otimes 1^{\otimes (\ell-a)}$.

Consider the affine Kac-Moody algebra

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K.$

Consider the affine Kac—Moody algebra

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K.$

Identify $U(t^{-1}\mathfrak{g}[t^{-1}])$ with the vacuum module $U(t^{-1}\mathfrak{g}[t^{-1}])\mathbf{1}$ over $\hat{\mathfrak{g}}$ at the critical level:

Consider the affine Kac—Moody algebra

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K.$

Identify $U(t^{-1}\mathfrak{g}[t^{-1}])$ with the vacuum module $U(t^{-1}\mathfrak{g}[t^{-1}])\mathbf{1}$ over $\hat{\mathfrak{g}}$ at the critical level:

it is generated by the vacuum vector 1 such that

$$\mathfrak{g}[t] \mathbf{1} = 0$$
 and $K \mathbf{1} = -h^{\vee} \mathbf{1}$.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$ defined as the subalgebra of invariants:

 $\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in \mathbf{U}(t^{-1}\mathfrak{g}[t^{-1}])\mathbf{1} \mid \mathfrak{g}[t]v = 0 \}.$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$ defined as the subalgebra of invariants:

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])\mathbf{1} \mid \mathfrak{g}[t]v = 0 \}.$$

Elements of $\mathfrak{z}(\hat{\mathfrak{g}})$ are known as Segal–Sugawara vectors.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$ defined as the subalgebra of invariants:

 $\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])\mathbf{1} \mid \mathfrak{g}[t]v = 0 \}.$

Elements of $\mathfrak{z}(\hat{\mathfrak{g}})$ are known as Segal–Sugawara vectors.

Higher Gaudin Hamiltonians are obtained by taking the images

of Segal–Sugawara vectors under the homomorphism

 $\Psi: \mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \mathrm{U}(\mathfrak{g})^{\otimes \ell}$

[FFR 1994, Rybnikov 2006, FFTL 2010].

In particular, the quadratic Gaudin Hamiltonian arises from the canonical Segal–Sugawara vector

$$S = \sum_{a=1}^{d} J_a[-1]J^a[-1],$$

where J_1, \ldots, J_d and J^1, \ldots, J^d are dual bases of \mathfrak{g} with respect

to the normalized Killing form.

Explicit generators of the Feigin–Frenkel center were found in type *A* by A. Chervov and D. Talalaev (2006), in types *B*, *C*, *D* by A. M. (2013) and in type G_2 by A. M., E. Ragoucy and N. Rozhkovskaya (2016).

Explicit generators of the Feigin–Frenkel center were found in type *A* by A. Chervov and D. Talalaev (2006), in types *B*, *C*, *D* by A. M. (2013) and in type G_2 by A. M., E. Ragoucy and N. Rozhkovskaya (2016).

This yields explicit higher Gaudin Hamiltonians in those cases and reproduces Talalaev's formulas in type *A* (2006).

Higher Gaudin Hamiltonians in type A

Higher Gaudin Hamiltonians in type A

A family of higher Gaudin Hamiltonians for $\mathfrak{g} = \mathfrak{gl}_N$ arises from the coefficients of the differential operators

$$\operatorname{tr}(\partial_u + E(u))^k, \qquad k = 1, 2, \dots$$

which form a commutative subalgebra of $U(t^{-1}\mathfrak{gl}_N[t^{-1}])$.

Higher Gaudin Hamiltonians in type A

A family of higher Gaudin Hamiltonians for $\mathfrak{g} = \mathfrak{gl}_N$ arises from the coefficients of the differential operators

$$\operatorname{tr}(\partial_u + E(u))^k, \qquad k = 1, 2, \dots$$

which form a commutative subalgebra of $U(t^{-1}\mathfrak{gl}_N[t^{-1}])$.

Here $E(u) = [E_{ij}(u)]$ is the matrix with the entries

$$E_{ij}(u) = \sum_{r<0} E_{ij}[r] u^{-r-1}, \qquad E_{ij}[r] = E_{ij}t^r.$$

Now $t^{-1}\mathfrak{gl}_{N}[t^{-1}]$ is replaced by the extended Lie algebra

 $\widehat{\mathfrak{g}}^+ = \mathfrak{b}^+ \oplus t^{-1}\mathfrak{gl}_N[t^{-1}],$

where b^+ is the subalgebra of \mathfrak{gl}_N spanned by the elements E_{ij} with $i \leq j$.

Now $t^{-1}\mathfrak{gl}_{N}[t^{-1}]$ is replaced by the extended Lie algebra

 $\widehat{\mathfrak{g}}^+ = \mathfrak{b}^+ \oplus t^{-1}\mathfrak{gl}_N[t^{-1}],$

where \mathfrak{b}^+ is the subalgebra of \mathfrak{gl}_N spanned by the elements E_{ij} with $i \leq j$. Accordingly, E(u) is replaced by the matrix $\mathcal{L}^+(u) = [\mathcal{L}^+_{ii}(u)]$ such that

Now $t^{-1}\mathfrak{gl}_{N}[t^{-1}]$ is replaced by the extended Lie algebra

 $\widehat{\mathfrak{g}}^+ = \mathfrak{b}^+ \oplus t^{-1}\mathfrak{gl}_N[t^{-1}],$

where \mathfrak{b}^+ is the subalgebra of \mathfrak{gl}_N spanned by the elements E_{ij} with $i \leq j$. Accordingly, E(u) is replaced by the matrix $\mathcal{L}^+(u) = [\mathcal{L}^+_{ii}(u)]$ such that

$$\mathcal{L}^+(u) = -\begin{pmatrix} E_{11} & \dots & 2E_{1N} \\ \vdots & \ddots & \vdots \\ 0 & \dots & E_{NN} \end{pmatrix} - 2 \sum_{n=1}^{\infty} E[-n] u^n.$$

The coefficients of the series tr $\mathcal{L}^+(u)^2$ are pairwise commuting

elements of $U(\hat{g}^+)$ [Sklyanin (1987), Jurčo (1989)].

The coefficients of the series tr $\mathcal{L}^+(u)^2$ are pairwise commuting elements of U($\hat{\mathfrak{g}}^+$) [Sklyanin (1987), Jurčo (1989)].

As with the rational Gaudin model, this series is the generating function for quadratic Hamiltonians: taking the image in the tensor product of the vector representations, we get

$$\mathcal{L}^+(u)\mapsto r_{01}(u/a_1)+\cdots+r_{0l}(u/a_l)$$

for some parameters a_i ,

The coefficients of the series tr $\mathcal{L}^+(u)^2$ are pairwise commuting elements of U($\hat{\mathfrak{g}}^+$) [Sklyanin (1987), Jurčo (1989)].

As with the rational Gaudin model, this series is the generating function for quadratic Hamiltonians: taking the image in the tensor product of the vector representations, we get

$$\mathcal{L}^+(u)\mapsto r_{01}(u/a_1)+\cdots+r_{0l}(u/a_l)$$

for some parameters a_i , where

$$r(x) = \sum_{i,j=1}^{N} \left(\frac{1+x}{1-x} + \operatorname{sgn}(j-i) \right) e_{ij} \otimes e_{ji}$$

The function r(x) is a trigonometric classical *r*-matrix.

The function r(x) is a trigonometric classical *r*-matrix. It satisfies the classical Yang–Baxter equation

$$\bigcirc_{1,2,3} \left[r_{12}(x_1/x_2), r_{23}(x_2/x_3) \right] = 0$$

The function r(x) is a trigonometric classical *r*-matrix. It satisfies the classical Yang–Baxter equation

$$\bigcirc_{1,2,3} \left[r_{12}(x_1/x_2), r_{23}(x_2/x_3) \right] = 0$$

together with the skew-symmetry condition

 $r_{12}(x) + r_{21}(1/x) = 0.$

The function r(x) is a trigonometric classical *r*-matrix. It satisfies the classical Yang–Baxter equation

$$\bigcirc_{1,2,3} \left[r_{12}(x_1/x_2), r_{23}(x_2/x_3) \right] = 0$$

together with the skew-symmetry condition

$$r_{12}(x) + r_{21}(1/x) = 0.$$

Taking the residue at a_i , we recover the *i*-th Gaudin Hamiltonian

$$\operatorname{res}_{u=a_i} \operatorname{tr} \mathcal{L}^+(u)^2 = 2a_i \sum_{j \neq i} r_{ij}(a_i/a_j),$$

assuming the parameters a_i are all distinct and nonzero.

Our goal is to construct higher order Hamiltonians for the trigonometric Gaudin model. They are obtained from a commuting family of elements of the algebra $U(\hat{g}^+)$.

Our goal is to construct higher order Hamiltonians for the trigonometric Gaudin model. They are obtained from a commuting family of elements of the algebra $U(\hat{g}^+)$.

This commuting family is analogous to the one produced from the differential operators $tr(\partial_u + E(u))^k$:
Our goal is to construct higher order Hamiltonians for the trigonometric Gaudin model. They are obtained from a commuting family of elements of the algebra $U(\hat{g}^+)$.

This commuting family is analogous to the one produced from the differential operators $tr(\partial_u + E(u))^k$:

the highest degree term of the corresponding operator coincides with tr $\mathcal{L}^+(u)^k$.

Introduce the function T(y) in a variable y with values in

 $\operatorname{End} {\mathbb C}^N \otimes \operatorname{End} {\mathbb C}^N$ by

$$T(y) = \sum_{i=1}^{N} e_{ii} \otimes e_{ii} + \frac{1}{1-y} \sum_{i < j} e_{ij} \otimes e_{ji} + \frac{1}{1+y} \sum_{i > j} e_{ij} \otimes e_{ji}.$$

Introduce the function T(y) in a variable y with values in

 $\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N$ by

$$T(y) = \sum_{i=1}^N e_{ii} \otimes e_{ii} + \frac{1}{1-y} \sum_{i < j} e_{ij} \otimes e_{ji} + \frac{1}{1+y} \sum_{i > j} e_{ij} \otimes e_{ji}.$$

For any $1 \le a < b \le s$ we let $T_{ab}(y)$ denote the function T(y)

regarded as an element of the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{s} \otimes \operatorname{U}(\widehat{\mathfrak{g}}^+),$$

Introduce the function T(y) in a variable y with values in

 $\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N$ by

$$T(y) = \sum_{i=1}^{N} e_{ii} \otimes e_{ii} + \frac{1}{1-y} \sum_{i < j} e_{ij} \otimes e_{ji} + \frac{1}{1+y} \sum_{i > j} e_{ij} \otimes e_{ji}.$$

For any $1 \le a < b \le s$ we let $T_{ab}(y)$ denote the function T(y)

regarded as an element of the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{s} \otimes \operatorname{U}(\widehat{\mathfrak{g}}^+),$$

associated with the *a*-th and *b*-th copies of $\operatorname{End} \mathbb{C}^N$ and as the

identity element in all the remaining tensor factors.

Define differential operators $\theta_m \in U(\hat{\mathfrak{g}}^+)[[u, \partial_u]]$ by means of the generating function

$$\sum_{m=1}^{\infty} \theta_m y^m = \sum_{s=1}^{\infty} y^s \operatorname{tr}_{1,\ldots,s} T_{s-1\,s}(y) \ldots T_{1\,2}(y) \mathcal{L}_1 \ldots \mathcal{L}_s,$$

Define differential operators $\theta_m \in U(\hat{\mathfrak{g}}^+)[[u, \partial_u]]$ by means of the generating function

$$\sum_{m=1}^{\infty} \theta_m y^m = \sum_{s=1}^{\infty} y^s \operatorname{tr}_{1,\ldots,s} T_{s-1\,s}(y) \ldots T_{1\,2}(y) \mathcal{L}_1 \ldots \mathcal{L}_s,$$

where $\mathcal{L} = 2u\partial_u - \mathcal{L}^+(u)$ and the trace is taken over all *s* copies

of End \mathbb{C}^N .

We have

$$\theta_1 = \operatorname{tr} \mathcal{L} = 2Nu \partial_u - \operatorname{tr} \mathcal{L}^+(u).$$

We have

$$\theta_1 = \operatorname{tr} \mathcal{L} = 2Nu \partial_u - \operatorname{tr} \mathcal{L}^+(u).$$

Furthermore,

$$heta_2 = \operatorname{tr}_{1,2} P_{12} \mathcal{L}_1 \mathcal{L}_2 = \operatorname{tr} \mathcal{L}^2 = \operatorname{tr} \left(2 u \partial_u - \mathcal{L}^+(u) \right)^2$$

 $=4Nu^2\partial_u^2-4u\big(\operatorname{tr} \mathcal{L}^+(u)-N\big)\partial_u-2u\operatorname{tr} \mathcal{L}^+(u)'+\operatorname{tr} \mathcal{L}^+(u)^2$

We have

$$\theta_1 = \operatorname{tr} \mathcal{L} = 2Nu \partial_u - \operatorname{tr} \mathcal{L}^+(u).$$

Furthermore,

$$\theta_2 = \operatorname{tr}_{1,2} P_{12} \mathcal{L}_1 \mathcal{L}_2 = \operatorname{tr} \mathcal{L}^2 = \operatorname{tr} \left(2 u \partial_u - \mathcal{L}^+(u) \right)^2$$
$$= 4 N u^2 \partial_u^2 - 4 u \left(\operatorname{tr} \mathcal{L}^+(u) - N \right) \partial_u - 2 u \operatorname{tr} \mathcal{L}^+(u)' + \operatorname{tr} \mathcal{L}^+(u)^2$$

and

$$\theta_3 = \operatorname{tr} \left(2 u \partial_u - \mathcal{L}^+(u) \right)^3 + \sum_{i,j=1}^N \operatorname{sgn}(i-j) \mathcal{L}^+_{ij}(u) \mathcal{L}^+_{ji}(u).$$

$$\theta_m = \theta_m^{(0)} \partial_u^m + \dots + \theta_m^{(m-1)} \partial_u + \theta_m^{(m)},$$

$$\theta_m = \theta_m^{(0)} \partial_u^m + \dots + \theta_m^{(m-1)} \partial_u + \theta_m^{(m)},$$

where each $\theta_m^{(k)}$ is a power series in *u* with coefficients in the algebra $U(\hat{g}^+)$.

$$\theta_m = \theta_m^{(0)} \partial_u^m + \dots + \theta_m^{(m-1)} \partial_u + \theta_m^{(m)},$$

where each $\theta_m^{(k)}$ is a power series in *u* with coefficients in the algebra $U(\hat{g}^+)$. In particular,

$$heta_m^{(m)} = (-1)^m \operatorname{tr} \mathcal{L}^+(u)^m + \text{ lower degree terms.}$$

$$\theta_m = \theta_m^{(0)} \partial_u^m + \dots + \theta_m^{(m-1)} \partial_u + \theta_m^{(m)},$$

where each $\theta_m^{(k)}$ is a power series in *u* with coefficients in the algebra $U(\hat{g}^+)$. In particular,

$$\theta_m^{(m)} = (-1)^m \operatorname{tr} \mathcal{L}^+(u)^m + \text{ lower degree terms.}$$

This follows from the relation

$$\operatorname{tr}_{1,\ldots,s} P_{s-1\,s} \ldots P_{1\,2}\,\mathcal{L}_1 \ldots \mathcal{L}_s = \operatorname{tr} \mathcal{L}^s = \operatorname{tr} \left(2\,u\,\partial_u - \mathcal{L}^+(u) \right)^s.$$

Theorem [M.-Ragoucy 2018].

The coefficients of all power series $\theta_m^{(k)}$ generate a commutative subalgebra of $U(\hat{g}^+)$.

Theorem [M.–Ragoucy 2018].

The coefficients of all power series $\theta_m^{(k)}$ generate a commutative subalgebra of $U(\hat{g}^+)$.

The commuting family quantizes the well-known Hamiltonians $\operatorname{tr} L(u)^m$ of the classical trigonometric Gaudin model [O. Babelon, C.-M. Viallet 1990, T. Skrypnyk 2007].

Examples.

Examples.

The commutative subalgebra contains the coefficients of the power series tr $\mathcal{L}^+(u)^2$,

Examples.

The commutative subalgebra contains the coefficients of the power series tr $\mathcal{L}^+(u)^2$, as well as the coefficients of the power series

$$\operatorname{tr} \mathcal{L}^+(u)^3 - 2u \operatorname{tr} \mathcal{L}^+(u) \mathcal{L}^+(u)' + \sum_{i,j=1}^N \operatorname{sgn}(j-i) \mathcal{L}^+_{ij}(u) \mathcal{L}^+_{ji}(u).$$

Begin with the Bethe subalgebra of the *q*-Yangian $Y_q(\mathfrak{gl}_N)$.

Begin with the Bethe subalgebra of the *q*-Yangian $Y_q(\mathfrak{gl}_N)$.

The algebra $\mathbf{Y}_q(\mathfrak{gl}_N)$ is generated by elements

 $l_{ii}^+[-r], \qquad 1 \leq i,j \leq N, \qquad r=0,1,\ldots,$

with the conditions that $l_{ij}^+[0] = 0$ for i > j and the elements $l_{ii}^+[0]$ are invertible,

Begin with the Bethe subalgebra of the *q*-Yangian $Y_q(\mathfrak{gl}_N)$.

The algebra $\mathbf{Y}_q(\mathfrak{gl}_N)$ is generated by elements

$$l_{ij}^+[-r], \qquad 1 \leqslant i,j \leqslant N, \qquad r=0,1,\ldots,$$

with the conditions that $l_{ij}^+[0] = 0$ for i > j and the elements $l_{ii}^+[0]$ are invertible, subject to the defining relations

$$R(u/v)L_1^+(u)L_2^+(v) = L_2^+(v)L_1^+(u)R(u/v).$$

Here $L^+(u) = \left[l_{ij}^+(u) \right]$ and

$$l_{ij}^+(u) = \sum_{r=0}^{\infty} l_{ij}^+[-r] u^r.$$

The *R*-matrix is given by

$$R(x) = \sum_{i} e_{ii} \otimes e_{ii} + \frac{1-x}{q-q^{-1}x} \sum_{i \neq j} e_{ii} \otimes e_{jj} + \frac{(q-q^{-1})x}{q-q^{-1}x} \sum_{i>j} e_{ij} \otimes e_{ji} + \frac{q-q^{-1}}{q-q^{-1}x} \sum_{i< j} e_{ij} \otimes e_{ji}.$$

The *R*-matrix is given by

$$R(x) = \sum_{i} e_{ii} \otimes e_{ii} + \frac{1-x}{q-q^{-1}x} \sum_{i \neq j} e_{ii} \otimes e_{jj} + \frac{(q-q^{-1})x}{q-q^{-1}x} \sum_{i>j} e_{ij} \otimes e_{ji} + \frac{q-q^{-1}}{q-q^{-1}x} \sum_{i$$

Consider the *q*-permutation

 $P^q \in \operatorname{End} \left(\mathbb{C}^N \otimes \mathbb{C}^N \right) \cong \operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N$ defined by

$$P^q = \sum_i e_{ii} \otimes e_{ii} + q \sum_{i>j} e_{ij} \otimes e_{ji} + q^{-1} \sum_{i< j} e_{ij} \otimes e_{ji}.$$

The symmetric group \mathfrak{S}_k acts on the tensor product space $(\mathbb{C}^N)^{\otimes k}$ by $s_a \mapsto P_{s_a}^q := P_{aa+1}^q$ for $a = 1, \ldots, k-1$, where s_a

denotes the transposition (a, a + 1).

The symmetric group \mathfrak{S}_k acts on the tensor product space $(\mathbb{C}^N)^{\otimes k}$ by $s_a \mapsto P_{s_a}^q := P_{aa+1}^q$ for $a = 1, \ldots, k-1$, where s_a denotes the transposition (a, a + 1).

Denote by $A^{(k)}$ the image of the normalized antisymmetrizer associated with the *q*-permutations:

$$A^{(k)} = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} \operatorname{sgn} \sigma \cdot P_{\sigma}^q.$$

For each k = 1, ..., N consider the power series in *u* defined by

$$\operatorname{tr}_{1,\ldots,k} A^{(k)} L_1^+(u) \ldots L_k^+(uq^{-2k+2})$$

with the trace taken over all k copies of $\operatorname{End} \mathbb{C}^N$ in the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_k \otimes \operatorname{Y}_q(\mathfrak{gl}_N)[[u]].$$

It is well-known that the coefficients of all power series

generate a commutative subalgebra \mathcal{B}_N of $Y_q(\mathfrak{gl}_N)$.

Another family of generators of this subalgebra can be obtained

from the Newton identities

[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].

Another family of generators of this subalgebra can be obtained from the Newton identities

[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].

They imply that the coefficients of all power series

$$\operatorname{tr}_{1,\ldots,k} P^{q}_{(k,k-1,\ldots,1)} L^{+}_{1}(u) \ldots L^{+}_{k}(uq^{-2k+2}), \qquad k = 1, 2, \ldots$$

belong to \mathcal{B}_N .

Another family of generators of this subalgebra can be obtained from the Newton identities

[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].

They imply that the coefficients of all power series

$$\operatorname{tr}_{1,\dots,k} P^{q}_{(k,k-1,\dots,1)} L^{+}_{1}(u) \dots L^{+}_{k}(uq^{-2k+2}), \qquad k = 1, 2, \dots$$

belong to \mathcal{B}_N .

Introduce the operator δ such that $\delta g(u) = g(uq^{-2})\delta$. Adjoining this element to the algebra $Y_q(\mathfrak{gl}_N)[[u]]$, set $M = L^+(u)\delta$.

For each $m \ge 1$ consider the expression

$$\mathcal{M}_{m} = \frac{1}{(q-1)^{m}} \left(1 - (M_{m})^{\rightarrow} \right) \left(P_{m-1\,m} - P_{m-1\,m}^{q} (M_{m-1})^{\rightarrow} \right)$$
$$\dots \left(P_{12} - P_{12}^{q} (M_{1})^{\rightarrow} \right) 1,$$

For each $m \ge 1$ consider the expression

$$\mathcal{M}_{m} = \frac{1}{(q-1)^{m}} \left(1 - (M_{m})^{\rightarrow} \right) \left(P_{m-1\,m} - P_{m-1\,m}^{q} (M_{m-1})^{\rightarrow} \right)$$
$$\dots \left(P_{12} - P_{12}^{q} (M_{1})^{\rightarrow} \right) 1,$$

where the arrow indicates right multiplication:

$$\left(P_{a\,a+1} - P^{q}_{a\,a+1}\left(M_{a}\right)^{\rightarrow}\right)X := P_{a\,a+1}X - P^{q}_{a\,a+1}XM_{a}$$

For each $m \ge 1$ consider the expression

$$\mathcal{M}_{m} = \frac{1}{(q-1)^{m}} \left(1 - (M_{m})^{\rightarrow} \right) \left(P_{m-1\,m} - P_{m-1\,m}^{q} (M_{m-1})^{\rightarrow} \right)$$
$$\dots \left(P_{12} - P_{12}^{q} (M_{1})^{\rightarrow} \right) 1,$$

where the arrow indicates right multiplication:

$$\left(P_{a\,a+1} - P_{a\,a+1}^{q}\left(M_{a}\right)^{\rightarrow}\right)X := P_{a\,a+1}X - P_{a\,a+1}^{q}XM_{a}$$

Take trace over all *m* copies of End \mathbb{C}^N :

$$\operatorname{tr}_{1,\ldots,m}\mathcal{M}_m\in \operatorname{Y}_q(\mathfrak{gl}_N)[[u]][\delta].$$

Lemma. All coefficients of the polynomial $\operatorname{tr}_{1,...,m} \mathcal{M}_m$ belong to the algebra $\mathcal{B}_N[[u]]$.

Lemma. All coefficients of the polynomial $\operatorname{tr}_{1,...,m} \mathcal{M}_m$ belong to the algebra $\mathcal{B}_N[[u]]$.

Calculate the classical limits $q \rightarrow 1$ of these elements.

Lemma. All coefficients of the polynomial $\operatorname{tr}_{1,...,m} \mathcal{M}_m$ belong to the algebra $\mathcal{B}_N[[u]]$.

Calculate the classical limits $q \to 1$ of these elements. They will form a commuting family of elements of the algebra $U(\hat{g}^+)$.
Write

$$\delta = 1 - 2(q-1)u\partial_u + \dots$$

We have

$$L^+(u) = 1 + (q-1)\mathcal{L}^+(u) + \dots$$

and

$$1-M=(q-1)\mathcal{L}+\ldots$$

with $\mathcal{L} = 2u\partial_u - \mathcal{L}^+(u)$.

$$P-P^q=(q-1)\mathcal{T}+\ldots,$$

$$P-P^q=(q-1)\mathcal{T}+\ldots,$$

where

$$\mathcal{T} = \sum_{i,j=1}^{N} \operatorname{sgn}(j-i) e_{ij} \otimes e_{ji}.$$

$$P-P^q=(q-1)\mathcal{T}+\ldots,$$

where

$$\mathcal{T} = \sum_{i,j=1}^{N} \operatorname{sgn}(j-i) e_{ij} \otimes e_{ji}.$$

The coefficients θ_m are then found by

$$\theta_m = \operatorname{tr}_{1,\dots,m} \overline{\mathcal{M}}_m,$$

$$P-P^q=(q-1)\mathcal{T}+\ldots,$$

where

$$\mathcal{T} = \sum_{i,j=1}^{N} \operatorname{sgn}(j-i) \, e_{ij} \otimes e_{ji}.$$

The coefficients θ_m are then found by

$$\theta_m = \operatorname{tr}_{1,\dots,m} \overline{\mathcal{M}}_m,$$

where $\overline{\mathcal{M}}_m$ is the classical limit of the polynomial \mathcal{M}_m .

Consider the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$ in its *RLL*

presentation.

Consider the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$ in its *RLL*

presentation. We will need the normalized *R*-matrix

 $\overline{R}(x) = f(x)R(x),$

Consider the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$ in its *RLL*

presentation. We will need the normalized *R*-matrix

 $\overline{R}(x) = f(x)R(x),$

where, as before,

$$R(x) = \sum_{i} e_{ii} \otimes e_{ii} + \frac{1-x}{q-q^{-1}x} \sum_{i \neq j} e_{ii} \otimes e_{jj} + \frac{(q-q^{-1})x}{q-q^{-1}x} \sum_{i>j} e_{ij} \otimes e_{ji} + \frac{q-q^{-1}}{q-q^{-1}x} \sum_{i< j} e_{ij} \otimes e_{ji}$$

and

and

$$f(x) = 1 + \sum_{k=1}^{\infty} f_k(q) x^k$$

is a formal power series in x whose coefficients $f_k(q)$ are

rational functions in q uniquely determined by the relation

$$f(xq^{2N}) = f(x) \frac{(1 - xq^2)(1 - xq^{2N-2})}{(1 - x)(1 - xq^{2N})}$$

The quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$ is generated by elements

 $l_{ij}^+[-r], \qquad l_{ij}^-[r] \qquad \text{with} \quad 1 \leq i,j \leq N, \qquad r = 0, 1, \dots,$

and the invertible central element q^c , subject to the defining relations

The quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$ is generated by elements

 $l_{ii}^+[-r], \qquad l_{ii}^-[r] \qquad \text{with} \quad 1 \leq i, j \leq N, \qquad r = 0, 1, \dots,$

and the invertible central element q^c , subject to the defining relations

$$l_{ji}^{+}[0] = l_{ij}^{-}[0] = 0 \qquad \text{for} \qquad 1 \le i < j \le N,$$
$$l_{ii}^{+}[0] \, l_{ii}^{-}[0] = l_{ii}^{-}[0] \, l_{ii}^{+}[0] = 1 \qquad \text{for} \qquad i = 1, \dots, N,$$

The quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$ is generated by elements

 $l_{ii}^+[-r], \qquad l_{ii}^-[r] \qquad \text{with} \quad 1 \leq i, j \leq N, \qquad r = 0, 1, \dots,$

and the invertible central element q^c , subject to the defining relations

$$l_{ji}^{+}[0] = l_{ij}^{-}[0] = 0 \qquad \text{for} \qquad 1 \le i < j \le N,$$
$$l_{ii}^{+}[0] \ l_{ii}^{-}[0] = l_{ii}^{-}[0] \ l_{ii}^{+}[0] = 1 \qquad \text{for} \qquad i = 1, \dots, N,$$

and

$$R(u/v)L_1^{\pm}(u)L_2^{\pm}(v) = L_2^{\pm}(v)L_1^{\pm}(u)R(u/v),$$

$$\overline{R}(uq^{-c}/v)L_1^{+}(u)L_2^{-}(v) = L_2^{-}(v)L_1^{+}(u)\overline{R}(uq^{c}/v).$$

The vacuum module at the critical level c = -N over $U_q(\widehat{\mathfrak{gl}}_N)$ is the universal module $V_q(\mathfrak{gl}_N)$ generated by a nonzero vector 1 subject to the conditions

$$L^{-}(u)\mathbf{1} = I\mathbf{1}, \qquad q^{c}\mathbf{1} = q^{-N}\mathbf{1},$$

where I denotes the identity matrix.

The vacuum module at the critical level c = -N over $U_q(\widehat{\mathfrak{gl}}_N)$ is the universal module $V_q(\mathfrak{gl}_N)$ generated by a nonzero vector **1** subject to the conditions

$$L^{-}(u)\mathbf{1} = I\mathbf{1}, \qquad q^{c}\mathbf{1} = q^{-N}\mathbf{1},$$

where I denotes the identity matrix.

As a vector space, $V_q(\mathfrak{gl}_N)$ can be identified with the subalgebra $Y_q(\mathfrak{gl}_N)$ of $U_q(\widehat{\mathfrak{gl}}_N)$ generated by the coefficients of all series $l_{ii}^+(u)$ subject to the additional relations $l_{ii}^+[0] = 1$.

The subspace of invariants of $V_q(\mathfrak{gl}_N)$ is defined by

$$\mathfrak{z}_q(\widehat{\mathfrak{gl}}_N) = \{ v \in V_q(\mathfrak{gl}_N) \mid L^-(u)v = Iv \}.$$

The subspace of invariants of $V_q(\mathfrak{gl}_N)$ is defined by

$$\mathfrak{z}_q(\widehat{\mathfrak{gl}}_N) = \{ v \in V_q(\mathfrak{gl}_N) \mid L^-(u)v = Iv \}.$$

Identify $\mathfrak{z}_q(\widehat{\mathfrak{gl}}_N)$ with a subspace of $\mathbf{Y}_q(\mathfrak{gl}_N)$.

The subspace of invariants of $V_q(\mathfrak{gl}_N)$ is defined by

$$\mathfrak{z}_q(\widehat{\mathfrak{gl}}_N) = \{ v \in V_q(\mathfrak{gl}_N) \mid L^-(u)v = Iv \}.$$

Identify $\mathfrak{z}_q(\widehat{\mathfrak{gl}}_N)$ with a subspace of $Y_q(\mathfrak{gl}_N)$.

This subspace is closed under the multiplication in the quantum

affine algebra and can be regarded as a subalgebra of $Y_q(\mathfrak{gl}_N)$.

Define differential operators $\vartheta_m \in U(\hat{\mathfrak{g}}^+)[[u, \partial_u]]$ by

$$\sum_{m=1}^{\infty} \vartheta_m y^m = \sum_{s=1}^{\infty} y^s \operatorname{tr}_{1,\ldots,s} T_{s-1\,s}(y) \ldots T_{1\,2}(y) \overline{\mathcal{L}}_1 \ldots \overline{\mathcal{L}}_s,$$

Define differential operators $\vartheta_m \in U(\hat{\mathfrak{g}}^+)[[u, \partial_u]]$ by

$$\sum_{m=1}^{\infty} \vartheta_m y^m = \sum_{s=1}^{\infty} y^s \operatorname{tr}_{1,\ldots,s} T_{s-1\,s}(y) \ldots T_{1\,2}(y) \overline{\mathcal{L}}_1 \ldots \overline{\mathcal{L}}_s,$$

where $\overline{\mathcal{L}} = 2u\partial_u - \rho - \mathcal{L}^+(u)$ and ρ is the diagonal matrix

$$\rho = \operatorname{diag}[N-1, N-3, \dots, -N+1].$$

Define differential operators $\vartheta_m \in U(\hat{\mathfrak{g}}^+)[[u, \partial_u]]$ by

$$\sum_{m=1}^{\infty} \vartheta_m y^m = \sum_{s=1}^{\infty} y^s \operatorname{tr}_{1,\ldots,s} T_{s-1\,s}(y) \ldots T_{1\,2}(y) \overline{\mathcal{L}}_1 \ldots \overline{\mathcal{L}}_s,$$

where $\overline{\mathcal{L}} = 2u\partial_u - \rho - \mathcal{L}^+(u)$ and ρ is the diagonal matrix

$$\rho = \operatorname{diag}[N-1, N-3, \dots, -N+1].$$

The differential operator ϑ_m takes the form

$$\vartheta_m = \vartheta_m^{(0)} \partial_u^m + \dots + \vartheta_m^{(m-1)} \partial_u + \vartheta_m^{(m)},$$

where each $\vartheta_m^{(k)}$ is a power series in $U(\hat{\mathfrak{g}}^+)[[u]]$.

Theorem [M.–Ragoucy 2018].

The coefficients of the power series $\vartheta_m^{(k)}$ generate a

commutative subalgebra of $U(\hat{g}^+)$.

Theorem [M.–Ragoucy 2018].

The coefficients of the power series $\vartheta_m^{(k)}$ generate a commutative subalgebra of $U(\hat{g}^+)$.

Moreover, these coefficients belong to the algebra of invariants $\mathfrak{z}_{\mathrm{tr}}(\widehat{\mathfrak{gl}}_N)$ of the vacuum module $V_a(\mathfrak{gl}_N)$.