Higher order Hamiltonians for
 the trigonometric Gaudin model

Alexander Molev

University of Sydney

Joint work with Eric Ragoucy

Rational Gaudin model

Rational Gaudin model

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Rational Gaudin model

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Consider the polynomial current Lie algebra $t^{-1} \mathfrak{g}\left[t^{-1}\right]$ which spanned by the elements $X[r]=X t^{r}$ with $X \in \mathfrak{g}$ and $r<0$.

Rational Gaudin model

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Consider the polynomial current Lie algebra $t^{-1} \mathfrak{g}\left[t^{-1}\right]$ which spanned by the elements $X[r]=X t^{r}$ with $X \in \mathfrak{g}$ and $r<0$.

Given any element $\chi \in \mathfrak{g}^{*}$ and a nonzero $z \in \mathbb{C}$, the mapping

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \chi(X),
$$

defines a (shifted) evaluation homomorphism.

Using the coassociativity of the standard coproduct on $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined by

$$
\Delta: Y \mapsto Y \otimes 1+1 \otimes Y, \quad Y \in t^{-1} \mathfrak{g}\left[t^{-1}\right]
$$

Using the coassociativity of the standard coproduct on
$\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined by

$$
\Delta: Y \mapsto Y \otimes 1+1 \otimes Y, \quad Y \in t^{-1} \mathfrak{g}\left[t^{-1}\right]
$$

for any $\ell \geqslant 1$ we get the homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\otimes \ell}
$$

as an iterated coproduct map.

Now fix distinct complex numbers z_{1}, \ldots, z_{ℓ} and let u be a complex parameter.

Now fix distinct complex numbers z_{1}, \ldots, z_{ℓ} and let u be a complex parameter. Applying the evaluation homomorphisms
to the tensor factors, we get another homomorphism

$$
\Psi: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathbf{U}(\mathfrak{g})^{\otimes \ell}
$$

Now fix distinct complex numbers z_{1}, \ldots, z_{ℓ} and let u be a complex parameter. Applying the evaluation homomorphisms to the tensor factors, we get another homomorphism

$$
\Psi: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})^{\otimes \ell}
$$

given by

$$
\Psi: X[r] \mapsto \sum_{a=1}^{\ell} X_{a}\left(z_{a}-u\right)^{r}+\delta_{r,-1} \chi(X) \in \mathrm{U}(\mathfrak{g})^{\otimes \ell}
$$

where $X_{a}=1^{\otimes(a-1)} \otimes X \otimes 1^{\otimes(\ell-a)}$.

Feigin-Frenkel center

Feigin-Frenkel center

Consider the affine Kac—Moody algebra

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

Feigin-Frenkel center

Consider the affine Kac—Moody algebra

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

Identify $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ with the vacuum module $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathbf{1}$ over $\widehat{\mathfrak{g}}$ at the critical level:

Feigin-Frenkel center

Consider the affine Kac-Moody algebra

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K .
$$

Identify $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ with the vacuum module $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathbf{1}$ over $\widehat{\mathfrak{g}}$ at the critical level:
it is generated by the vacuum vector $\mathbf{1}$ such that

$$
\mathfrak{g}[t] \mathbf{1}=0 \quad \text { and } \quad K \mathbf{1}=-h^{\vee} \mathbf{1} .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined as the subalgebra of invariants:

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\left\{v \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathbf{1} \mid \mathfrak{g}[t] v=0\right\} .
$$

The Feigin-Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined as the subalgebra of invariants:

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\left\{v \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathbf{1} \mid \mathfrak{g}[t] v=0\right\} .
$$

Elements of $\mathfrak{z}(\widehat{\mathfrak{g}})$ are known as Segal-Sugawara vectors.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined as the subalgebra of invariants:

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\left\{v \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \mathbf{1} \mid \mathfrak{g}[t] v=0\right\} .
$$

Elements of $\mathfrak{z}(\widehat{\mathfrak{g}})$ are known as Segal-Sugawara vectors.

Higher Gaudin Hamiltonians are obtained by taking the images
of Segal-Sugawara vectors under the homomorphism

$$
\Psi: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})^{\otimes \ell}
$$

[FFR 1994, Rybnikov 2006, FFTL 2010].

In particular, the quadratic Gaudin Hamiltonian arises from the canonical Segal-Sugawara vector

$$
S=\sum_{a=1}^{d} J_{a}[-1] J^{a}[-1],
$$

where J_{1}, \ldots, J_{d} and J^{1}, \ldots, J^{d} are dual bases of \mathfrak{g} with respect
to the normalized Killing form.

Explicit generators of the Feigin-Frenkel center were found in type A by A. Chervov and D. Talalaev (2006), in types B, C, D by A. M. (2013) and in type G_{2} by A. M., E. Ragoucy and N. Rozhkovskaya (2016).

Explicit generators of the Feigin-Frenkel center were found in type A by A. Chervov and D. Talalaev (2006), in types B, C, D by A. M. (2013) and in type G_{2} by A. M., E. Ragoucy and N. Rozhkovskaya (2016).

This yields explicit higher Gaudin Hamiltonians in those cases and reproduces Talalaev's formulas in type A (2006).

Higher Gaudin Hamiltonians in type A

Higher Gaudin Hamiltonians in type A

A family of higher Gaudin Hamiltonians for $\mathfrak{g}=\mathfrak{g l}_{N}$ arises from the coefficients of the differential operators

$$
\operatorname{tr}\left(\partial_{u}+E(u)\right)^{k}, \quad k=1,2, \ldots
$$

which form a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$.

Higher Gaudin Hamiltonians in type A

A family of higher Gaudin Hamiltonians for $\mathfrak{g}=\mathfrak{g l}_{N}$ arises from the coefficients of the differential operators

$$
\operatorname{tr}\left(\partial_{u}+E(u)\right)^{k}, \quad k=1,2, \ldots
$$

which form a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$.
Here $E(u)=\left[E_{i j}(u)\right]$ is the matrix with the entries

$$
E_{i j}(u)=\sum_{r<0} E_{i j}[r] u^{-r-1}, \quad E_{i j}[r]=E_{i j} t^{r} .
$$

Trigonometric Gaudin model

Trigonometric Gaudin model

Now $t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]$ is replaced by the extended Lie algebra

$$
\widehat{\mathfrak{g}}^{+}=\mathfrak{b}^{+} \oplus t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]
$$

where \mathfrak{b}^{+}is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $E_{i j}$
with $i \leqslant j$.

Trigonometric Gaudin model

Now $t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]$ is replaced by the extended Lie algebra

$$
\widehat{\mathfrak{g}}^{+}=\mathfrak{b}^{+} \oplus t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right],
$$

where \mathfrak{b}^{+}is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $E_{i j}$
with $i \leqslant j$. Accordingly, $E(u)$ is replaced by the matrix
$\mathcal{L}^{+}(u)=\left[\mathcal{L}_{i j}^{+}(u)\right]$ such that

Trigonometric Gaudin model

Now $t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]$ is replaced by the extended Lie algebra

$$
\widehat{\mathfrak{g}}^{+}=\mathfrak{b}^{+} \oplus t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right],
$$

where \mathfrak{b}^{+}is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $E_{i j}$ with $i \leqslant j$. Accordingly, $E(u)$ is replaced by the matrix $\mathcal{L}^{+}(u)=\left[\mathcal{L}_{i j}^{+}(u)\right]$ such that

$$
\mathcal{L}^{+}(u)=-\left(\begin{array}{ccc}
E_{11} & \ldots & 2 E_{1 N} \\
\vdots & \ddots & \vdots \\
0 & \ldots & E_{N N}
\end{array}\right)-2 \sum_{n=1}^{\infty} E[-n] u^{n}
$$

The coefficients of the series $\operatorname{tr} \mathcal{L}^{+}(u)^{2}$ are pairwise commuting elements of $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$[Sklyanin (1987), Jurčo (1989)].

The coefficients of the series $\operatorname{tr} \mathcal{L}^{+}(u)^{2}$ are pairwise commuting elements of $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$[Sklyanin (1987), Jurčo (1989)].

As with the rational Gaudin model, this series is the generating function for quadratic Hamiltonians: taking the image in the tensor product of the vector representations, we get

$$
\mathcal{L}^{+}(u) \mapsto r_{01}\left(u / a_{1}\right)+\cdots+r_{0 l}\left(u / a_{l}\right)
$$

for some parameters a_{i},

The coefficients of the series $\operatorname{tr} \mathcal{L}^{+}(u)^{2}$ are pairwise commuting elements of $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$[Sklyanin (1987), Jurčo (1989)].

As with the rational Gaudin model, this series is the generating function for quadratic Hamiltonians: taking the image in the tensor product of the vector representations, we get

$$
\mathcal{L}^{+}(u) \mapsto r_{01}\left(u / a_{1}\right)+\cdots+r_{0 l}\left(u / a_{l}\right)
$$

for some parameters a_{i}, where

$$
r(x)=\sum_{i, j=1}^{N}\left(\frac{1+x}{1-x}+\operatorname{sgn}(j-i)\right) e_{i j} \otimes e_{j i}
$$

The function $r(x)$ is a trigonometric classical r-matrix.

The function $r(x)$ is a trigonometric classical r-matrix. It satisfies the classical Yang-Baxter equation

$$
\circlearrowleft_{1,2,3}\left[r_{12}\left(x_{1} / x_{2}\right), r_{23}\left(x_{2} / x_{3}\right)\right]=0
$$

The function $r(x)$ is a trigonometric classical r-matrix. It satisfies the classical Yang-Baxter equation

$$
\circlearrowleft_{1,2,3}\left[r_{12}\left(x_{1} / x_{2}\right), r_{23}\left(x_{2} / x_{3}\right)\right]=0
$$

together with the skew-symmetry condition

$$
r_{12}(x)+r_{21}(1 / x)=0 .
$$

The function $r(x)$ is a trigonometric classical r-matrix. It satisfies the classical Yang-Baxter equation

$$
\circlearrowleft_{1,2,3}\left[r_{12}\left(x_{1} / x_{2}\right), r_{23}\left(x_{2} / x_{3}\right)\right]=0
$$

together with the skew-symmetry condition

$$
r_{12}(x)+r_{21}(1 / x)=0 .
$$

Taking the residue at a_{i}, we recover the i-th Gaudin Hamiltonian

$$
\underset{u=a_{i}}{\text { res } \operatorname{tr}} \mathcal{L}^{+}(u)^{2}=2 a_{i} \sum_{j \neq i} r_{i j}\left(a_{i} / a_{j}\right)
$$

assuming the parameters a_{i} are all distinct and nonzero.

Our goal is to construct higher order Hamiltonians for the trigonometric Gaudin model. They are obtained from a commuting family of elements of the algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

Our goal is to construct higher order Hamiltonians for the trigonometric Gaudin model. They are obtained from a commuting family of elements of the algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

This commuting family is analogous to the one produced from the differential operators $\operatorname{tr}\left(\partial_{u}+E(u)\right)^{k}$:

Our goal is to construct higher order Hamiltonians for the trigonometric Gaudin model. They are obtained from a commuting family of elements of the algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

This commuting family is analogous to the one produced from the differential operators $\operatorname{tr}\left(\partial_{u}+E(u)\right)^{k}$:
the highest degree term of the corresponding operator coincides with $\operatorname{tr} \mathcal{L}^{+}(u)^{k}$.

Introduce the function $T(y)$ in a variable y with values in
$\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ by

$$
T(y)=\sum_{i=1}^{N} e_{i i} \otimes e_{i i}+\frac{1}{1-y} \sum_{i<j} e_{i j} \otimes e_{j i}+\frac{1}{1+y} \sum_{i>j} e_{i j} \otimes e_{j i} .
$$

Introduce the function $T(y)$ in a variable y with values in
$\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ by

$$
T(y)=\sum_{i=1}^{N} e_{i i} \otimes e_{i i}+\frac{1}{1-y} \sum_{i<j} e_{i j} \otimes e_{j i}+\frac{1}{1+y} \sum_{i>j} e_{i j} \otimes e_{j i} .
$$

For any $1 \leqslant a<b \leqslant s$ we let $T_{a b}(y)$ denote the function $T(y)$ regarded as an element of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{s} \otimes \mathrm{U}\left(\hat{\mathfrak{g}}^{+}\right)
$$

Introduce the function $T(y)$ in a variable y with values in
$\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ by

$$
T(y)=\sum_{i=1}^{N} e_{i i} \otimes e_{i i}+\frac{1}{1-y} \sum_{i<j} e_{i j} \otimes e_{j i}+\frac{1}{1+y} \sum_{i>j} e_{i j} \otimes e_{j i} .
$$

For any $1 \leqslant a<b \leqslant s$ we let $T_{a b}(y)$ denote the function $T(y)$
regarded as an element of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{s} \otimes \mathbf{U}\left(\hat{\mathfrak{g}}^{+}\right)
$$

associated with the a-th and b-th copies of End \mathbb{C}^{N} and as the identity element in all the remaining tensor factors.

Define differential operators $\theta_{m} \in \mathbf{U}\left(\widehat{\mathfrak{g}}^{+}\right)\left[\left[u, \partial_{u}\right]\right]$ by means of the generating function

$$
\sum_{m=1}^{\infty} \theta_{m} y^{m}=\sum_{s=1}^{\infty} y^{s} \operatorname{tr}_{1, \ldots, s} T_{s-1 s}(y) \ldots T_{12}(y) \mathcal{L}_{1} \ldots \mathcal{L}_{s}
$$

Define differential operators $\theta_{m} \in \mathrm{U}\left(\hat{\mathfrak{g}}^{+}\right)\left[\left[u, \partial_{u}\right]\right]$ by means of the generating function

$$
\sum_{m=1}^{\infty} \theta_{m} y^{m}=\sum_{s=1}^{\infty} y^{s} \operatorname{tr}_{1, \ldots, s} T_{s-1 s}(y) \ldots T_{12}(y) \mathcal{L}_{1} \ldots \mathcal{L}_{s}
$$

where $\mathcal{L}=2 u \partial_{u}-\mathcal{L}^{+}(u)$ and the trace is taken over all s copies of End \mathbb{C}^{N}.

We have

$$
\theta_{1}=\operatorname{tr} \mathcal{L}=2 N u \partial_{u}-\operatorname{tr} \mathcal{L}^{+}(u)
$$

We have

$$
\theta_{1}=\operatorname{tr} \mathcal{L}=2 N u \partial_{u}-\operatorname{tr} \mathcal{L}^{+}(u) .
$$

Furthermore,

$$
\begin{aligned}
\theta_{2} & =\operatorname{tr}_{1,2} P_{12} \mathcal{L}_{1} \mathcal{L}_{2}=\operatorname{tr} \mathcal{L}^{2}=\operatorname{tr}\left(2 u \partial_{u}-\mathcal{L}^{+}(u)\right)^{2} \\
& =4 N u^{2} \partial_{u}^{2}-4 u\left(\operatorname{tr} \mathcal{L}^{+}(u)-N\right) \partial_{u}-2 u \operatorname{tr} \mathcal{L}^{+}(u)^{\prime}+\operatorname{tr} \mathcal{L}^{+}(u)^{2}
\end{aligned}
$$

We have

$$
\theta_{1}=\operatorname{tr} \mathcal{L}=2 N u \partial_{u}-\operatorname{tr} \mathcal{L}^{+}(u)
$$

Furthermore,

$$
\begin{aligned}
\theta_{2} & =\operatorname{tr}_{1,2} P_{12} \mathcal{L}_{1} \mathcal{L}_{2}=\operatorname{tr} \mathcal{L}^{2}=\operatorname{tr}\left(2 u \partial_{u}-\mathcal{L}^{+}(u)\right)^{2} \\
& =4 N u^{2} \partial_{u}^{2}-4 u\left(\operatorname{tr} \mathcal{L}^{+}(u)-N\right) \partial_{u}-2 u \operatorname{tr} \mathcal{L}^{+}(u)^{\prime}+\operatorname{tr} \mathcal{L}^{+}(u)^{2}
\end{aligned}
$$

and

$$
\theta_{3}=\operatorname{tr}\left(2 u \partial_{u}-\mathcal{L}^{+}(u)\right)^{3}+\sum_{i, j=1}^{N} \operatorname{sgn}(i-j) \mathcal{L}_{i j}^{+}(u) \mathcal{L}_{j i}^{+}(u)
$$

For any $m \geqslant 1$ the differential operator θ_{m} takes the form

$$
\theta_{m}=\theta_{m}^{(0)} \partial_{u}^{m}+\cdots+\theta_{m}^{(m-1)} \partial_{u}+\theta_{m}^{(m)}
$$

For any $m \geqslant 1$ the differential operator θ_{m} takes the form

$$
\theta_{m}=\theta_{m}^{(0)} \partial_{u}^{m}+\cdots+\theta_{m}^{(m-1)} \partial_{u}+\theta_{m}^{(m)}
$$

where each $\theta_{m}^{(k)}$ is a power series in u with coefficients in the algebra $\mathrm{U}\left(\hat{\mathfrak{g}}^{+}\right)$.

For any $m \geqslant 1$ the differential operator θ_{m} takes the form

$$
\theta_{m}=\theta_{m}^{(0)} \partial_{u}^{m}+\cdots+\theta_{m}^{(m-1)} \partial_{u}+\theta_{m}^{(m)}
$$

where each $\theta_{m}^{(k)}$ is a power series in u with coefficients in the algebra $\mathrm{U}\left(\hat{\mathfrak{g}}^{+}\right)$. In particular,

$$
\theta_{m}^{(m)}=(-1)^{m} \operatorname{tr} \mathcal{L}^{+}(u)^{m}+\text { lower degree terms }
$$

For any $m \geqslant 1$ the differential operator θ_{m} takes the form

$$
\theta_{m}=\theta_{m}^{(0)} \partial_{u}^{m}+\cdots+\theta_{m}^{(m-1)} \partial_{u}+\theta_{m}^{(m)}
$$

where each $\theta_{m}^{(k)}$ is a power series in u with coefficients in the algebra $\mathrm{U}\left(\hat{\mathfrak{g}}^{+}\right)$. In particular,

$$
\theta_{m}^{(m)}=(-1)^{m} \operatorname{tr} \mathcal{L}^{+}(u)^{m}+\text { lower degree terms }
$$

This follows from the relation

$$
\operatorname{tr}_{1, \ldots, s} P_{s-1 s} \ldots P_{12} \mathcal{L}_{1} \ldots \mathcal{L}_{s}=\operatorname{tr} \mathcal{L}^{s}=\operatorname{tr}\left(2 u \partial_{u}-\mathcal{L}^{+}(u)\right)^{s}
$$

Theorem [M.-Ragoucy 2018].

The coefficients of all power series $\theta_{m}^{(k)}$ generate a commutative subalgebra of $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

Theorem [M.-Ragoucy 2018].

The coefficients of all power series $\theta_{m}^{(k)}$ generate a commutative subalgebra of $\mathrm{U}\left(\hat{\mathfrak{g}}^{+}\right)$.

The commuting family quantizes the well-known Hamiltonians $\operatorname{tr} L(u)^{m}$ of the classical trigonometric Gaudin model
[O. Babelon, C.-M. Viallet 1990, T. Skrypnyk 2007].

Examples.

Examples.

The commutative subalgebra contains the coefficients of the power series $\operatorname{tr} \mathcal{L}^{+}(u)^{2}$,

Examples.

The commutative subalgebra contains the coefficients of the power series $\operatorname{tr} \mathcal{L}^{+}(u)^{2}$, as well as the coefficients of the power series

$$
\operatorname{tr} \mathcal{L}^{+}(u)^{3}-2 u \operatorname{tr} \mathcal{L}^{+}(u) \mathcal{L}^{+}(u)^{\prime}+\sum_{i, j=1}^{N} \operatorname{sgn}(j-i) \mathcal{L}_{i j}^{+}(u) \mathcal{L}_{j i}^{+}(u) .
$$

Calculating classical limits

Calculating classical limits

Begin with the Bethe subalgebra of the q-Yangian $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.

Calculating classical limits

Begin with the Bethe subalgebra of the q-Yangian $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.
The algebra $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$ is generated by elements

$$
l_{i j}^{+}[-r], \quad 1 \leqslant i, j \leqslant N, \quad r=0,1, \ldots,
$$

with the conditions that $l_{i j}^{+}[0]=0$ for $i>j$ and the elements $l_{i i}^{+}[0]$ are invertible,

Calculating classical limits

Begin with the Bethe subalgebra of the q-Yangian $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.
The algebra $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$ is generated by elements

$$
l_{i j}^{+}[-r], \quad 1 \leqslant i, j \leqslant N, \quad r=0,1, \ldots,
$$

with the conditions that $l_{i j}^{+}[0]=0$ for $i>j$ and the elements $l_{i i}^{+}[0]$
are invertible, subject to the defining relations

$$
R(u / v) L_{1}^{+}(u) L_{2}^{+}(v)=L_{2}^{+}(v) L_{1}^{+}(u) R(u / v)
$$

Here $L^{+}(u)=\left[l_{i j}^{+}(u)\right]$ and

$$
l_{i j}^{+}(u)=\sum_{r=0}^{\infty} l_{i j}^{+}[-r] u^{r} .
$$

The R-matrix is given by

$$
\begin{aligned}
R(x)=\sum_{i} e_{i i} \otimes & e_{i i}+\frac{1-x}{q-q^{-1} x} \sum_{i \neq j} e_{i i} \otimes e_{j j} \\
& +\frac{\left(q-q^{-1}\right) x}{q-q^{-1} x} \sum_{i>j} e_{i j} \otimes e_{j i}+\frac{q-q^{-1}}{q-q^{-1} x} \sum_{i<j} e_{i j} \otimes e_{j i} .
\end{aligned}
$$

The R-matrix is given by

$$
\begin{aligned}
R(x)=\sum_{i} e_{i i} \otimes & e_{i i}+\frac{1-x}{q-q^{-1} x} \sum_{i \neq j} e_{i i} \otimes e_{j j} \\
& +\frac{\left(q-q^{-1}\right) x}{q-q^{-1} x} \sum_{i>j} e_{i j} \otimes e_{j i}+\frac{q-q^{-1}}{q-q^{-1} x} \sum_{i<j} e_{i j} \otimes e_{j i} .
\end{aligned}
$$

Consider the q-permutation
$P^{q} \in \operatorname{End}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{N}\right) \cong \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ defined by

$$
P^{q}=\sum_{i} e_{i i} \otimes e_{i i}+q \sum_{i>j} e_{i j} \otimes e_{j i}+q^{-1} \sum_{i<j} e_{i j} \otimes e_{j i} .
$$

The symmetric group \mathfrak{S}_{k} acts on the tensor product space
$\left(\mathbb{C}^{N}\right)^{\otimes k}$ by $s_{a} \mapsto P_{s_{a}}^{q}:=P_{a a+1}^{q}$ for $a=1, \ldots, k-1$, where s_{a} denotes the transposition $(a, a+1)$.

The symmetric group \mathfrak{S}_{k} acts on the tensor product space
$\left(\mathbb{C}^{N}\right)^{\otimes k}$ by $s_{a} \mapsto P_{s_{a}}^{q}:=P_{a a+1}^{q}$ for $a=1, \ldots, k-1$, where s_{a} denotes the transposition $(a, a+1)$.

Denote by $A^{(k)}$ the image of the normalized antisymmetrizer associated with the q-permutations:

$$
A^{(k)}=\frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot P_{\sigma}^{q}
$$

For each $k=1, \ldots, N$ consider the power series in u defined by

$$
\operatorname{tr}_{1, \ldots, k} A^{(k)} L_{1}^{+}(u) \ldots L_{k}^{+}\left(u q^{-2 k+2}\right)
$$

with the trace taken over all k copies of End \mathbb{C}^{N} in the tensor product algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{k} \otimes \mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)[[u]] .
$$

It is well-known that the coefficients of all power series generate a commutative subalgebra \mathcal{B}_{N} of $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.

Another family of generators of this subalgebra can be obtained from the Newton identities
[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].

Another family of generators of this subalgebra can be obtained from the Newton identities
[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].

They imply that the coefficients of all power series

$$
\operatorname{tr}_{1, \ldots, k} P_{(k, k-1, \ldots, 1)}^{q} L_{1}^{+}(u) \ldots L_{k}^{+}\left(u q^{-2 k+2}\right), \quad k=1,2, \ldots
$$

belong to \mathcal{B}_{N}.

Another family of generators of this subalgebra can be obtained from the Newton identities

[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].

They imply that the coefficients of all power series

$$
\operatorname{tr}_{1, \ldots, k} P_{(k, k-1, \ldots, 1)}^{q} L_{1}^{+}(u) \ldots L_{k}^{+}\left(u q^{-2 k+2}\right), \quad k=1,2, \ldots
$$

belong to \mathcal{B}_{N}.

Introduce the operator δ such that $\delta g(u)=g\left(u q^{-2}\right) \delta$. Adjoining this element to the algebra $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)[[u]]$, set $M=L^{+}(u) \delta$.

For each $m \geqslant 1$ consider the expression

$$
\begin{array}{r}
\mathcal{M}_{m}=\frac{1}{(q-1)^{m}}\left(1-\left(M_{m}\right) \rightarrow\right)\left(P_{m-1 m}-P_{m-1 m}^{q}\left(M_{m-1}\right)^{\rightarrow}\right) \\
\ldots\left(P_{12}-P_{12}^{q}\left(M_{1}\right)^{\rightarrow}\right) 1
\end{array}
$$

For each $m \geqslant 1$ consider the expression

$$
\begin{array}{r}
\mathcal{M}_{m}=\frac{1}{(q-1)^{m}}\left(1-\left(M_{m}\right)^{\rightarrow}\right)\left(P_{m-1 m}-P_{m-1 m}^{q}\left(M_{m-1}\right)^{\rightarrow}\right) \\
\ldots\left(P_{12}-P_{12}^{q}\left(M_{1}\right)^{\rightarrow}\right) 1,
\end{array}
$$

where the arrow indicates right multiplication:

$$
\left(P_{a a+1}-P_{a a+1}^{q}\left(M_{a}\right)^{\rightarrow}\right) X:=P_{a a+1} X-P_{a a+1}^{q} X M_{a} .
$$

For each $m \geqslant 1$ consider the expression

$$
\begin{array}{r}
\mathcal{M}_{m}=\frac{1}{(q-1)^{m}}\left(1-\left(M_{m}\right) \rightarrow\right)\left(P_{m-1 m}-P_{m-1 m}^{q}\left(M_{m-1}\right)^{\rightarrow}\right) \\
\ldots\left(P_{12}-P_{12}^{q}\left(M_{1}\right)^{\rightarrow}\right) 1
\end{array}
$$

where the arrow indicates right multiplication:

$$
\left(P_{a a+1}-P_{a a+1}^{q}\left(M_{a}\right)^{\rightarrow}\right) X:=P_{a a+1} X-P_{a a+1}^{q} X M_{a} .
$$

Take trace over all m copies of End \mathbb{C}^{N} :

$$
\operatorname{tr}_{1, \ldots, m} \mathcal{M}_{m} \in \mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)[[u]][\delta]
$$

Lemma. All coefficients of the polynomial $\operatorname{tr}_{1, \ldots, m} \mathcal{M}_{m}$ belong to the algebra $\mathcal{B}_{N}[[u]]$.

Lemma. All coefficients of the polynomial $\operatorname{tr}_{1, \ldots, m} \mathcal{M}_{m}$ belong to the algebra $\mathcal{B}_{N}[[u]]$.

Calculate the classical limits $q \rightarrow 1$ of these elements.

Lemma. All coefficients of the polynomial $\operatorname{tr}_{1, \ldots, m} \mathcal{M}_{m}$ belong to the algebra $\mathcal{B}_{N}[[u]]$.

Calculate the classical limits $q \rightarrow 1$ of these elements. They will form a commuting family of elements of the algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

Write

$$
\delta=1-2(q-1) u \partial_{u}+\ldots
$$

We have

$$
L^{+}(u)=1+(q-1) \mathcal{L}^{+}(u)+\ldots
$$

and

$$
1-M=(q-1) \mathcal{L}+\ldots
$$

with $\mathcal{L}=2 u \partial_{u}-\mathcal{L}^{+}(u)$.

Furthermore,

$$
P-P^{q}=(q-1) \mathcal{T}+\ldots
$$

Furthermore,

$$
P-P^{q}=(q-1) \mathcal{T}+\ldots
$$

where

$$
\mathcal{T}=\sum_{i, j=1}^{N} \operatorname{sgn}(j-i) e_{i j} \otimes e_{j i}
$$

Furthermore,

$$
P-P^{q}=(q-1) \mathcal{T}+\ldots
$$

where

$$
\mathcal{T}=\sum_{i, j=1}^{N} \operatorname{sgn}(j-i) e_{i j} \otimes e_{j i}
$$

The coefficients θ_{m} are then found by

$$
\theta_{m}=\operatorname{tr}_{1, \ldots, m} \overline{\mathcal{M}}_{m},
$$

Furthermore,

$$
P-P^{q}=(q-1) \mathcal{T}+\ldots
$$

where

$$
\mathcal{T}=\sum_{i, j=1}^{N} \operatorname{sgn}(j-i) e_{i j} \otimes e_{j i}
$$

The coefficients θ_{m} are then found by

$$
\theta_{m}=\operatorname{tr}_{1, \ldots, m} \overline{\mathcal{M}}_{m},
$$

where $\overline{\mathcal{M}}_{m}$ is the classical limit of the polynomial \mathcal{M}_{m}.

Invariants of the vacuum module

Invariants of the vacuum module

Consider the quantum affine algebra $\mathrm{U}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)$ in its $R L L$ presentation.

Invariants of the vacuum module

Consider the quantum affine algebra $\mathrm{U}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)$ in its $R L L$ presentation. We will need the normalized R-matrix

$$
\bar{R}(x)=f(x) R(x),
$$

Invariants of the vacuum module

Consider the quantum affine algebra $\mathrm{U}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)$ in its $R L L$ presentation. We will need the normalized R-matrix

$$
\bar{R}(x)=f(x) R(x),
$$

where, as before,

$$
\begin{aligned}
& R(x)=\sum_{i} e_{i i} \otimes e_{i i}+\frac{1-x}{q-q^{-1} x} \sum_{i \neq j} e_{i i} \otimes e_{j j} \\
&+\frac{\left(q-q^{-1}\right) x}{q-q^{-1} x} \sum_{i>j} e_{i j} \otimes e_{j i}+\frac{q-q^{-1}}{q-q^{-1} x} \sum_{i<j} e_{i j} \otimes e_{j i}
\end{aligned}
$$

and

$$
f(x)=1+\sum_{k=1}^{\infty} f_{k}(q) x^{k}
$$

and

$$
f(x)=1+\sum_{k=1}^{\infty} f_{k}(q) x^{k}
$$

is a formal power series in x whose coefficients $f_{k}(q)$ are rational functions in q uniquely determined by the relation

$$
f\left(x q^{2 N}\right)=f(x) \frac{\left(1-x q^{2}\right)\left(1-x q^{2 N-2}\right)}{(1-x)\left(1-x q^{2 N}\right)}
$$

The quantum affine algebra $\mathrm{U}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)$ is generated by elements

$$
l_{i j}^{+}[-r], \quad l_{i j}^{-}[r] \quad \text { with } \quad 1 \leqslant i, j \leqslant N, \quad r=0,1, \ldots,
$$

and the invertible central element q^{c}, subject to the defining
relations

The quantum affine algebra $\mathrm{U}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)$ is generated by elements

$$
l_{i j}^{+}[-r], \quad l_{i j}^{-}[r] \quad \text { with } \quad 1 \leqslant i, j \leqslant N, \quad r=0,1, \ldots,
$$

and the invertible central element q^{c}, subject to the defining relations

$$
\begin{aligned}
l_{j i}^{+}[0] & =l_{i j}^{-}[0]=0 & & \text { for } & & 1 \leqslant i<j \leqslant N, \\
l_{i i}^{+}[0] l_{i i}^{-}[0] & =l_{i i}^{-}[0] l_{i i}^{+}[0]=1 & & \text { for } & & i=1, \ldots, N,
\end{aligned}
$$

The quantum affine algebra $\mathrm{U}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)$ is generated by elements

$$
l_{i j}^{+}[-r], \quad l_{i j}^{-}[r] \quad \text { with } \quad 1 \leqslant i, j \leqslant N, \quad r=0,1, \ldots,
$$

and the invertible central element q^{c}, subject to the defining
relations

$$
\begin{aligned}
l_{j i}^{+}[0] & =l_{i j}^{-}[0]=0 & & \text { for } & & 1 \leqslant i<j \leqslant N, \\
l_{i i}^{+}[0] l_{i i}^{-}[0] & =l_{i i}^{-}[0] l_{i i}^{+}[0]=1 & & \text { for } & & i=1, \ldots, N,
\end{aligned}
$$

and

$$
\begin{gathered}
R(u / v) L_{1}^{ \pm}(u) L_{2}^{ \pm}(v)=L_{2}^{ \pm}(v) L_{1}^{ \pm}(u) R(u / v) \\
\bar{R}\left(u q^{-c} / v\right) L_{1}^{+}(u) L_{2}^{-}(v)=L_{2}^{-}(v) L_{1}^{+}(u) \bar{R}\left(u q^{c} / v\right)
\end{gathered}
$$

The vacuum module at the critical level $c=-N$ over $\mathrm{U}_{q}\left(\widehat{\mathfrak{g l}}_{N}\right)$ is the universal module $V_{q}\left(\mathfrak{g l}_{N}\right)$ generated by a nonzero vector 1 subject to the conditions

$$
L^{-}(u) \mathbf{1}=I \mathbf{1}, \quad q^{c} \mathbf{1}=q^{-N} \mathbf{1}
$$

where I denotes the identity matrix.

The vacuum module at the critical level $c=-N$ over $\mathrm{U}_{q}\left(\widehat{\mathfrak{g l}}_{N}\right)$ is the universal module $V_{q}\left(\mathfrak{g l}_{N}\right)$ generated by a nonzero vector 1 subject to the conditions

$$
L^{-}(u) \mathbf{1}=I \mathbf{1}, \quad q^{c} \mathbf{1}=q^{-N} \mathbf{1}
$$

where I denotes the identity matrix.

As a vector space, $V_{q}\left(\mathfrak{g l}_{N}\right)$ can be identified with the subalgebra $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$ of $\mathrm{U}_{q}\left(\hat{\mathfrak{g}}_{N}\right)$ generated by the coefficients of all series
$l_{i j}^{+}(u)$ subject to the additional relations $l_{i i}^{+}[0]=1$.

The subspace of invariants of $V_{q}\left(\mathfrak{g l}_{N}\right)$ is defined by

$$
\mathfrak{z}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)=\left\{v \in V_{q}\left(\mathfrak{g l}_{N}\right) \mid L^{-}(u) v=I v\right\} .
$$

The subspace of invariants of $V_{q}\left(\mathfrak{g l}_{N}\right)$ is defined by

$$
\mathfrak{z}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)=\left\{v \in V_{q}\left(\mathfrak{g l}_{N}\right) \mid L^{-}(u) v=I v\right\} .
$$

Identify $\mathfrak{z}_{q}\left(\widehat{\mathfrak{g l}}_{N}\right)$ with a subspace of $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.

The subspace of invariants of $V_{q}\left(\mathfrak{g l}_{N}\right)$ is defined by

$$
\mathfrak{z}_{q}\left(\widehat{\mathfrak{g}}_{N}\right)=\left\{v \in V_{q}\left(\mathfrak{g l}_{N}\right) \mid L^{-}(u) v=I v\right\} .
$$

Identify $\mathfrak{\mathfrak { b }}_{q}\left(\widehat{\mathfrak{g l}}_{N}\right)$ with a subspace of $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.

This subspace is closed under the multiplication in the quantum affine algebra and can be regarded as a subalgebra of $\mathrm{Y}_{q}\left(\mathfrak{g l}_{N}\right)$.

Define differential operators $\vartheta_{m} \in \mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)\left[\left[u, \partial_{u}\right]\right]$ by

$$
\sum_{m=1}^{\infty} \vartheta_{m} y^{m}=\sum_{s=1}^{\infty} y^{s} \operatorname{tr}_{1, \ldots, s} T_{s-1 s}(y) \ldots T_{12}(y) \overline{\mathcal{L}}_{1} \ldots \overline{\mathcal{L}}_{s}
$$

Define differential operators $\vartheta_{m} \in \mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)\left[\left[u, \partial_{u}\right]\right]$ by

$$
\sum_{m=1}^{\infty} \vartheta_{m} y^{m}=\sum_{s=1}^{\infty} y^{s} \operatorname{tr}_{1, \ldots, s} T_{s-1 s}(y) \ldots T_{12}(y) \overline{\mathcal{L}}_{1} \ldots \overline{\mathcal{L}}_{s}
$$

where $\overline{\mathcal{L}}=2 u \partial_{u}-\rho-\mathcal{L}^{+}(u)$ and ρ is the diagonal matrix

$$
\rho=\operatorname{diag}[N-1, N-3, \ldots,-N+1] .
$$

Define differential operators $\vartheta_{m} \in \mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)\left[\left[u, \partial_{u}\right]\right]$ by

$$
\sum_{m=1}^{\infty} \vartheta_{m} y^{m}=\sum_{s=1}^{\infty} y^{s} \operatorname{tr}_{1, \ldots, s} T_{s-1 s}(y) \ldots T_{12}(y) \overline{\mathcal{L}}_{1} \ldots \overline{\mathcal{L}}_{s}
$$

where $\overline{\mathcal{L}}=2 u \partial_{u}-\rho-\mathcal{L}^{+}(u)$ and ρ is the diagonal matrix

$$
\rho=\operatorname{diag}[N-1, N-3, \ldots,-N+1] .
$$

The differential operator ϑ_{m} takes the form

$$
\vartheta_{m}=\vartheta_{m}^{(0)} \partial_{u}^{m}+\cdots+\vartheta_{m}^{(m-1)} \partial_{u}+\vartheta_{m}^{(m)}
$$

where each $\vartheta_{m}^{(k)}$ is a power series in $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)[[u]]$.

Theorem [M.-Ragoucy 2018].
The coefficients of the power series $\vartheta_{m}^{(k)}$ generate a commutative subalgebra of $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

Theorem [M.-Ragoucy 2018].
The coefficients of the power series $\vartheta_{m}^{(k)}$ generate a commutative subalgebra of $\mathrm{U}\left(\widehat{\mathfrak{g}}^{+}\right)$.

Moreover, these coefficients belong to the algebra of invariants
$\mathfrak{z}_{\mathrm{tr}}\left(\widehat{\mathfrak{g}}_{N}\right)$ of the vacuum module $V_{q}\left(\mathfrak{g l}_{N}\right)$.

