Quantum immanants, Bethe subalgebras and

Sugawara operators

Alexander Molev

University of Sydney

Plan

Plan

- Quantum immanants \mathbb{S}_{μ} form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ [Okounkov 1996, Okounkov and Olshanski 1997].

Plan

- Quantum immanants \mathbb{S}_{μ} form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ [Okounkov 1996, Okounkov and Olshanski 1997].
- Coefficients of the power series $\mathbb{T}_{\mu}(u)$ generate a Bethe subalgebra of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ [Nazarov 1998].

Plan

- Quantum immanants \mathbb{S}_{μ} form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ [Okounkov 1996, Okounkov and Olshanski 1997].
- Coefficients of the power series $\mathbb{T}_{\mu}(u)$ generate a Bethe subalgebra of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ [Nazarov 1998].
- The dual series $\mathbb{T}_{\mu}^{+}(u)$ are invariants of the quantum vacuum module [Jing, Kožić, M. and Yang 2018].

Plan

- Quantum immanants \mathbb{S}_{μ} form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ [Okounkov 1996, Okounkov and Olshanski 1997].
- Coefficients of the power series $\mathbb{T}_{\mu}(u)$ generate a Bethe subalgebra of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ [Nazarov 1998].
- The dual series $\mathbb{T}_{\mu}^{+}(u)$ are invariants of the quantum vacuum module [Jing, Kožić, M. and Yang 2018].
- Taking quasi-classical limits we get Sugawara operators Casimir elements for $\widehat{\mathfrak{g}}_{N}$ at the critical level.

Young diagrams and tableaux

Young diagrams and tableaux

A partition or Young diagram μ of length $\ell=\ell(\mu)$ is a weakly decreasing sequence $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of integers such that $\mu_{1} \geqslant \cdots \geqslant \mu_{\ell}>0$.

Young diagrams and tableaux

A partition or Young diagram μ of length $\ell=\ell(\mu)$ is a weakly decreasing sequence $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of integers
such that $\mu_{1} \geqslant \cdots \geqslant \mu_{\ell}>0$.

If $\mu_{1}+\cdots+\mu_{\ell}=m$, then μ is a partition of $m: \quad \mu \vdash m$.

Young diagrams and tableaux

A partition or Young diagram μ of length $\ell=\ell(\mu)$ is a weakly decreasing sequence $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of integers
such that $\mu_{1} \geqslant \cdots \geqslant \mu_{\ell}>0$.

If $\mu_{1}+\cdots+\mu_{\ell}=m$, then μ is a partition of $m: \quad \mu \vdash m$.

The figure illustrates the diagram of the partition $(5,4,4,2)$ of
15 , its length is 4 :

A tableau \mathcal{U} of shape $\mu \vdash m$ is obtained by filling in the boxes of the diagram with the numbers in a given set.

A tableau \mathcal{U} of shape $\mu \vdash m$ is obtained by filling in the boxes of the diagram with the numbers in a given set.

A tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ which are filled in the boxes bijectively is called standard if its entries strictly increase along the rows and down the columns.

A tableau \mathcal{U} of shape $\mu \vdash m$ is obtained by filling in the boxes of the diagram with the numbers in a given set.

A tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ which are filled in the boxes bijectively is called standard if its entries strictly increase along the rows and down the columns.

The following is a standard tableau of shape $(4,4,1)$:

1	3	4	5
2	6	7	9
8			

The irreducible representations of the symmetric group \mathfrak{S}_{m} over
\mathbb{C} are parameterized by partitions of m. Given $\mu \vdash m$ denote the corresponding irreducible representation of \mathfrak{S}_{m} by V_{μ}.

The irreducible representations of the symmetric group \mathfrak{S}_{m} over
\mathbb{C} are parameterized by partitions of m. Given $\mu \vdash m$ denote the corresponding irreducible representation of \mathfrak{S}_{m} by V_{μ}.

The vector space V_{μ} admits an orthonormal Young basis parameterized by the set of standard μ-tableaux \mathcal{U}.

The irreducible representations of the symmetric group \mathfrak{S}_{m} over
\mathbb{C} are parameterized by partitions of m. Given $\mu \vdash m$ denote the corresponding irreducible representation of \mathfrak{S}_{m} by V_{μ}.

The vector space V_{μ} admits an orthonormal Young basis parameterized by the set of standard μ-tableaux \mathcal{U}.

The group algebra $\mathbb{C}\left[\mathfrak{S}_{m}\right]$ is isomorphic to the direct sum

$$
\mathbb{C}\left[\mathfrak{S}_{m}\right] \cong \bigoplus_{\mu \vdash m} \operatorname{Mat}_{f_{\mu}}(\mathbb{C})
$$

$f_{\mu}=\operatorname{dim} V_{\mu}$ is the number of standard tableaux of shape μ.

The diagonal matrix units $e_{\mathcal{U}}=e_{\mathcal{U} \mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ are primitive idempotents of $\mathbb{C}\left[\mathfrak{S}_{m}\right]$. We have $\mathbb{C}\left[\mathfrak{S}_{m}\right] e_{\mathcal{U}} \cong V_{\mu}$ so that explicit formulas for $e_{\mathcal{U}} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ provide realizations of V_{μ}.

The diagonal matrix units $e_{\mathcal{U}}=e_{\mathcal{U} \mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ are primitive idempotents of $\mathbb{C}\left[\mathfrak{S}_{m}\right]$. We have $\mathbb{C}\left[\mathfrak{S}_{m}\right] e_{\mathcal{U}} \cong V_{\mu}$ so that explicit formulas for $e_{\mathcal{U}} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ provide realizations of V_{μ}.

The Jucys-Murphy elements $x_{1}, \ldots, x_{m} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ are defined by

$$
x_{a}=(1 a)+\cdots+(a-1 a) \text { for } a=2, \ldots, m
$$

$$
\text { and } x_{1}=0
$$

The diagonal matrix units $e_{\mathcal{U}}=e_{\mathcal{U} \mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ are primitive idempotents of $\mathbb{C}\left[\mathfrak{S}_{m}\right]$. We have $\mathbb{C}\left[\mathfrak{S}_{m}\right] e_{\mathcal{U}} \cong V_{\mu}$ so that explicit formulas for $e_{\mathcal{U}} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ provide realizations of V_{μ}.

The Jucys-Murphy elements $x_{1}, \ldots, x_{m} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ are defined by

$$
x_{a}=(1 a)+\cdots+(a-1 a) \text { for } a=2, \ldots, m
$$

and $x_{1}=0$. We have

$$
x_{a} e_{\mathcal{U}}=e_{\mathcal{U}} x_{a}=c_{a}(\mathcal{U}) e_{\mathcal{U}}, \quad a=1, \ldots, m
$$

$c_{a}(\mathcal{U})=j-i$ is the content of the box $(i, j) \in \mu$ occupied by a.

Denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the box α occupied by m. Then the shape of \mathcal{V} is a diagram which we denote by ν.

Denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the box α occupied by m. Then the shape of \mathcal{V} is a diagram which we denote by ν.

Jucys-Murphy formula [Jucys 1971, Murphy 1981]:

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{m}-a_{1}\right) \ldots\left(x_{m}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}
$$

Denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the box α occupied by m. Then the shape of \mathcal{V} is a diagram which we denote by ν.

Jucys-Murphy formula [Jucys 1971, Murphy 1981]:

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{m}-a_{1}\right) \ldots\left(x_{m}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}=\left.e_{\mathcal{V}} \frac{u-c}{u-x_{m}}\right|_{u=c}
$$

Denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the box α occupied by m. Then the shape of \mathcal{V} is a diagram which we denote by ν.

Jucys-Murphy formula [Jucys 1971, Murphy 1981]:

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{m}-a_{1}\right) \ldots\left(x_{m}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}=\left.e_{\mathcal{V}} \frac{u-c}{u-x_{m}}\right|_{u=c}
$$

where a_{1}, \ldots, a_{l} are the contents of all addable boxes of ν except for α, while c is the content of the latter.

Example. Take $\mu=\left(2^{2}\right)$ and let \mathcal{U} be

1	2
3	4

Example. Take $\mu=\left(2^{2}\right)$ and let \mathcal{U} be

$$
\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} .
$$

Then \mathcal{V} is

\[

\]

with $c=c_{4}(\mathcal{U})=0$ and $\nu=(2,1)$.

Example. Take $\mu=\left(2^{2}\right)$ and let \mathcal{U} be

$$
\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} .
$$

Then \mathcal{V} is

\[

\]

with $c=c_{4}(\mathcal{U})=0$ and $\nu=(2,1)$.
Hence

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{4}-2\right)\left(x_{4}+2\right)}{(-2) 2}, \quad x_{4}=(14)+(24)+(34)
$$

Fusion procedure

Fusion procedure

Take m variables u_{1}, \ldots, u_{m} and consider the rational function

$$
\phi\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{(a b)}{u_{a}-u_{b}}\right),
$$

the product is taken in the lexicographical order.

Fusion procedure

Take m variables u_{1}, \ldots, u_{m} and consider the rational function

$$
\phi\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{(a b)}{u_{a}-u_{b}}\right),
$$

the product is taken in the lexicographical order.

Suppose that $\mu \vdash m$ and let \mathcal{U} be a standard μ-tableau. Set
$c_{a}=c_{a}(\mathcal{U})$ for $a=1, \ldots, m$.

Fusion procedure

Take m variables u_{1}, \ldots, u_{m} and consider the rational function

$$
\phi\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{(a b)}{u_{a}-u_{b}}\right),
$$

the product is taken in the lexicographical order.

Suppose that $\mu \vdash m$ and let \mathcal{U} be a standard μ-tableau. Set
$c_{a}=c_{a}(\mathcal{U})$ for $a=1, \ldots, m$. We have [Jucys 1966]:

$$
\left.\left.\left.\phi\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \ldots\right|_{u_{m}=c_{m}}=\frac{m!}{f_{\mu}} e_{\mathcal{U}}
$$

Schur-Weyl duality

The symmetric group \mathfrak{S}_{m} acts by permuting the tensor factors in the tensor product space

$$
\left(\mathbb{C}^{N}\right)^{\otimes m}=\underbrace{\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

Schur-Weyl duality

The symmetric group \mathfrak{S}_{m} acts by permuting the tensor factors in the tensor product space

$$
\left(\mathbb{C}^{N}\right)^{\otimes m}=\underbrace{\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m} .
$$

Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

Schur-Weyl duality

The symmetric group \mathfrak{S}_{m} acts by permuting the tensor factors in the tensor product space

$$
\left(\mathbb{C}^{N}\right)^{\otimes m}=\underbrace{\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m} .
$$

Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

If $\ell(\mu) \leqslant N$ then $\mathcal{E}_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes m} \cong L(\mu)$ is an irreducible $\mathfrak{g l}_{N}$-module with the highest weight $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}, 0, \ldots, 0\right)$.

Schur-Weyl duality

The symmetric group \mathfrak{S}_{m} acts by permuting the tensor factors in the tensor product space

$$
\left(\mathbb{C}^{N}\right)^{\otimes m}=\underbrace{\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m} .
$$

Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

If $\ell(\mu) \leqslant N$ then $\mathcal{E}_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes m} \cong L(\mu)$ is an irreducible $\mathfrak{g l}_{N}$-module with the highest weight $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}, 0, \ldots, 0\right)$. Moreover,

$$
\left(\mathbb{C}^{N}\right)^{\otimes m} \cong \bigoplus_{\mu \vdash m, \ell(\mu) \leqslant N} V_{\mu} \otimes L(\mu) .
$$

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

For $a=1, \ldots, m$ let E_{a} be the element of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

For $a=1, \ldots, m$ let E_{a} be the element of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

defined by

$$
E_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes E_{i j}
$$

Quantum immanants

Quantum immanants

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Quantum immanants

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

The quantum immanant is defined by

Quantum immanants

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

The quantum immanant is defined by

$$
\mathbb{S}_{\mu}=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}}\left(E_{1}+c_{1}\right) \ldots\left(E_{m}+c_{m}\right)
$$

Quantum immanants

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

The quantum immanant is defined by

$$
\mathbb{S}_{\mu}=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}}\left(E_{1}+c_{1}\right) \ldots\left(E_{m}+c_{m}\right)
$$

The element \mathbb{S}_{μ} does not depend on \mathcal{U}.

Theorem [Okounkov 1996, Okounkov and Olshanski 1997].

The quantum immanants \mathbb{S}_{μ} with $\ell(\mu) \leqslant N$ form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

Theorem [Okounkov 1996, Okounkov and Olshanski 1997].

The quantum immanants \mathbb{S}_{μ} with $\ell(\mu) \leqslant N$ form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

The eigenvalue of \mathbb{S}_{μ} in the highest weight module $L(\lambda)$ with
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ (the Harish-Chandra image)

Theorem [Okounkov 1996, Okounkov and Olshanski 1997].

The quantum immanants \mathbb{S}_{μ} with $\ell(\mu) \leqslant N$ form a basis of the center of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

The eigenvalue of \mathbb{S}_{μ} in the highest weight module $L(\lambda)$ with
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ (the Harish-Chandra image)
is the factorial Schur polynomial,

$$
s_{\mu}^{*}(\lambda)=\sum_{\operatorname{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu}\left(\lambda_{\mathcal{T}(\alpha)}+c(\alpha)\right),
$$

summed over semistandard tableaux \mathcal{T} of shape μ with entries in $\{1, \ldots, N\}$.

Example. Take $\mu=\left(1^{m}\right)$. The contents of the only standard tableau \mathcal{U} are given by $c_{a}=-a+1$ for $a=1, \ldots, m$.

Example. Take $\mu=\left(1^{m}\right)$. The contents of the only standard tableau \mathcal{U} are given by $c_{a}=-a+1$ for $a=1, \ldots, m$.

We have $\mathcal{E}_{\mathcal{U}}=A^{(m)}$ is the anti-symmetrizer in $\left(\mathbb{C}^{N}\right)^{\otimes m}$, the quantum minors

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right)
$$

Example. Take $\mu=\left(1^{m}\right)$. The contents of the only standard tableau \mathcal{U} are given by $c_{a}=-a+1$ for $a=1, \ldots, m$.

We have $\mathcal{E}_{\mathcal{U}}=A^{(m)}$ is the anti-symmetrizer in $\left(\mathbb{C}^{N}\right)^{\otimes m}$, the quantum minors

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)} E_{1}\left(E_{2}-1\right) \ldots\left(E_{m}-m+1\right)
$$

are obtained as coefficients of the Capelli determinant

$$
C(u)=\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 N} \\
\vdots & \vdots & & \vdots \\
E_{N 1} & E_{N 2} & \ldots & u+E_{N N}-N+1
\end{array}\right]
$$

Bethe subalgebras in Yangian

Bethe subalgebras in Yangian

The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a unital associative algebra with
generators $t_{i j}^{(r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$ and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)}
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

In terms of the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

the defining relations are written in the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

In terms of the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

the defining relations are written in the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

Set

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

and use the notation $T_{a}(u)$ with $a=1, \ldots, m$ for formal series in u^{-1} with coefficients in the tensor product algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right) .
$$

The defining relations for the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in

 the matrix form as$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

The defining relations for the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the matrix form as

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

where

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix,

$$
P: \mathbb{C}^{N} \otimes \mathbb{C}^{N} \rightarrow \mathbb{C}^{N} \otimes \mathbb{C}^{N}
$$

is the permutation operator.

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by

$$
\mathbb{T}_{\mu}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}\left(u+c_{1}\right) \ldots T_{m}\left(u+c_{m}\right)
$$

It does not depend on \mathcal{U}.

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by

$$
\mathbb{T}_{\mu}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}\left(u+c_{1}\right) \ldots T_{m}\left(u+c_{m}\right)
$$

It does not depend on \mathcal{U}.
Using the evaluation homomorphism

$$
\mathrm{ev}: \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right), \quad T(u) \mapsto 1+E u^{-1}
$$

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by

$$
\mathbb{T}_{\mu}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}\left(u+c_{1}\right) \ldots T_{m}\left(u+c_{m}\right)
$$

It does not depend on \mathcal{U}.
Using the evaluation homomorphism

$$
\mathrm{ev}: \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right), \quad T(u) \mapsto 1+E u^{-1}
$$

we get

$$
\mathbb{S}_{\mu}=\left.\left(u+c_{1}\right) \ldots\left(u+c_{m}\right) \operatorname{ev}\left(\mathbb{T}_{\mu}(u)\right)\right|_{u=0}
$$

Consider the left ideal I of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by all coefficients of $t_{i j}(u)$ with $1 \leqslant i<j \leqslant N$.

Consider the left ideal I of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by all coefficients of $t_{i j}(u)$ with $1 \leqslant i<j \leqslant N$.

The intersection $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0} \cap I$ is a two-sided ideal of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0}$.

Consider the left ideal I of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by all coefficients of $t_{i j}(u)$ with $1 \leqslant i<j \leqslant N$.

The intersection $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0} \cap I$ is a two-sided ideal of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0}$.
Yangian version of the Harish-Chandra homomorphism:

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0} \rightarrow \mathbb{C}\left[\lambda_{i}^{(r)} \mid i=1, \ldots, N, r \geqslant 1\right], \quad t_{i i}^{(r)} \mapsto \lambda_{i}^{(r)}
$$

Consider the left ideal I of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ generated by all coefficients of $t_{i j}(u)$ with $1 \leqslant i<j \leqslant N$.

The intersection $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0} \cap I$ is a two-sided ideal of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0}$.
Yangian version of the Harish-Chandra homomorphism:

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)_{0} \rightarrow \mathbb{C}\left[\lambda_{i}^{(r)} \mid i=1, \ldots, N, r \geqslant 1\right], \quad t_{i i}^{(r)} \mapsto \lambda_{i}^{(r)} .
$$

Combine the elements $\lambda_{i}^{(r)}$ into the formal series

$$
\lambda_{i}(u)=1+\sum_{r=1}^{\infty} \lambda_{i}^{(r)} u^{-r}, \quad i=1, \ldots, N,
$$

so that $t_{i i}(u) \mapsto \lambda_{i}(u)$.

Theorem [cf. Okounkov 1996, Nazarov 1998].
The coefficients of all series $\mathbb{T}_{\mu}(u)$ pairwise commute.

Theorem [cf. Okounkov 1996, Nazarov 1998].

The coefficients of all series $\mathbb{T}_{\mu}(u)$ pairwise commute.

The Harish-Chandra image of $\mathbb{T}_{\mu}(u)$ coincides with the Yangian character of the evaluation module $L(\mu)$:

$$
\mathbb{T}_{\mu}(u) \mapsto \sum_{\operatorname{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu} \lambda_{\mathcal{T}(\alpha)}(u+c(\alpha)),
$$

summed over semistandard tableau \mathcal{T} of shape μ with entries in $\{1, \ldots, N\}$.

Introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
$$

Introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
$$

By the fusion procedure,

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \ldots\right|_{u_{m}=c_{m}}=\frac{m!}{f_{\mu}} \mathcal{E}_{\mathcal{U}}
$$

Introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
$$

By the fusion procedure,

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \ldots\right|_{u_{m}=c_{m}}=\frac{m!}{f_{\mu}} \mathcal{E}_{\mathcal{U}}
$$

A key point in the proof is the identity

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right),
$$

Introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
$$

By the fusion procedure,

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \ldots\right|_{u_{m}=c_{m}}=\frac{m!}{f_{\mu}} \mathcal{E}_{\mathcal{U}}
$$

A key point in the proof is the identity

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right),
$$

and its consequence implied by the fusion procedure:

Introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{u_{a}-u_{b}}\right)
$$

By the fusion procedure,

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \ldots\right|_{u_{m}=c_{m}}=\frac{m!}{f_{\mu}} \mathcal{E}_{\mathcal{U}}
$$

A key point in the proof is the identity

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right),
$$

and its consequence implied by the fusion procedure:

$$
\mathcal{E}_{\mathcal{U}} T_{1}\left(u+c_{1}\right) \ldots T_{m}\left(u+c_{m}\right)=T_{m}\left(u+c_{m}\right) \ldots T_{1}\left(u+c_{1}\right) \mathcal{E}_{\mathcal{U}} .
$$

Quantum vacuum modules

Quantum vacuum modules

The double Yangian DY $\left(\mathfrak{g l}_{N}\right)$ is generated by the central element C and elements $t_{i j}^{(r)}$ and $t_{i j}^{(-r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$.

Quantum vacuum modules

The double Yangian DY $\left(\mathfrak{g l}_{N}\right)$ is generated by the central element C and elements $t_{i j}^{(r)}$ and $t_{i j}^{(-r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$.

The defining relations are written in terms of the series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r}
$$

Quantum vacuum modules

The double Yangian DY $\left(\mathfrak{g l}_{N}\right)$ is generated by the central element C and elements $t_{i j}^{(r)}$ and $t_{i j}^{(-r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$.

The defining relations are written in terms of the series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r}
$$

and

$$
t_{i j}^{+}(u)=\delta_{i j}-\sum_{r=1}^{\infty} t_{i j}^{(-r)} u^{r-1}
$$

The defining relations are

$$
\begin{aligned}
R(u-v) T_{1}(u) T_{2}(v) & =T_{2}(v) T_{1}(u) R(u-v), \\
R(u-v) T_{1}^{+}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}^{+}(u) R(u-v), \\
\bar{R}(u-v+C / 2) T_{1}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}(u) \bar{R}(u-v-C / 2),
\end{aligned}
$$

The defining relations are

$$
\begin{aligned}
R(u-v) T_{1}(u) T_{2}(v) & =T_{2}(v) T_{1}(u) R(u-v) \\
R(u-v) T_{1}^{+}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}^{+}(u) R(u-v) \\
\bar{R}(u-v+C / 2) T_{1}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}(u) \bar{R}(u-v-C / 2)
\end{aligned}
$$

where the coefficients of powers of u, v belong to

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{DY}\left(\mathfrak{g l}_{N}\right)
$$

and

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u) \quad \text { and } \quad T^{+}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}^{+}(u) .
$$

As before, $R(u)$ is the Yang R-matrix,

$$
R(u)=1-P u^{-1} .
$$

As before, $R(u)$ is the Yang R-matrix,

$$
R(u)=1-P u^{-1} .
$$

We also use the normalized R-matrix

$$
\bar{R}(u)=g(u) R(u),
$$

As before, $R(u)$ is the Yang R-matrix,

$$
R(u)=1-P u^{-1} .
$$

We also use the normalized R-matrix

$$
\bar{R}(u)=g(u) R(u),
$$

where

$$
g(u)=1+\sum_{i=1}^{\infty} g_{i} u^{-i}, \quad g_{i} \in \mathbb{C}
$$

is uniquely determined by the relation

$$
g(u+N)=g(u)\left(1-u^{-2}\right) .
$$

The (quantum) vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over the double Yangian DY $\left(\mathfrak{g l}_{N}\right)$ is defined as the quotient

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

The (quantum) vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over the double Yangian DY $\left(\mathfrak{g l}_{N}\right)$ is defined as the quotient

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

On the vacuum vector $1 \in \mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ we have

$$
C 1=c 1 \quad \text { and } \quad t_{i j}^{(r)} 1=0 \quad \text { for } \quad r \geqslant 1 .
$$

The (quantum) vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over the double Yangian $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is defined as the quotient

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

On the vacuum vector $1 \in \mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ we have

$$
C 1=c 1 \quad \text { and } \quad t_{i j}^{(r)} 1=0 \quad \text { for } \quad r \geqslant 1 .
$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$, which is the subalgebra of $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ generated by the elements $t_{i j}^{(-r)}$.

Assume the level is critical, $c=-N$.

Assume the level is critical, $c=-N$.
Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$ by the descending filtration defined by $\operatorname{deg}^{\prime} t_{i j}^{(-r)}=r$.

Assume the level is critical, $c=-N$.
Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$ by the descending filtration defined by $\operatorname{deg}^{\prime} t_{i j}^{(-r)}=r$.

Introduce the subspace of invariants by

$$
\mathfrak{z}(\widehat{\mathcal{V}})=\left\{v \in \widehat{\mathcal{V}} \mid t_{i j}(u) v=\delta_{i j} v\right\}
$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{i j}^{(r)}$ with $r \geqslant 1$.

Assume the level is critical, $c=-N$.
Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$ by the descending filtration defined by $\operatorname{deg}^{\prime} t_{i j}^{(-r)}=r$.

Introduce the subspace of invariants by

$$
\mathfrak{z}(\widehat{\mathcal{V}})=\left\{v \in \widehat{\mathcal{V}} \mid t_{i j}(u) v=\delta_{i j} v\right\}
$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{i j}^{(r)}$ with $r \geqslant 1$.

Proposition. $\mathfrak{z}(\widehat{\mathcal{V}})$ is a subalgebra of the completed dual
Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$.

Construction of invariants

Construction of invariants

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

Construction of invariants

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

In the tensor product algebra

Construction of invariants

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$.

In the tensor product algebra

set

$$
\mathbb{T}_{\mu}^{+}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}^{+}\left(u+c_{1}\right) \ldots T_{m}^{+}\left(u+c_{m}\right)
$$

Construction of invariants

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leqslant N$, consider the sequence of contents $c_{a}=c_{a}(\mathcal{U})$ with $a=1, \ldots, m$. In the tensor product algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \widehat{\mathcal{V}}
$$

set

$$
\mathbb{T}_{\mu}^{+}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}^{+}\left(u+c_{1}\right) \ldots T_{m}^{+}\left(u+c_{m}\right) .
$$

This is a power series in u independent of \mathcal{U}, whose coefficients are elements of the completed vacuum module $\widehat{\mathcal{V}}$.

Theorem [Jing-Kožić-M.-Yang 2018].

Theorem [Jing-Kožić-M.-Yang 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Theorem [Jing-Kožić-M.-Yang 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Corollary.

Theorem [Jing-Kožić-M.-Yang 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Corollary.

All coefficients of the series

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)} T_{1}^{+}(u) \ldots T_{m}^{+}(u-m+1), \quad m=1, \ldots, N,
$$

Theorem [Jing-Kožić-M.-Yang 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Corollary.

All coefficients of the series

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)} T_{1}^{+}(u) \ldots T_{m}^{+}(u-m+1), \quad m=1, \ldots, N,
$$

and

$$
\operatorname{tr} T^{+}(u) \ldots T^{+}(u-m+1), \quad m \geqslant 1
$$

belong to the subalgebra $\mathfrak{z}(\widehat{\mathcal{V}})$.

Introduce the series

$$
\Phi_{m}(u)=\sum_{k=0}^{m}(-1)^{k}\binom{N-k}{m-k} \operatorname{tr}_{1, \ldots, k} A^{(k)} T_{1}^{+}(u) \ldots T_{k}^{+}(u-k+1),
$$

Introduce the series

$$
\Phi_{m}(u)=\sum_{k=0}^{m}(-1)^{k}\binom{N-k}{m-k} \operatorname{tr}_{1, \ldots, k} A^{(k)} T_{1}^{+}(u) \ldots T_{k}^{+}(u-k+1),
$$

and define its coefficients by

$$
\Phi_{m}(u)=\sum_{r=0}^{\infty} \Phi_{m}^{(r)} u^{r}
$$

Introduce the series

$$
\Phi_{m}(u)=\sum_{k=0}^{m}(-1)^{k}\binom{N-k}{m-k} \operatorname{tr}_{1, \ldots, k} A^{(k)} T_{1}^{+}(u) \ldots T_{k}^{+}(u-k+1)
$$

and define its coefficients by

$$
\Phi_{m}(u)=\sum_{r=0}^{\infty} \Phi_{m}^{(r)} u^{r}
$$

Theorem. The subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$ is commutative.

Introduce the series

$$
\Phi_{m}(u)=\sum_{k=0}^{m}(-1)^{k}\binom{N-k}{m-k} \operatorname{tr}_{1, \ldots, k} A^{(k)} T_{1}^{+}(u) \ldots T_{k}^{+}(u-k+1)
$$

and define its coefficients by

$$
\Phi_{m}(u)=\sum_{r=0}^{\infty} \Phi_{m}^{(r)} u^{r}
$$

Theorem. The subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$ is commutative.

It is topologically generated by the family of elements
$\Phi_{m}^{(r)}$ with $m=1, \ldots, N$ and $r=0,1, \ldots$

Introduce the series

$$
\Phi_{m}(u)=\sum_{k=0}^{m}(-1)^{k}\binom{N-k}{m-k} \operatorname{tr}_{1, \ldots, k} A^{(k)} T_{1}^{+}(u) \ldots T_{k}^{+}(u-k+1),
$$

and define its coefficients by

$$
\Phi_{m}(u)=\sum_{r=0}^{\infty} \Phi_{m}^{(r)} u^{r}
$$

Theorem. The subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$ is commutative.

It is topologically generated by the family of elements $\Phi_{m}^{(r)}$ with $m=1, \ldots, N$ and $r=0,1, \ldots$

This family is algebraically independent.

Segal-Sugawara vectors from the invariants

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g l}}_{N}=\mathfrak{g l}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$

Segal-Sugawara vectors from the invariants

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g}}_{N}=\mathfrak{g l}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ defined by the commutation relations

$$
\left[E_{i j}[r], E_{k l}[s]\right]=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s} K\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right),
$$

Segal-Sugawara vectors from the invariants

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g}}_{N}=\mathfrak{g l}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ defined by the commutation relations

$$
\left[E_{i j}[r], E_{k l}[s]\right]=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s} K\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right),
$$

and the element K is central.

Segal-Sugawara vectors from the invariants

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g l}}_{N}=\mathfrak{g l}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ defined by the commutation relations

$$
\left[E_{i j}[r], E_{k l}[s]\right]=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s} K\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right),
$$

and the element K is central.
Here $X[r]=X t^{r}$ for $X \in \mathfrak{g l}_{N}$ and any $r \in \mathbb{Z}$.

Consider the filtration on $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Consider the filtration on $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}\left(\mathfrak{g l}_{N}\right)$.

Consider the filtration on $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}\left(\mathfrak{g l}_{N}\right)$.

Proposition. The assignments

$$
E_{i j}[r-1] \mapsto \bar{t}_{i j}^{(r)}, \quad E_{i j}[-r] \mapsto \bar{t}_{i j}^{(-r)} \quad \text { and } \quad K \mapsto \bar{C}
$$

with $r \geqslant 1$

Consider the filtration on $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \mathrm{DY}\left(\mathfrak{g l}_{N}\right)$.

Proposition. The assignments

$$
E_{i j}[r-1] \mapsto \bar{t}_{i j}^{(r)}, \quad E_{i j}[-r] \mapsto \bar{t}_{i j}^{(-r)} \quad \text { and } \quad K \mapsto \bar{C}
$$

with $r \geqslant 1$ define an algebra isomorphism

$$
\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right) \rightarrow \operatorname{grDY}^{\mathrm{D}}\left(\mathfrak{g l}_{N}\right)
$$

By the proposition, $\operatorname{gr~}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g}}_{N}$:

By the proposition, $\mathrm{gr}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g}}_{N}$:

$$
V=\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right) / \mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right)\left\langle\mathfrak{g l}_{N}[t]+\mathbb{C}(K+N)\right\rangle .
$$

By the proposition, $\operatorname{gr} \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g l}}_{N}$:

$$
V=\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right) / \mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)\left\langle\mathfrak{g l}_{N}[t]+\mathbb{C}(K+N)\right\rangle .
$$

Then $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$:

By the proposition, $\operatorname{gr} \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g l}}_{N}$:

$$
V=\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right) / \mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)\left\langle\mathfrak{g l}_{N}[t]+\mathbb{C}(K+N)\right\rangle .
$$

Then $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$:

$$
\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)=\left\{v \in V \mid \mathfrak{g l}_{N}[t] v=0\right\} .
$$

By the proposition, $\operatorname{gr} \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g l}}_{N}$:

$$
V=\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right) / \mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)\left\langle\mathfrak{g l}_{N}[t]+\mathbb{C}(K+N)\right\rangle .
$$

Then $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$:

$$
\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)=\left\{v \in V \mid \mathfrak{g l}_{N}[t] v=0\right\} .
$$

Any element of $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$ is called a Segal-Sugawara vector.

Extend the filtration on the dual Yangian to the algebra

$$
\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right] \text { by } \operatorname{deg} u=1 \text { and } \operatorname{deg} \partial_{u}=-1 .
$$

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.
The element

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(1-T_{1}^{+}(u) e^{-\partial_{u}}\right) \ldots\left(1-T_{m}^{+}(u) e^{-\partial_{u}}\right)
$$

has degree $-m$

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.
The element

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(1-T_{1}^{+}(u) e^{-\partial_{u}}\right) \ldots\left(1-T_{m}^{+}(u) e^{-\partial_{u}}\right)
$$

has degree $-m$ and its symbol coincides with

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.
The element

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(1-T_{1}^{+}(u) e^{-\partial_{u}}\right) \ldots\left(1-T_{m}^{+}(u) e^{-\partial_{u}}\right)
$$

has degree $-m$ and its symbol coincides with

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

where

$$
E(u)_{+}=\sum_{r=1}^{\infty} E[-r] u^{r-1} .
$$

By taking the coefficients of u^{0} in

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

By taking the coefficients of u^{0} in

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

we get the differential operator in $\tau=-\partial_{t}$:

$$
\begin{aligned}
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

By taking the coefficients of u^{0} in

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

we get the differential operator in $\tau=-\partial_{t}$:

$$
\begin{aligned}
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

Corollary.
All elements $\phi_{m a}$ are Segal-Sugawara vectors.

Example. $m=N$.

Example. $m=N$.

Consider the $N \times N$ matrix $\tau+E[-1]$ given by

$$
\tau+E[-1]=\left[\begin{array}{cccc}
\tau+E_{11}[-1] & E_{12}[-1] & \ldots & E_{1 N}[-1] \\
E_{21}[-1] & \tau+E_{22}[-1] & \ldots & E_{2 N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
E_{N 1}[-1] & E_{N 2}[-1] & \ldots & \tau+E_{N N}[-1]
\end{array}\right]
$$

The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors.

The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors.

That is, the elements $\left(\partial_{t}\right)^{r} \phi_{a}$ with $r \geqslant 0$ and $a=1, \ldots, N$ are algebraically independent generators of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$. [Chervov-Talalaev 2006, Chervov-M. 2009].

