Quantum immanants, Bethe subalgebras and

Sugawara operators

Alexander Molev

University of Sydney

► Quantum immanants S_µ form a basis of the center of U(gl_N) [Okounkov 1996, Okounkov and Olshanski 1997].

- ► Quantum immanants S_µ form a basis of the center of U(gl_N) [Okounkov 1996, Okounkov and Olshanski 1997].
- ► Coefficients of the power series T_µ(u) generate a Bethe subalgebra of the Yangian Y(gl_N) [Nazarov 1998].

- ► Quantum immanants S_µ form a basis of the center of U(gl_N) [Okounkov 1996, Okounkov and Olshanski 1997].
- ► Coefficients of the power series T_µ(u) generate a Bethe subalgebra of the Yangian Y(gl_N) [Nazarov 1998].
- ► The dual series T⁺_µ(u) are invariants of the quantum vacuum module [Jing, Kožić, M. and Yang 2018].

- ► Quantum immanants S_µ form a basis of the center of U(gl_N) [Okounkov 1996, Okounkov and Olshanski 1997].
- ► Coefficients of the power series T_µ(u) generate a Bethe subalgebra of the Yangian Y(gl_N) [Nazarov 1998].
- ► The dual series T⁺_µ(u) are invariants of the quantum vacuum module [Jing, Kožić, M. and Yang 2018].
- Taking quasi-classical limits we get Sugawara operators –
 Casimir elements for gl_N at the critical level.

A partition or Young diagram μ of length $\ell = \ell(\mu)$ is a weakly

decreasing sequence $\mu = (\mu_1, \ldots, \mu_\ell)$ of integers

such that $\mu_1 \ge \cdots \ge \mu_\ell > 0$.

A partition or Young diagram μ of length $\ell = \ell(\mu)$ is a weakly

decreasing sequence $\mu = (\mu_1, \ldots, \mu_\ell)$ of integers

such that $\mu_1 \ge \cdots \ge \mu_\ell > 0$.

If $\mu_1 + \cdots + \mu_\ell = m$, then μ is a partition of m: $\mu \vdash m$.

A partition or Young diagram μ of length $\ell = \ell(\mu)$ is a weakly

decreasing sequence $\mu = (\mu_1, \ldots, \mu_\ell)$ of integers

such that $\mu_1 \ge \cdots \ge \mu_\ell > 0$.

If $\mu_1 + \cdots + \mu_\ell = m$, then μ is a partition of m: $\mu \vdash m$.

The figure illustrates the diagram of the partition (5, 4, 4, 2) of

15, its length is 4:

A tableau \mathcal{U} of shape $\mu \vdash m$ is obtained by filling in the boxes of

the diagram with the numbers in a given set.

A tableau \mathcal{U} of shape $\mu \vdash m$ is obtained by filling in the boxes of the diagram with the numbers in a given set.

A tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ which are filled in the boxes bijectively is called standard if its entries strictly increase along the rows and down the columns.

A tableau \mathcal{U} of shape $\mu \vdash m$ is obtained by filling in the boxes of the diagram with the numbers in a given set.

A tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ which are filled in the boxes bijectively is called standard if its entries strictly increase along the rows and down the columns.

The following is a standard tableau of shape (4, 4, 1):

The irreducible representations of the symmetric group \mathfrak{S}_m over \mathbb{C} are parameterized by partitions of *m*. Given $\mu \vdash m$ denote the corresponding irreducible representation of \mathfrak{S}_m by V_{μ} .

The irreducible representations of the symmetric group \mathfrak{S}_m over \mathbb{C} are parameterized by partitions of *m*. Given $\mu \vdash m$ denote the corresponding irreducible representation of \mathfrak{S}_m by V_{μ} .

The vector space V_{μ} admits an orthonormal Young basis parameterized by the set of standard μ -tableaux \mathcal{U} .

The irreducible representations of the symmetric group \mathfrak{S}_m over \mathbb{C} are parameterized by partitions of *m*. Given $\mu \vdash m$ denote the corresponding irreducible representation of \mathfrak{S}_m by V_{μ} .

The vector space V_{μ} admits an orthonormal Young basis parameterized by the set of standard μ -tableaux U.

The group algebra $\mathbb{C}[\mathfrak{S}_m]$ is isomorphic to the direct sum

$$\mathbb{C}[\mathfrak{S}_m] \cong \bigoplus_{\mu \vdash m} \operatorname{Mat}_{f_{\mu}}(\mathbb{C}),$$

 $f_{\mu} = \dim V_{\mu}$ is the number of standard tableaux of shape μ .

The diagonal matrix units $e_{\mathcal{U}} = e_{\mathcal{U}\mathcal{U}} \in \operatorname{Mat}_{f_{\mathcal{U}}}(\mathbb{C})$ are primitive

idempotents of $\mathbb{C}[\mathfrak{S}_m]$. We have $\mathbb{C}[\mathfrak{S}_m] e_{\mathcal{U}} \cong V_{\mu}$ so that explicit

formulas for $e_{\mathcal{U}} \in \mathbb{C}[\mathfrak{S}_m]$ provide realizations of V_{μ} .

The diagonal matrix units $e_{\mathcal{U}} = e_{\mathcal{U}\mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ are primitive idempotents of $\mathbb{C}[\mathfrak{S}_m]$. We have $\mathbb{C}[\mathfrak{S}_m] e_{\mathcal{U}} \cong V_{\mu}$ so that explicit formulas for $e_{\mathcal{U}} \in \mathbb{C}[\mathfrak{S}_m]$ provide realizations of V_{μ} .

The Jucys–Murphy elements $x_1, \ldots, x_m \in \mathbb{C}[\mathfrak{S}_m]$ are defined by

$$x_a = (1 a) + \dots + (a - 1 a)$$
 for $a = 2, \dots, m$

and $x_1 = 0$.

The diagonal matrix units $e_{\mathcal{U}} = e_{\mathcal{U}\mathcal{U}} \in \operatorname{Mat}_{f_{\mu}}(\mathbb{C})$ are primitive idempotents of $\mathbb{C}[\mathfrak{S}_m]$. We have $\mathbb{C}[\mathfrak{S}_m] e_{\mathcal{U}} \cong V_{\mu}$ so that explicit formulas for $e_{\mathcal{U}} \in \mathbb{C}[\mathfrak{S}_m]$ provide realizations of V_{μ} .

The Jucys–Murphy elements $x_1, \ldots, x_m \in \mathbb{C}[\mathfrak{S}_m]$ are defined by

$$x_a = (1 a) + \dots + (a - 1 a)$$
 for $a = 2, \dots, m$

and $x_1 = 0$. We have

$$x_a e_{\mathcal{U}} = e_{\mathcal{U}} x_a = c_a(\mathcal{U}) e_{\mathcal{U}}, \qquad a = 1, \dots, m,$$

 $c_a(\mathcal{U}) = j - i$ is the content of the box $(i, j) \in \mu$ occupied by a.

Jucys–Murphy formula [Jucys 1971, Murphy 1981]:

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_m - a_1) \dots (x_m - a_l)}{(c - a_1) \dots (c - a_l)}$$

Jucys–Murphy formula [Jucys 1971, Murphy 1981]:

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_m - a_1) \dots (x_m - a_l)}{(c - a_1) \dots (c - a_l)} = e_{\mathcal{V}} \frac{u - c}{u - x_m} \Big|_{u = c},$$

Jucys–Murphy formula [Jucys 1971, Murphy 1981]:

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_m - a_1) \dots (x_m - a_l)}{(c - a_1) \dots (c - a_l)} = e_{\mathcal{V}} \frac{u - c}{u - x_m} \Big|_{u = c},$$

where a_1, \ldots, a_l are the contents of all addable boxes of ν except for α , while *c* is the content of the latter.

Example. Take $\mu = (2^2)$ and let \mathcal{U} be

1	2	
3	4	

Example. Take $\mu = (2^2)$ and let \mathcal{U} be

1	2	
3	4	

Then ${\boldsymbol{\mathcal{V}}}$ is

1	2
3	

with $c = c_4(U) = 0$ and $\nu = (2, 1)$.

Example. Take $\mu = (2^2)$ and let \mathcal{U} be

1	2	
3	4	

Then \mathcal{V} is

1	2
3	

with $c = c_4(U) = 0$ and $\nu = (2, 1)$.

Hence

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_4 - 2)(x_4 + 2)}{(-2)2}, \qquad x_4 = (14) + (24) + (34).$$

Take *m* variables u_1, \ldots, u_m and consider the rational function

$$\phi(u_1,\ldots,u_m)=\prod_{1\leq a< b\leq m}\Big(1-\frac{(a\ b)}{u_a-u_b}\Big),$$

the product is taken in the lexicographical order.

Take *m* variables u_1, \ldots, u_m and consider the rational function

$$\phi(u_1,\ldots,u_m)=\prod_{1\leq a< b\leq m}\Big(1-\frac{(a\ b)}{u_a-u_b}\Big),$$

the product is taken in the lexicographical order.

Suppose that $\mu \vdash m$ and let \mathcal{U} be a standard μ -tableau. Set

 $c_a = c_a(\mathcal{U})$ for $a = 1, \ldots, m$.

Take *m* variables u_1, \ldots, u_m and consider the rational function

$$\phi(u_1,\ldots,u_m)=\prod_{1\leq a< b\leq m}\Big(1-\frac{(a\ b)}{u_a-u_b}\Big),$$

the product is taken in the lexicographical order.

Suppose that $\mu \vdash m$ and let \mathcal{U} be a standard μ -tableau. Set

 $c_a = c_a(\mathcal{U})$ for $a = 1, \ldots, m$. We have [Jucys 1966]:

$$\phi(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=\frac{m!}{f_{\mu}}\,e_{\mathcal{U}}.$$

The symmetric group \mathfrak{S}_m acts by permuting the tensor factors

in the tensor product space

$$(\mathbb{C}^N)^{\otimes m} = \underbrace{\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}.$$

The symmetric group \mathfrak{S}_m acts by permuting the tensor factors in the tensor product space

$$(\mathbb{C}^N)^{\otimes m} = \underbrace{\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}.$$

Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

The symmetric group \mathfrak{S}_m acts by permuting the tensor factors in the tensor product space

$$(\mathbb{C}^N)^{\otimes m} = \underbrace{\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}.$$

Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

If $\ell(\mu) \leq N$ then $\mathcal{E}_{\mathcal{U}}(\mathbb{C}^N)^{\otimes m} \cong L(\mu)$ is an irreducible \mathfrak{gl}_N -module with the highest weight $\mu = (\mu_1, \dots, \mu_\ell, 0, \dots, 0)$.

The symmetric group \mathfrak{S}_m acts by permuting the tensor factors in the tensor product space

$$(\mathbb{C}^N)^{\otimes m} = \underbrace{\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}.$$

Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

If $\ell(\mu) \leq N$ then $\mathcal{E}_{\mathcal{U}}(\mathbb{C}^N)^{\otimes m} \cong L(\mu)$ is an irreducible \mathfrak{gl}_N -module with the highest weight $\mu = (\mu_1, \dots, \mu_\ell, 0, \dots, 0)$. Moreover,

$$(\mathbb{C}^N)^{\otimes m} \cong \bigoplus_{\mu \vdash m, \ \ell(\mu) \leqslant N} V_\mu \otimes L(\mu).$$

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{gl}_{N}).$$

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}).$$

For a = 1, ..., m let E_a be the element of the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N)$$

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}).$$

For a = 1, ..., m let E_a be the element of the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N)$$

defined by

$$E_a = \sum_{i,j=1}^N 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes E_{ij}.$$

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with a = 1, ..., m.

The quantum immanant is defined by

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with a = 1, ..., m.

The quantum immanant is defined by

$$\mathbb{S}_{\mu} = \operatorname{tr}_{1,\ldots,m} \mathcal{E}_{\mathcal{U}} \left(E_1 + c_1 \right) \ldots \left(E_m + c_m \right).$$

Given a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$, consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \dots, m$. The quantum immanant is defined by

$$\mathbb{S}_{\mu} = \operatorname{tr}_{1,\ldots,m} \mathcal{E}_{\mathcal{U}} \left(E_1 + c_1 \right) \ldots \left(E_m + c_m \right).$$

The element \mathbb{S}_{μ} does not depend on \mathcal{U} .

Theorem [Okounkov 1996, Okounkov and Olshanski 1997]. The quantum immanants \mathbb{S}_{μ} with $\ell(\mu) \leq N$ form a basis of the center of $U(\mathfrak{gl}_N)$. Theorem [Okounkov 1996, Okounkov and Olshanski 1997]. The quantum immanants \mathbb{S}_{μ} with $\ell(\mu) \leq N$ form a basis of the center of $U(\mathfrak{gl}_N)$.

The eigenvalue of \mathbb{S}_{μ} in the highest weight module $L(\lambda)$ with

 $\lambda = (\lambda_1, \dots, \lambda_N)$ (the Harish-Chandra image)

Theorem [Okounkov 1996, Okounkov and Olshanski 1997]. The quantum immanants \mathbb{S}_{μ} with $\ell(\mu) \leq N$ form a basis of the center of $U(\mathfrak{gl}_N)$.

The eigenvalue of \mathbb{S}_{μ} in the highest weight module $L(\lambda)$ with

 $\lambda = (\lambda_1, \dots, \lambda_N)$ (the Harish-Chandra image)

is the factorial Schur polynomial,

$$s^*_{\mu}(\lambda) = \sum_{\operatorname{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu} (\lambda_{\mathcal{T}(\alpha)} + c(\alpha)),$$

summed over semistandard tableaux T of shape μ with entries

in $\{1, ..., N\}$.

Example. Take $\mu = (1^m)$. The contents of the only standard

tableau \mathcal{U} are given by $c_a = -a + 1$ for $a = 1, \dots, m$.

Example. Take $\mu = (1^m)$. The contents of the only standard tableau \mathcal{U} are given by $c_a = -a + 1$ for $a = 1, \dots, m$.

We have $\mathcal{E}_{\mathcal{U}} = A^{(m)}$ is the anti-symmetrizer in $(\mathbb{C}^N)^{\otimes m}$, the quantum minors

$$\operatorname{tr}_{1,\ldots,m} A^{(m)} E_1(E_2-1) \ldots (E_m-m+1)$$

Example. Take $\mu = (1^m)$. The contents of the only standard tableau \mathcal{U} are given by $c_a = -a + 1$ for $a = 1, \dots, m$.

We have $\mathcal{E}_{\mathcal{U}} = A^{(m)}$ is the anti-symmetrizer in $(\mathbb{C}^N)^{\otimes m}$, the quantum minors

$$\operatorname{tr}_{1,\ldots,m} A^{(m)} E_1(E_2-1) \ldots (E_m-m+1)$$

are obtained as coefficients of the Capelli determinant

$$C(u) = \text{cdet} \begin{bmatrix} u + E_{11} & E_{12} & \dots & E_{1N} \\ \vdots & \vdots & & \vdots \\ E_{N1} & E_{N2} & \dots & u + E_{NN} - N + 1 \end{bmatrix}$$

.

Bethe subalgebras in Yangian

Bethe subalgebras in Yangian

The Yangian $Y(\mathfrak{gl}_N)$ is a unital associative algebra with generators $t_{ij}^{(r)}$, where $1 \leq i, j \leq N$ and r = 1, 2, ... and the defining relations

$$[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where r, s = 0, 1, ... and $t_{ij}^{(0)} = \delta_{ij}$.

In terms of the formal series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r} \in \mathbf{Y}(\mathfrak{gl}_N)[[u^{-1}]]$$

the defining relations are written in the form

$$(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u).$$

In terms of the formal series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r} \in \mathbf{Y}(\mathfrak{gl}_N)[[u^{-1}]]$$

the defining relations are written in the form

$$(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u).$$

Set

$$T(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t_{ij}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{Y}(\mathfrak{gl}_{N})[[u^{-1}]]$$

and use the notation $T_a(u)$ with a = 1, ..., m for formal series in

 u^{-1} with coefficients in the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

The defining relations for the algebra $\mathbf{Y}(\mathfrak{gl}_N)$ can be written in the matrix form as

 $R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v),$

The defining relations for the algebra $\mathbf{Y}(\mathfrak{gl}_N)$ can be written in the matrix form as

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v),$$

where

$$R(u) = 1 - P u^{-1}$$

is the Yang *R*-matrix,

$$P:\mathbb{C}^N\otimes\mathbb{C}^N\to\mathbb{C}^N\otimes\mathbb{C}^N$$

is the permutation operator.

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $Y(\mathfrak{gl}_N)$ by

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $Y(\mathfrak{gl}_N)$ by

$$\mathbb{T}_{\mu}(u) = \operatorname{tr}_{1,\ldots,m} \mathcal{E}_{\mathcal{U}} T_1(u+c_1) \ldots T_m(u+c_m).$$

It does not depend on \mathcal{U} .

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $Y(\mathfrak{gl}_N)$ by

$$\mathbb{T}_{\mu}(u) = \operatorname{tr}_{1,\ldots,m} \mathcal{E}_{\mathcal{U}} T_1(u+c_1) \ldots T_m(u+c_m).$$

It does not depend on \mathcal{U} .

Using the evaluation homomorphism

 $\operatorname{ev}: \mathbf{Y}(\mathfrak{gl}_N) \to \mathbf{U}(\mathfrak{gl}_N), \qquad T(u) \mapsto 1 + Eu^{-1},$

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

Define the power series in u^{-1} with coefficients in $Y(\mathfrak{gl}_N)$ by

$$\mathbb{T}_{\mu}(u) = \operatorname{tr}_{1,\dots,m} \mathcal{E}_{\mathcal{U}} T_1(u+c_1)\dots T_m(u+c_m).$$

It does not depend on \mathcal{U} .

Using the evaluation homomorphism

$$\operatorname{ev}: \mathbf{Y}(\mathfrak{gl}_N) \to \mathbf{U}(\mathfrak{gl}_N), \qquad T(u) \mapsto 1 + Eu^{-1},$$

we get

$$\mathbb{S}_{\mu} = (u+c_1)\dots(u+c_m)\operatorname{ev}(\mathbb{T}_{\mu}(u))\Big|_{u=0}$$

The intersection $Y(\mathfrak{gl}_N)_0 \cap I$ is a two-sided ideal of $Y(\mathfrak{gl}_N)_0$.

The intersection $Y(\mathfrak{gl}_N)_0 \cap I$ is a two-sided ideal of $Y(\mathfrak{gl}_N)_0$.

Yangian version of the Harish-Chandra homomorphism:

$$\mathbf{Y}(\mathfrak{gl}_N)_0 \to \mathbb{C}[\lambda_i^{(r)} | i = 1, \dots, N, \ r \ge 1], \qquad t_{ii}^{(r)} \mapsto \lambda_i^{(r)}.$$

The intersection $Y(\mathfrak{gl}_N)_0 \cap I$ is a two-sided ideal of $Y(\mathfrak{gl}_N)_0$.

Yangian version of the Harish-Chandra homomorphism:

$$\mathbf{Y}(\mathfrak{gl}_N)_0 \to \mathbb{C}[\lambda_i^{(r)} | i = 1, \dots, N, \ r \ge 1], \qquad t_{ii}^{(r)} \mapsto \lambda_i^{(r)}.$$

Combine the elements $\lambda_i^{(r)}$ into the formal series

$$\lambda_i(u) = 1 + \sum_{r=1}^{\infty} \lambda_i^{(r)} u^{-r}, \qquad i = 1, \dots, N,$$

so that $t_{ii}(u) \mapsto \lambda_i(u)$.

Theorem [cf. Okounkov 1996, Nazarov 1998].

The coefficients of all series $\mathbb{T}_{\mu}(u)$ pairwise commute.

Theorem [cf. Okounkov 1996, Nazarov 1998].

The coefficients of all series $\mathbb{T}_{\mu}(u)$ pairwise commute.

The Harish-Chandra image of $\mathbb{T}_{\mu}(u)$ coincides with

the Yangian character of the evaluation module $L(\mu)$:

$$\mathbb{T}_{\mu}(u) \mapsto \sum_{\mathrm{sh}(\mathcal{T})=\mu} \prod_{\alpha \in \mu} \lambda_{\mathcal{T}(\alpha)} \big(u + c(\alpha) \big),$$

summed over semistandard tableau T of shape μ with entries in $\{1, \ldots, N\}$.

$$R(u_1,\ldots,u_m)=\prod_{1\leq a$$

$$R(u_1,\ldots,u_m)=\prod_{1\leq a$$

By the fusion procedure,

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=\frac{m!}{f_{\mu}}\,\mathcal{E}_{\mathcal{U}}.$$

$$R(u_1,\ldots,u_m)=\prod_{1\leq a$$

By the fusion procedure,

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=\frac{m!}{f_{\mu}}\,\mathcal{E}_{\mathcal{U}}.$$

A key point in the proof is the identity

 $R(u_1,\ldots,u_m)T_1(u_1)\ldots T_m(u_m)=T_m(u_m)\ldots T_1(u_1)R(u_1,\ldots,u_m),$

$$R(u_1,\ldots,u_m)=\prod_{1\leq a< b\leq m}\Big(1-\frac{P_{ab}}{u_a-u_b}\Big).$$

By the fusion procedure,

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=\frac{m!}{f_{\mu}}\,\mathcal{E}_{\mathcal{U}}.$$

A key point in the proof is the identity

 $R(u_1,\ldots,u_m)T_1(u_1)\ldots T_m(u_m)=T_m(u_m)\ldots T_1(u_1)R(u_1,\ldots,u_m),$

and its consequence implied by the fusion procedure:

$$R(u_1,\ldots,u_m)=\prod_{1\leq a< b\leq m}\Big(1-\frac{P_{ab}}{u_a-u_b}\Big).$$

By the fusion procedure,

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\cdots\big|_{u_m=c_m}=\frac{m!}{f_{\mu}}\,\mathcal{E}_{\mathcal{U}}.$$

A key point in the proof is the identity

$$R(u_1,\ldots,u_m)T_1(u_1)\ldots T_m(u_m)=T_m(u_m)\ldots T_1(u_1)R(u_1,\ldots,u_m),$$

and its consequence implied by the fusion procedure:

$$\mathcal{E}_{\mathcal{U}} T_1(u+c_1) \dots T_m(u+c_m) = T_m(u+c_m) \dots T_1(u+c_1) \mathcal{E}_{\mathcal{U}}.$$

Quantum vacuum modules

Quantum vacuum modules

The double Yangian $DY(\mathfrak{gl}_N)$ is generated by the central element *C* and elements $t_{ij}^{(r)}$ and $t_{ij}^{(-r)}$, where $1 \le i, j \le N$ and

 $r=1,2,\ldots$

Quantum vacuum modules

The double Yangian $DY(\mathfrak{gl}_N)$ is generated by the central element *C* and elements $t_{ij}^{(r)}$ and $t_{ij}^{(-r)}$, where $1 \le i, j \le N$ and $r = 1, 2, \ldots$.

The defining relations are written in terms of the series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r}$$

Quantum vacuum modules

The double Yangian $DY(\mathfrak{gl}_N)$ is generated by the central element *C* and elements $t_{ij}^{(r)}$ and $t_{ij}^{(-r)}$, where $1 \le i, j \le N$ and $r = 1, 2, \ldots$.

The defining relations are written in terms of the series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r}$$

and

$$t_{ij}^+(u) = \delta_{ij} - \sum_{r=1}^{\infty} t_{ij}^{(-r)} u^{r-1}.$$

The defining relations are

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v),$$

$$R(u - v) T_1^+(u) T_2^+(v) = T_2^+(v) T_1^+(u) R(u - v),$$

$$\overline{R}(u-v+C/2) T_1(u) T_2^+(v) = T_2^+(v) T_1(u) \overline{R}(u-v-C/2),$$

The defining relations are

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v),$$

$$R(u-v) T_1^+(u) T_2^+(v) = T_2^+(v) T_1^+(u) R(u-v),$$

$$\overline{R}(u-v+C/2) T_1(u) T_2^+(v) = T_2^+(v) T_1(u) \overline{R}(u-v-C/2),$$

where the coefficients of powers of u, v belong to

End $\mathbb{C}^N \otimes$ End $\mathbb{C}^N \otimes$ DY (\mathfrak{gl}_N)

and

$$T(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t_{ij}(u)$$
 and $T^+(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t^+_{ij}(u).$

As before, R(u) is the Yang *R*-matrix,

$$R(u)=1-P\,u^{-1}.$$

As before, R(u) is the Yang *R*-matrix,

 $R(u) = 1 - P u^{-1}.$

We also use the normalized *R*-matrix

 $\overline{R}(u) = g(u) R(u),$

As before, R(u) is the Yang *R*-matrix,

 $R(u) = 1 - P u^{-1}.$

We also use the normalized *R*-matrix

 $\overline{R}(u) = g(u) R(u),$

where

$$g(u) = 1 + \sum_{i=1}^{\infty} g_i u^{-i}, \qquad g_i \in \mathbb{C},$$

is uniquely determined by the relation

$$g(u+N) = g(u) (1 - u^{-2}).$$

The (quantum) vacuum module $\mathcal{V}_c(\mathfrak{gl}_N)$ at the level $c \in \mathbb{C}$ over the double Yangian $DY(\mathfrak{gl}_N)$ is defined as the quotient

 $\mathcal{V}_{c}(\mathfrak{gl}_{N}) = \mathrm{DY}(\mathfrak{gl}_{N})/\mathrm{DY}(\mathfrak{gl}_{N})\langle C-c, t_{ij}^{(r)} | r \geq 1 \rangle.$

The (quantum) vacuum module $\mathcal{V}_c(\mathfrak{gl}_N)$ at the level $c \in \mathbb{C}$ over the double Yangian $DY(\mathfrak{gl}_N)$ is defined as the quotient

 $\mathcal{V}_{c}(\mathfrak{gl}_{N}) = \mathrm{DY}(\mathfrak{gl}_{N})/\mathrm{DY}(\mathfrak{gl}_{N})\langle C-c, t_{ij}^{(r)} | r \geq 1 \rangle.$

On the vacuum vector $1 \in \mathcal{V}_c(\mathfrak{gl}_N)$ we have

C 1 = c 1 and $t_{ii}^{(r)} 1 = 0$ for $r \ge 1$.

The (quantum) vacuum module $\mathcal{V}_c(\mathfrak{gl}_N)$ at the level $c \in \mathbb{C}$ over the double Yangian $DY(\mathfrak{gl}_N)$ is defined as the quotient

 $\mathcal{V}_{c}(\mathfrak{gl}_{N}) = \mathrm{DY}(\mathfrak{gl}_{N})/\mathrm{DY}(\mathfrak{gl}_{N})\langle C-c, t_{ij}^{(r)} | r \geq 1 \rangle.$

On the vacuum vector $1 \in \mathcal{V}_c(\mathfrak{gl}_N)$ we have

$$C 1 = c 1$$
 and $t_{ii}^{(r)} 1 = 0$ for $r \ge 1$.

As a vector space, the vacuum module is isomorphic to the dual Yangian $Y^+(\mathfrak{gl}_N)$, which is the subalgebra of $DY(\mathfrak{gl}_N)$ generated by the elements $t_{ij}^{(-r)}$.

Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}(\mathfrak{gl}_N) \cong \mathrm{Y}^+(\mathfrak{gl}_N)$ by

the descending filtration defined by deg' $t_{ij}^{(-r)} = r$.

Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}(\mathfrak{gl}_N) \cong \mathbf{Y}^+(\mathfrak{gl}_N)$ by the descending filtration defined by deg' $t_{ij}^{(-r)} = r$.

Introduce the subspace of invariants by

$$\mathfrak{z}(\widehat{\mathcal{V}}) = \{ v \in \widehat{\mathcal{V}} \mid t_{ij}(u) \, v = \delta_{ij} v \},$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{ii}^{(r)}$ with $r \ge 1$.

Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}(\mathfrak{gl}_N) \cong \mathbf{Y}^+(\mathfrak{gl}_N)$ by the descending filtration defined by deg' $t_{ij}^{(-r)} = r$.

Introduce the subspace of invariants by

$$\mathfrak{z}(\widehat{\mathcal{V}}) = \{ v \in \widehat{\mathcal{V}} \mid t_{ij}(u) v = \delta_{ij} v \},\$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{ii}^{(r)}$ with $r \ge 1$.

Proposition. $\mathfrak{z}(\widehat{\mathcal{V}})$ is a subalgebra of the completed dual Yangian $Y^+(\mathfrak{gl}_N)$.

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

In the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \widehat{\mathcal{V}}$$

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

In the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \widehat{\mathcal{V}}$$

set

$$\mathbb{T}^+_{\mu}(u) = \operatorname{tr}_{1,\dots,m} \mathcal{E}_{\mathcal{U}} T^+_1(u+c_1) \dots T^+_m(u+c_m)$$

For a standard tableau \mathcal{U} of shape $\mu \vdash m$ with $\ell(\mu) \leq N$,

consider the sequence of contents $c_a = c_a(\mathcal{U})$ with $a = 1, \ldots, m$.

In the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \widehat{\mathcal{V}}$$

set

$$\mathbb{T}^+_{\mu}(u) = \operatorname{tr}_{1,\dots,m} \mathcal{E}_{\mathcal{U}} T^+_1(u+c_1) \dots T^+_m(u+c_m).$$

This is a power series in *u* independent of \mathcal{U} , whose coefficients are elements of the completed vacuum module $\widehat{\mathcal{V}}$.

Theorem [Jing–Kožić–M.–Yang 2018].

Theorem [Jing-Kožić-M.-Yang 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Theorem [Jing-Kožić-M.-Yang 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Corollary.

Theorem [Jing–Kožić–M.–Yang 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Corollary.

All coefficients of the series

 $\operatorname{tr}_{1,\dots,m} A^{(m)} T_1^+(u) \dots T_m^+(u-m+1), \qquad m = 1,\dots,N,$

Theorem [Jing–Kožić–M.–Yang 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Corollary.

All coefficients of the series

 $\operatorname{tr}_{1,\dots,m} A^{(m)} T_1^+(u) \dots T_m^+(u-m+1), \qquad m = 1,\dots,N,$

and

tr
$$T^+(u) \dots T^+(u-m+1), \qquad m \ge 1,$$

belong to the subalgebra $\mathfrak{z}(\widehat{\mathcal{V}})$.

$$\Phi_m(u) = \sum_{k=0}^m (-1)^k \binom{N-k}{m-k} \operatorname{tr}_{1,\dots,k} A^{(k)} T_1^+(u) \dots T_k^+(u-k+1),$$

$$\Phi_m(u) = \sum_{k=0}^m (-1)^k \binom{N-k}{m-k} \operatorname{tr}_{1,\dots,k} A^{(k)} T_1^+(u) \dots T_k^+(u-k+1),$$

and define its coefficients by

$$\Phi_m(u) = \sum_{r=0}^{\infty} \Phi_m^{(r)} u^r.$$

$$\Phi_m(u) = \sum_{k=0}^m (-1)^k \binom{N-k}{m-k} \operatorname{tr}_{1,\dots,k} A^{(k)} T_1^+(u) \dots T_k^+(u-k+1),$$

and define its coefficients by

$$\Phi_m(u) = \sum_{r=0}^{\infty} \Phi_m^{(r)} u^r.$$

Theorem. The subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$ is commutative.

$$\Phi_m(u) = \sum_{k=0}^m (-1)^k \binom{N-k}{m-k} \operatorname{tr}_{1,\dots,k} A^{(k)} T_1^+(u) \dots T_k^+(u-k+1),$$

and define its coefficients by

$$\Phi_m(u) = \sum_{r=0}^{\infty} \Phi_m^{(r)} u^r.$$

Theorem. The subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$ is commutative.

It is topologically generated by the family of elements $\Phi_m^{(r)}$ with m = 1, ..., N and r = 0, 1, ...

$$\Phi_m(u) = \sum_{k=0}^m (-1)^k \binom{N-k}{m-k} \operatorname{tr}_{1,\dots,k} A^{(k)} T_1^+(u) \dots T_k^+(u-k+1),$$

and define its coefficients by

$$\Phi_m(u) = \sum_{r=0}^{\infty} \Phi_m^{(r)} u^r.$$

Theorem. The subalgebra of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$ is commutative.

It is topologically generated by the family of elements $\Phi_m^{(r)}$ with m = 1, ..., N and r = 0, 1, ...

This family is algebraically independent.

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{gl}}_N = \mathfrak{gl}_N[t, t^{-1}] \oplus \mathbb{C}K$

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{gl}}_N = \mathfrak{gl}_N[t, t^{-1}] \oplus \mathbb{C}K$ defined by the commutation relations

$$\left[E_{ij}[r], E_{kl}[s]\right] = \delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} K\left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N}\right),$$

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{gl}}_N = \mathfrak{gl}_N[t, t^{-1}] \oplus \mathbb{C}K$ defined by the commutation relations

$$\left[E_{ij}[r], E_{kl}[s]\right] = \delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} K\left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N}\right),$$

and the element *K* is central.

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{gl}}_N = \mathfrak{gl}_N[t, t^{-1}] \oplus \mathbb{C}K$ defined by the commutation relations

$$\left[E_{ij}[r], E_{kl}[s]\right] = \delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} K\left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N}\right),$$

and the element *K* is central.

Here $X[r] = Xt^r$ for $X \in \mathfrak{gl}_N$ and any $r \in \mathbb{Z}$.

Consider the filtration on $DY(\mathfrak{gl}_N)$ defined by deg C = 0,

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$.

Consider the filtration on $DY(\mathfrak{gl}_N)$ defined by deg C = 0,

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$.

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}(\mathfrak{gl}_N)$.

Consider the filtration on $DY(\mathfrak{gl}_N)$ defined by deg C = 0,

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}(\mathfrak{gl}_N)$.

Proposition. The assignments

$$E_{ij}[r-1] \mapsto \overline{t}_{ij}^{(r)}, \qquad E_{ij}[-r] \mapsto \overline{t}_{ij}^{(-r)} \qquad \text{and} \qquad K \mapsto \overline{C}$$

with $r \ge 1$

Consider the filtration on $DY(\mathfrak{gl}_N)$ defined by deg C = 0,

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}(\mathfrak{gl}_N)$.

Proposition. The assignments

$$E_{ij}[r-1] \mapsto \overline{t}_{ij}^{(r)}, \qquad E_{ij}[-r] \mapsto \overline{t}_{ij}^{(-r)} \qquad ext{and} \qquad K \mapsto \overline{C}$$

with $r \ge 1$ define an algebra isomorphism

 $\mathrm{U}(\widehat{\mathfrak{gl}}_N) \to \operatorname{gr}\mathrm{DY}(\mathfrak{gl}_N).$

By the proposition, $\operatorname{gr} Y^+(\mathfrak{gl}_N) \cong U(t^{-1}\mathfrak{gl}_N[t^{-1}])$ so that $\widehat{\mathcal{V}}$ is a

quantization of the vacuum module at the critical level over $\widehat{\mathfrak{gl}}_N$:

By the proposition, $\operatorname{gr} \mathbf{Y}^+(\mathfrak{gl}_N) \cong \mathbf{U}(t^{-1}\mathfrak{gl}_N[t^{-1}])$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{gl}}_N$:

 $V = \mathrm{U}(\widehat{\mathfrak{gl}}_N)/\mathrm{U}(\widehat{\mathfrak{gl}}_N) \big\langle \mathfrak{gl}_N[t] + \mathbb{C}(K+N) \big\rangle.$

By the proposition, $\operatorname{gr} Y^+(\mathfrak{gl}_N) \cong U(t^{-1}\mathfrak{gl}_N[t^{-1}])$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{gl}}_N$:

$$V = \mathrm{U}(\widehat{\mathfrak{gl}}_N)/\mathrm{U}(\widehat{\mathfrak{gl}}_N) \big\langle \mathfrak{gl}_N[t] + \mathbb{C}(K+N) \big\rangle.$$

Then $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$:

By the proposition, $\operatorname{gr} Y^+(\mathfrak{gl}_N) \cong U(t^{-1}\mathfrak{gl}_N[t^{-1}])$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{gl}}_N$:

$$V = \mathrm{U}(\widehat{\mathfrak{gl}}_N)/\mathrm{U}(\widehat{\mathfrak{gl}}_N) \big\langle \mathfrak{gl}_N[t] + \mathbb{C}(K+N) \big\rangle.$$

Then $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$:

$$\mathfrak{z}(\widehat{\mathfrak{gl}}_N) = \{ v \in V \mid \mathfrak{gl}_N[t] v = 0 \}.$$

By the proposition, $\operatorname{gr} Y^+(\mathfrak{gl}_N) \cong U(t^{-1}\mathfrak{gl}_N[t^{-1}])$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{gl}}_N$:

$$V = \mathrm{U}(\widehat{\mathfrak{gl}}_N)/\mathrm{U}(\widehat{\mathfrak{gl}}_N) \big\langle \mathfrak{gl}_N[t] + \mathbb{C}(K+N) \big\rangle.$$

Then $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$:

$$\mathfrak{z}(\widehat{\mathfrak{gl}}_N) = \{ v \in V \mid \mathfrak{gl}_N[t] v = 0 \}.$$

Any element of $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$ is called a Segal–Sugawara vector.

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]].$

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]]$. The element

$$\operatorname{tr}_{1,...,m} A^{(m)} (1 - T_1^+(u) e^{-\partial_u}) \dots (1 - T_m^+(u) e^{-\partial_u})$$

has degree -m

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]]$. The element

$$\operatorname{tr}_{1,...,m} A^{(m)} (1 - T_1^+(u) e^{-\partial_u}) \dots (1 - T_m^+(u) e^{-\partial_u})$$

has degree -m and its symbol coincides with

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]]$. The element

$$\operatorname{tr}_{1,...,m} A^{(m)} (1 - T_1^+(u) e^{-\partial_u}) \dots (1 - T_m^+(u) e^{-\partial_u})$$

has degree -m and its symbol coincides with

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

where

$$E(u)_{+} = \sum_{r=1}^{\infty} E[-r]u^{r-1}.$$

 ∞

By taking the coefficients of u^0 in

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

By taking the coefficients of u^0 in

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}\big(\partial_{u}+E(u)_{+1}\big)\ldots\big(\partial_{u}+E(u)_{+m}\big),$$

we get the differential operator in $\tau = -\partial_t$:

$$tr_{1,...,m}A^{(m)}(\tau + E[-1]_1)\dots(\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$.

By taking the coefficients of u^0 in

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

we get the differential operator in $\tau = -\partial_t$:

$$\operatorname{tr}_{1,\dots,m} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm}.$$

Corollary.

All elements ϕ_{ma} are Segal–Sugawara vectors.

Example. m = N.

Example. m = N.

Consider the $N \times N$ matrix $\tau + E[-1]$ given by

$$\tau + E[-1] = \begin{bmatrix} \tau + E_{11}[-1] & E_{12}[-1] & \dots & E_{1N}[-1] \\ E_{21}[-1] & \tau + E_{22}[-1] & \dots & E_{2N}[-1] \\ \vdots & \vdots & \ddots & \vdots \\ E_{N1}[-1] & E_{N2}[-1] & \dots & \tau + E_{NN}[-1] \end{bmatrix}.$$

The coefficients ϕ_1, \ldots, ϕ_N of the polynomial

$$\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$$

form a complete set of Segal-Sugawara vectors.

The coefficients ϕ_1, \ldots, ϕ_N of the polynomial

 $\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$

form a complete set of Segal-Sugawara vectors.

That is, the elements $(\partial_t)^r \phi_a$ with $r \ge 0$ and a = 1, ..., N are algebraically independent generators of the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$. [Chervov–Talalaev 2006, Chervov–M. 2009].