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Plan

I Quantum immanants Sµ form a basis of the center of

U(glN) [Okounkov 1996, Okounkov and Olshanski 1997].

I Coefficients of the power series Tµ(u) generate a Bethe

subalgebra of the Yangian Y(glN) [Nazarov 1998].

I The dual series T+
µ (u) are invariants of the quantum

vacuum module [Jing, Kožić, M. and Yang 2018].

I Taking quasi-classical limits we get Sugawara operators –

Casimir elements for ĝlN at the critical level.
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Young diagrams and tableaux

A partition or Young diagram µ of length ` = `(µ) is a weakly

decreasing sequence µ = (µ1, . . . , µ`) of integers

such that µ1 > · · · > µ` > 0.

If µ1 + · · ·+ µ` = m, then µ is a partition of m: µ ` m.

The figure illustrates the diagram of the partition (5, 4, 4, 2) of

15, its length is 4:
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A tableau U of shape µ ` m is obtained by filling in the boxes of

the diagram with the numbers in a given set.

A tableau U with entries in {1, . . . ,m} which are filled in the

boxes bijectively is called standard if its entries strictly increase

along the rows and down the columns.

The following is a standard tableau of shape (4, 4, 1):

1 3 4 5
2 6 7 9
8
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The irreducible representations of the symmetric group Sm over

C are parameterized by partitions of m. Given µ ` m denote the

corresponding irreducible representation of Sm by Vµ.

The vector space Vµ admits an orthonormal Young basis

parameterized by the set of standard µ-tableaux U .

The group algebra C [Sm] is isomorphic to the direct sum

C [Sm] ∼=
⊕
µ`m

Mat fµ(C),

fµ = dim Vµ is the number of standard tableaux of shape µ.
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The diagonal matrix units eU = eU U ∈ Mat fµ(C) are primitive

idempotents of C [Sm]. We have C [Sm] eU ∼= Vµ so that explicit

formulas for eU ∈ C [Sm] provide realizations of Vµ.

The Jucys–Murphy elements x1, . . . , xm ∈ C [Sm] are defined by

xa = (1 a) + · · ·+ (a− 1 a) for a = 2, . . . ,m

and x1 = 0. We have

xa eU = eU xa = ca(U) eU , a = 1, . . . ,m,

ca(U) = j− i is the content of the box (i, j) ∈ µ occupied by a.
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Denote by V the standard tableau obtained from U by removing

the box α occupied by m. Then the shape of V is a diagram

which we denote by ν.

Jucys–Murphy formula [Jucys 1971, Murphy 1981]:

eU = eV
(xm − a1) . . . (xm − al)

(c− a1) . . . (c− al)
= eV

u− c
u− xm

∣∣∣
u=c

,

where a1, . . . , al are the contents of all addable boxes of ν

except for α, while c is the content of the latter.
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Example. Take µ = (22) and let U be

1 2
3 4 .

Then V is
1 2
3

with c = c4(U) = 0 and ν = (2, 1).

Hence

eU = eV
(x4 − 2)(x4 + 2)

(−2)2
, x4 = (1 4) + (2 4) + (3 4).
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Fusion procedure

Take m variables u1, . . . , um and consider the rational function

φ(u1, . . . , um) =
∏

16a<b6m

(
1− (a b)

ua − ub

)
,

the product is taken in the lexicographical order.

Suppose that µ ` m and let U be a standard µ-tableau. Set

ca = ca(U) for a = 1, . . . ,m. We have [Jucys 1966]:

φ(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

=
m!

fµ
eU .
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Schur–Weyl duality

The symmetric group Sm acts by permuting the tensor factors

in the tensor product space

(CN)⊗m = CN ⊗ CN ⊗ . . .⊗ CN︸ ︷︷ ︸
m

.

Denote by EU the image of eU under this action.

If `(µ) 6 N then EU (CN)⊗m ∼= L(µ) is an irreducible glN-module

with the highest weight µ = (µ1, . . . , µ`, 0, . . . , 0). Moreover,

(CN)⊗m ∼=
⊕

µ`m, `(µ)6N

Vµ ⊗ L(µ).
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Introduce the matrix

E =

N∑
i,j=1

eij ⊗ Eij ∈ EndCN ⊗ U(glN).

For a = 1, . . . ,m let Ea be the element of the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U(glN)

defined by

Ea =

N∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Eij.
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Quantum immanants

Given a standard tableau U of shape µ ` m with `(µ) 6 N,

consider the sequence of contents ca = ca(U) with a = 1, . . . ,m.

The quantum immanant is defined by

Sµ = tr1,...,m EU (E1 + c1) . . . (Em + cm).

The element Sµ does not depend on U .
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Theorem [Okounkov 1996, Okounkov and Olshanski 1997].

The quantum immanants Sµ with `(µ) 6 N form a basis of the

center of U(glN).

The eigenvalue of Sµ in the highest weight module L(λ) with

λ = (λ1, . . . , λN) (the Harish-Chandra image)

is the factorial Schur polynomial,

s∗µ(λ) =
∑

sh(T )=µ

∏
α∈µ

(
λT (α) + c(α)

)
,

summed over semistandard tableaux T of shape µ with entries

in {1, . . . ,N}.
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Example. Take µ = (1m). The contents of the only standard

tableau U are given by ca = −a + 1 for a = 1, . . . ,m.

We have EU = A(m) is the anti-symmetrizer in (CN)⊗m, the

quantum minors

tr1,...,m A(m) E1(E2 − 1) . . . (Em − m + 1)

are obtained as coefficients of the Capelli determinant

C(u) = cdet


u + E11 E12 . . . E1N

...
...

...

EN1 EN2 . . . u + ENN − N + 1

 .
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Bethe subalgebras in Yangian

The Yangian Y(glN) is a unital associative algebra with

generators t(r)ij , where 1 6 i, j 6 N and r = 1, 2, . . . and the

defining relations

[t(r+1)
ij , t(s)kl ]− [t(r)ij , t

(s+1)
kl ] = t(r)kj t(s)il − t(s)kj t(r)il ,

where r, s = 0, 1, . . . and t(0)ij = δij.
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In terms of the formal series

tij(u) = δij +

∞∑
r=1

t(r)ij u−r ∈ Y(glN)[[u−1]]

the defining relations are written in the form

(u− v) [tij(u), tkl(v)] = tkj(u) til(v)− tkj(v) til(u).

Set

T(u) =

N∑
i,j=1

eij ⊗ tij(u) ∈ EndCN ⊗ Y(glN)[[u−1]]

and use the notation Ta(u) with a = 1, . . . ,m for formal series in

u−1 with coefficients in the tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ Y(glN).
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The defining relations for the algebra Y(glN) can be written in

the matrix form as

R(u− v) T1(u) T2(v) = T2(v) T1(u) R(u− v),

where

R(u) = 1− P u−1

is the Yang R-matrix,

P : CN ⊗ CN → CN ⊗ CN

is the permutation operator.
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Given a standard tableau U of shape µ ` m with `(µ) 6 N,

consider the sequence of contents ca = ca(U) with a = 1, . . . ,m.

Define the power series in u−1 with coefficients in Y(glN) by

Tµ(u) = tr1,...,m EU T1(u + c1) . . . Tm(u + cm).

It does not depend on U .

Using the evaluation homomorphism

ev : Y(glN)→ U(glN), T(u) 7→ 1 + Eu−1,

we get

Sµ = (u + c1) . . . (u + cm) ev
(
Tµ(u)

)∣∣∣
u=0

.
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Consider the left ideal I of the algebra Y(glN) generated by all

coefficients of tij(u) with 1 6 i < j 6 N.

The intersection Y(glN)0 ∩ I is a two-sided ideal of Y(glN)0.

Yangian version of the Harish-Chandra homomorphism:

Y(glN)0 → C [λ
(r)
i | i = 1, . . . ,N, r > 1], t(r)ii 7→ λ

(r)
i .

Combine the elements λ(r)i into the formal series

λi(u) = 1 +

∞∑
r=1

λ
(r)
i u−r, i = 1, . . . ,N,

so that tii(u) 7→ λi(u).
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Theorem [cf. Okounkov 1996, Nazarov 1998].

The coefficients of all series Tµ(u) pairwise commute.

The Harish-Chandra image of Tµ(u) coincides with

the Yangian character of the evaluation module L(µ):

Tµ(u) 7→
∑

sh(T )=µ

∏
α∈µ

λT (α)
(
u + c(α)

)
,

summed over semistandard tableau T of shape µ with entries

in {1, . . . ,N}.
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Introduce the rational function in variables u1, . . . , um by

R(u1, . . . , um) =
∏

16a<b6m

(
1− Pab

ua − ub

)
.

By the fusion procedure,

R(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

=
m!

fµ
EU .

A key point in the proof is the identity

R(u1, . . . , um)T1(u1) . . . Tm(um) = Tm(um) . . . T1(u1)R(u1, . . . , um),

and its consequence implied by the fusion procedure:

EU T1(u + c1) . . . Tm(u + cm) = Tm(u + cm) . . . T1(u + c1) EU .



21

Introduce the rational function in variables u1, . . . , um by

R(u1, . . . , um) =
∏

16a<b6m

(
1− Pab

ua − ub

)
.

By the fusion procedure,

R(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

=
m!

fµ
EU .

A key point in the proof is the identity

R(u1, . . . , um)T1(u1) . . . Tm(um) = Tm(um) . . . T1(u1)R(u1, . . . , um),

and its consequence implied by the fusion procedure:

EU T1(u + c1) . . . Tm(u + cm) = Tm(u + cm) . . . T1(u + c1) EU .



21

Introduce the rational function in variables u1, . . . , um by

R(u1, . . . , um) =
∏

16a<b6m

(
1− Pab

ua − ub

)
.

By the fusion procedure,

R(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

=
m!

fµ
EU .

A key point in the proof is the identity

R(u1, . . . , um)T1(u1) . . . Tm(um) = Tm(um) . . . T1(u1)R(u1, . . . , um),

and its consequence implied by the fusion procedure:

EU T1(u + c1) . . . Tm(u + cm) = Tm(u + cm) . . . T1(u + c1) EU .



21

Introduce the rational function in variables u1, . . . , um by

R(u1, . . . , um) =
∏

16a<b6m

(
1− Pab

ua − ub

)
.

By the fusion procedure,

R(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

=
m!

fµ
EU .

A key point in the proof is the identity

R(u1, . . . , um)T1(u1) . . . Tm(um) = Tm(um) . . . T1(u1)R(u1, . . . , um),

and its consequence implied by the fusion procedure:

EU T1(u + c1) . . . Tm(u + cm) = Tm(u + cm) . . . T1(u + c1) EU .



21

Introduce the rational function in variables u1, . . . , um by

R(u1, . . . , um) =
∏

16a<b6m

(
1− Pab

ua − ub

)
.

By the fusion procedure,

R(u1, . . . , um)
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
um=cm

=
m!

fµ
EU .

A key point in the proof is the identity

R(u1, . . . , um)T1(u1) . . . Tm(um) = Tm(um) . . . T1(u1)R(u1, . . . , um),

and its consequence implied by the fusion procedure:

EU T1(u + c1) . . . Tm(u + cm) = Tm(u + cm) . . . T1(u + c1) EU .



22

Quantum vacuum modules

The double Yangian DY(glN) is generated by the central

element C and elements t(r)ij and t(−r)
ij , where 1 6 i, j 6 N and

r = 1, 2, . . . .

The defining relations are written in terms of the series

tij(u) = δij +
∞∑

r=1

t(r)ij u−r

and

t+ij (u) = δij −
∞∑

r=1

t(−r)
ij ur−1.
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The defining relations are

R(u− v) T1(u) T2(v) = T2(v) T1(u) R(u− v),

R(u− v) T+
1 (u) T+

2 (v) = T+
2 (v) T+

1 (u) R(u− v),

R
(
u− v + C/2

)
T1(u) T+

2 (v) = T+
2 (v) T1(u) R

(
u− v− C/2

)
,

where the coefficients of powers of u, v belong to

EndCN ⊗ EndCN ⊗ DY(glN)

and

T(u) =

N∑
i,j=1

eij ⊗ tij(u) and T+(u) =

N∑
i,j=1

eij ⊗ t+ij (u).
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As before, R(u) is the Yang R-matrix,

R(u) = 1− P u−1.

We also use the normalized R-matrix

R(u) = g(u) R(u),

where

g(u) = 1 +

∞∑
i=1

gi u−i, gi ∈ C ,

is uniquely determined by the relation

g(u + N) = g(u) (1− u−2).
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The (quantum) vacuum module Vc(glN) at the level c ∈ C

over the double Yangian DY(glN) is defined as the quotient

Vc(glN) = DY(glN)/DY(glN)〈C − c, t (r)ij | r > 1〉.

On the vacuum vector 1 ∈ Vc(glN) we have

C 1 = c 1 and t (r)ij 1 = 0 for r > 1.

As a vector space, the vacuum module is isomorphic to the

dual Yangian Y+(glN), which is the subalgebra of DY(glN)

generated by the elements t(−r)
ij .
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Assume the level is critical, c = −N.

Let V̂ denote the completion of V−N(glN) ∼= Y+(glN) by

the descending filtration defined by deg′ t(−r)
ij = r.

Introduce the subspace of invariants by

z(V̂) = {v ∈ V̂ | tij(u)v = δij v},

so that any element of z(V̂) is annihilated by all t (r)ij with r > 1.

Proposition. z(V̂) is a subalgebra of the completed dual

Yangian Y+(glN).
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Construction of invariants

For a standard tableau U of shape µ ` m with `(µ) 6 N,

consider the sequence of contents ca = ca(U) with a = 1, . . . ,m.

In the tensor product algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ V̂

set

T+
µ (u) = tr1,...,m EU T+

1 (u + c1) . . . T+
m (u + cm).

This is a power series in u independent of U , whose coefficients

are elements of the completed vacuum module V̂.
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Theorem [Jing–Kožić–M.–Yang 2018].

All coefficients of the series T+
µ (u) belong to the subalgebra of

invariants z(V̂).

Corollary.

All coefficients of the series

tr1,...,m A(m) T+
1 (u) . . . T+

m (u− m + 1), m = 1, . . . ,N,

and

tr T+(u) . . . T+(u− m + 1), m > 1,

belong to the subalgebra z(V̂).
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Introduce the series

Φm(u) =

m∑
k=0

(−1)k
(

N − k
m− k

)
tr1,...,k A(k) T+

1 (u) . . . T+
k (u− k + 1),

and define its coefficients by

Φm(u) =
∞∑

r=0

Φ
(r)
m ur.

Theorem. The subalgebra of invariants z(V̂) is commutative.

It is topologically generated by the family of elements

Φ
(r)
m with m = 1, . . . ,N and r = 0, 1, . . . .

This family is algebraically independent.
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Segal–Sugawara vectors from the invariants

Consider the affine Kac–Moody algebra ĝlN = glN [t, t−1]⊕ CK

defined by the commutation relations

[
Eij[r],Ekl[s ]

]
= δkj Ei l[r+s ]−δi l Ekj[r+s ]+rδr,−s K

(
δkj δi l−

δij δkl

N

)
,

and the element K is central.

Here X[r] = X tr for X ∈ glN and any r ∈ Z .
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Consider the filtration on DY(glN) defined by deg C = 0,

deg t(r)ij = r − 1 and deg t(−r)
ij = −r.

Use the bar notation for the images of the generators in the

associated graded algebra gr DY(glN).

Proposition. The assignments

Eij[r − 1] 7→ t̄ (r)ij , Eij[−r] 7→ t̄ (−r)
ij and K 7→ C

with r > 1 define an algebra isomorphism

U(ĝlN)→ gr DY(glN).



31

Consider the filtration on DY(glN) defined by deg C = 0,

deg t(r)ij = r − 1 and deg t(−r)
ij = −r.

Use the bar notation for the images of the generators in the

associated graded algebra gr DY(glN).

Proposition. The assignments

Eij[r − 1] 7→ t̄ (r)ij , Eij[−r] 7→ t̄ (−r)
ij and K 7→ C

with r > 1 define an algebra isomorphism
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By the proposition, gr Y+(glN) ∼= U
(
t−1glN [t−1]

)
so that V̂ is a

quantization of the vacuum module at the critical level over ĝlN :

V = U(ĝlN)/U(ĝlN)
〈
glN [t] + C(K + N)

〉
.

Then z(V̂) is a quantization of the Feigin–Frenkel center z(ĝlN):

z(ĝlN) = {v ∈ V | glN [t]v = 0}.

Any element of z(ĝlN) is called a Segal–Sugawara vector.
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〈
glN [t] + C(K + N)

〉
.

Then z(V̂) is a quantization of the Feigin–Frenkel center z(ĝlN):
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V = U(ĝlN)/U(ĝlN)
〈
glN [t] + C(K + N)

〉
.

Then z(V̂) is a quantization of the Feigin–Frenkel center z(ĝlN):
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Extend the filtration on the dual Yangian to the algebra

Y+(glN)[[u, ∂u]] by deg u = 1 and deg ∂u = −1.

The associated graded is isomorphic to U
(
t−1glN [t−1]

)
[[u, ∂u]].

The element

tr1,...,m A(m)
(
1− T+

1 (u)e−∂u
)
. . .
(
1− T+

m (u)e−∂u
)

has degree −m and its symbol coincides with

tr1,...,m A(m)
(
∂u + E(u)+ 1

)
. . .
(
∂u + E(u)+m

)
,

where

E(u)+ =
∞∑

r=1

E[−r]ur−1.
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By taking the coefficients of u0 in

tr1,...,m A(m)
(
∂u + E(u)+ 1

)
. . .
(
∂u + E(u)+m

)
,

we get the differential operator in τ = −∂t:

tr1,...,m A(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= φm 0 τ

m + φm 1 τ
m−1 + · · ·+ φmm.

Corollary.

All elements φma are Segal–Sugawara vectors.
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Example. m = N.

Consider the N × N matrix τ + E[−1] given by

τ + E[−1] =



τ + E11[−1] E12[−1] . . . E1N [−1]

E21[−1] τ + E22[−1] . . . E2N [−1]

...
...

. . .
...

EN1[−1] EN2[−1] . . . τ + ENN [−1]


.
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The coefficients φ1, . . . , φN of the polynomial

cdet
(
τ + E[−1]

)
= τN + φ1 τ

N−1 + · · ·+ φN−1 τ + φN

form a complete set of Segal–Sugawara vectors.

That is, the elements (∂t)
rφa with r > 0 and a = 1, . . . ,N are

algebraically independent generators of the Feigin–Frenkel

center z(ĝlN). [Chervov–Talalaev 2006, Chervov–M. 2009].
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