Casimir elements for classical Lie algebras and affine Kac-Moody algebras

Alexander Molev

University of Sydney

Plan of lectures

Plan of lectures

- Casimir elements for the classical Lie algebras from the Schur-Weyl duality.

Plan of lectures

- Casimir elements for the classical Lie algebras from
the Schur-Weyl duality.
- Affine Kac-Moody algebras: center at the critical level.

Plan of lectures

- Casimir elements for the classical Lie algebras from the Schur-Weyl duality.
- Affine Kac-Moody algebras: center at the critical level.
- Affine Harish-Chandra isomorphism and classical \mathcal{W}-algebras.

Symmetric group \mathfrak{S}_{m}

Let \mathfrak{S}_{m} denote the group of permutations of the set $\{1, \ldots, m\}$.

Symmetric group \mathfrak{S}_{m}

Let \mathfrak{S}_{m} denote the group of permutations of the set $\{1, \ldots, m\}$.
Let $s_{a b}$ denote the transposition (a, b) for $a<b$.

Symmetric group \mathfrak{S}_{m}

Let \mathfrak{S}_{m} denote the group of permutations of the set $\{1, \ldots, m\}$.
Let $s_{a b}$ denote the transposition (a, b) for $a<b$.

The symmetrizer is the element

$$
h^{(m)}=\frac{1}{m!} \sum_{s \in \mathfrak{S}_{m}} s \in \mathbb{C}\left[\mathfrak{S}_{m}\right] .
$$

Symmetric group \mathfrak{S}_{m}

Let \mathfrak{S}_{m} denote the group of permutations of the set $\{1, \ldots, m\}$.
Let $s_{a b}$ denote the transposition (a, b) for $a<b$.

The symmetrizer is the element

$$
h^{(m)}=\frac{1}{m!} \sum_{s \in \mathfrak{S}_{m}} s \in \mathbb{C}\left[\mathfrak{S}_{m}\right] .
$$

The anti-symmetrizer is the element

$$
a^{(m)}=\frac{1}{m!} \sum_{s \in \mathfrak{S}_{m}} \operatorname{sgn} s \cdot s \in \mathbb{C}\left[\mathfrak{S}_{m}\right]
$$

Fusion formulas

Fusion formulas

Theorem [Jucys 1966].
The following factorization formulas hold:

$$
h^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{s_{a b}}{b-a}\right),
$$

Fusion formulas

Theorem [Jucys 1966].

The following factorization formulas hold:

$$
\begin{aligned}
& h^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{s_{a b}}{b-a}\right), \\
& a^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{s_{a b}}{b-a}\right),
\end{aligned}
$$

Fusion formulas

Theorem [Jucys 1966].

The following factorization formulas hold:

$$
\begin{aligned}
h^{(m)} & =\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{s_{a b}}{b-a}\right) \\
a^{(m)} & =\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{s_{a b}}{b-a}\right)
\end{aligned}
$$

where both products are taken in the lexicographical order on the set of pairs (a, b).

Action of \mathfrak{S}_{m} in tensors

Action of \mathfrak{S}_{m} in tensors

The symmetric group \mathfrak{S}_{m} acts in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

Action of \mathfrak{S}_{m} in tensors

The symmetric group \mathfrak{S}_{m} acts in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

where $P_{a b}$ is the permutation operator

$$
P_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{j i} \otimes 1^{\otimes(m-b)}
$$

Action of \mathfrak{S}_{m} in tensors

The symmetric group \mathfrak{S}_{m} acts in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

where $P_{a b}$ is the permutation operator

$$
P_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{j i} \otimes 1^{\otimes(m-b)}
$$

and $e_{i j} \in \operatorname{End} \mathbb{C}^{N}$ are the matrix units.

The symmetrizer and anti-symmetrizer act as the operators

$$
H^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}\right)
$$

The symmetrizer and anti-symmetrizer act as the operators

$$
H^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}\right)
$$

and

$$
A^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}\right)
$$

The symmetrizer and anti-symmetrizer act as the operators

$$
H^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}\right)
$$

and

$$
A^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}\right)
$$

which we regard as elements of the algebra

Lie algebra $\mathfrak{g l}_{N}$

Lie algebra $\mathfrak{g l}_{N}$

We let $E_{i j}$ be the standard basis elements of $\mathfrak{g l}_{N}$.

Lie algebra $\mathfrak{g l}_{N}$

We let $E_{i j}$ be the standard basis elements of $\mathfrak{g l}_{N}$.

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is the associative algebra generated by the N^{2} elements $E_{i j}$ subject to the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k l} .
$$

Lie algebra $\mathfrak{g l}_{N}$

We let $E_{i j}$ be the standard basis elements of $\mathfrak{g l}_{N}$.

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is the associative algebra generated by the N^{2} elements $E_{i j}$ subject to the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k l} .
$$

We will combine the generators into the matrix $E=\left[E_{i j}\right]$ which will also be regarded as the element

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Consider the algebra

Consider the algebra

and for $a=1, \ldots, m$ introduce its elements by

$$
E_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes E_{i j}
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

and for $a=1, \ldots, m$ introduce its elements by

$$
E_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes E_{i j}
$$

Note the property $P_{a b} E_{a}=E_{b} P_{a b}$.

Consider the algebra

$$
\underbrace{\text { End } \mathbb{C}^{N} \otimes \ldots \otimes \text { End } \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

and for $a=1, \ldots, m$ introduce its elements by

$$
E_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes E_{i j}
$$

Note the property $P_{a b} E_{a}=E_{b} P_{a b}$.

Key Lemma. The defining relations of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ are equivalent to the single relation

$$
E_{1} E_{2}-E_{2} E_{1}=\left(E_{1}-E_{2}\right) P_{12}
$$

The trace is the linear map End $\mathbb{C}^{N} \rightarrow \mathbb{C}$ defined by $\operatorname{tr}: e_{i j} \mapsto \delta_{i j}$.

The trace is the linear map End $\mathbb{C}^{N} \rightarrow \mathbb{C}$ defined by $\operatorname{tr}: e_{i j} \mapsto \delta_{i j}$.

The partial trace tr_{a} acts on the a-th copy of End \mathbb{C}^{N} in

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

The trace is the linear map End $\mathbb{C}^{N} \rightarrow \mathbb{C}$ defined by $\operatorname{tr}: e_{i j} \mapsto \delta_{i j}$.

The partial trace tr_{a} acts on the a-th copy of $E n d \mathbb{C}^{N}$ in

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right) .
$$

Theorem. For any $s \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}$ the element

$$
\operatorname{tr}_{1, \ldots, m} S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right)
$$

belongs to the center $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

Proof. Consider the tensor product

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

with the copies of the algebra End \mathbb{C}^{N} labelled by $0,1, \ldots, m$.

Proof. Consider the tensor product

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

with the copies of the algebra End \mathbb{C}^{N} labelled by $0,1, \ldots, m$.
We will show that

$$
\left[E_{0}, \operatorname{tr}_{1, \ldots, m} S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right)\right]=0 .
$$

Proof. Consider the tensor product

$$
\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

with the copies of the algebra End \mathbb{C}^{N} labelled by $0,1, \ldots, m$.
We will show that

$$
\left[E_{0}, \operatorname{tr}_{1, \ldots, m} S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right)\right]=0
$$

By the Key Lemma,

$$
\left[E_{0}, u_{a}+E_{a}\right]=P_{0 a}\left(u_{a}+E_{a}\right)-\left(u_{a}+E_{a}\right) P_{0 a}
$$

where we used the relations $P_{a b} E_{b}=E_{a} P_{a b}$.

Hence

$$
\begin{aligned}
& {\left[E_{0}, S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right)\right]} \\
& \qquad \begin{array}{l}
=S \sum_{a=1}^{m} P_{0 a}\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right) \\
\\
\quad-S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right) \sum_{a=1}^{m} P_{0 a}
\end{array}
\end{aligned}
$$

because $E_{0} S=S E_{0}$ and $P_{0 a}$ commutes with E_{b} for $b \neq a$.

Hence

$$
\begin{aligned}
& {\left[E_{0}, S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right)\right]} \\
& \qquad \begin{array}{l}
=S \sum_{a=1}^{m} P_{0 a}\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right) \\
\\
\quad-S\left(u_{1}+E_{1}\right) \ldots\left(u_{m}+E_{m}\right) \sum_{a=1}^{m} P_{0 a}
\end{array}
\end{aligned}
$$

because $E_{0} S=S E_{0}$ and $P_{0 a}$ commutes with E_{b} for $b \neq a$.

The sum of the permutation operators $P_{0 a}$ commutes with S
(the Schur-Weyl duality). Applying the trace $\operatorname{tr}_{1, \ldots, m}$ and using its cyclic property we get 0 .

Example: Capelli determinant.

Example: Capelli determinant.

Take $m=N$ and introduce the Capelli determinant by

$$
C(u)=\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N}-N+1\right)
$$

Example: Capelli determinant.

Take $m=N$ and introduce the Capelli determinant by

$$
C(u)=\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N}-N+1\right)
$$

Then $C(u)$ coincides with the column-determinant

$$
C(u)=\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 N} \\
E_{21} & u+E_{22}-1 & \ldots & E_{2 N} \\
\vdots & \vdots & & \vdots \\
E_{N 1} & E_{N 2} & \ldots & u+E_{N N}-N+1
\end{array}\right]
$$

Example: Capelli determinant.

Take $m=N$ and introduce the Capelli determinant by

$$
C(u)=\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N}-N+1\right)
$$

Then $C(u)$ coincides with the column-determinant

$$
C(u)=\operatorname{cdet}\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 N} \\
E_{21} & u+E_{22}-1 & \ldots & E_{2 N} \\
\vdots & \vdots & & \vdots \\
E_{N 1} & E_{N 2} & \ldots & u+E_{N N}-N+1
\end{array}\right]
$$

All coefficients of the polynomial $C(u)$ are Casimir elements.

Indeed, observe that by the Key Lemma

$$
\begin{aligned}
\left(1-\frac{P_{a b}}{b-a}\right) & \left(u+E_{a}-a+1\right)\left(u+E_{b}-b+1\right) \\
& =\left(u+E_{b}-b+1\right)\left(u+E_{a}-a+1\right)\left(1-\frac{P_{a b}}{b-a}\right)
\end{aligned}
$$

Indeed, observe that by the Key Lemma

$$
\begin{aligned}
\left(1-\frac{P_{a b}}{b-a}\right) & \left(u+E_{a}-a+1\right)\left(u+E_{b}-b+1\right) \\
& =\left(u+E_{b}-b+1\right)\left(u+E_{a}-a+1\right)\left(1-\frac{P_{a b}}{b-a}\right) .
\end{aligned}
$$

Hence, the fusion formula for $A^{(N)}$ gives

$$
A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N}-N+1\right)=\left(u+E_{N}-N+1\right) \ldots\left(u+E_{1}\right) A^{(N)}
$$

Indeed, observe that by the Key Lemma

$$
\begin{aligned}
\left(1-\frac{P_{a b}}{b-a}\right) & \left(u+E_{a}-a+1\right)\left(u+E_{b}-b+1\right) \\
& =\left(u+E_{b}-b+1\right)\left(u+E_{a}-a+1\right)\left(1-\frac{P_{a b}}{b-a}\right)
\end{aligned}
$$

Hence, the fusion formula for $A^{(N)}$ gives
$A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N}-N+1\right)=\left(u+E_{N}-N+1\right) \ldots\left(u+E_{1}\right) A^{(N)}$
and that this equals $A^{(N)} C(u)$.

Indeed, observe that by the Key Lemma

$$
\begin{aligned}
\left(1-\frac{P_{a b}}{b-a}\right) & \left(u+E_{a}-a+1\right)\left(u+E_{b}-b+1\right) \\
& =\left(u+E_{b}-b+1\right)\left(u+E_{a}-a+1\right)\left(1-\frac{P_{a b}}{b-a}\right)
\end{aligned}
$$

Hence, the fusion formula for $A^{(N)}$ gives
$A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N}-N+1\right)=\left(u+E_{N}-N+1\right) \ldots\left(u+E_{1}\right) A^{(N)}$
and that this equals $A^{(N)} C(u)$.

It remains to note that $\operatorname{tr}_{1, \ldots, N} A^{(N)}=1$.

Example: Gelfand invariants.

Example: Gelfand invariants.
Take $s=(m m-1 \ldots 1)$ in the Theorem. Then

$$
S=P_{m-1 m} \ldots P_{23} P_{12}
$$

Example: Gelfand invariants.
Take $s=(m m-1 \ldots 1)$ in the Theorem. Then

$$
S=P_{m-1 m} \ldots P_{23} P_{12}
$$

We get the Casimir elements (Gelfand invariants):

$$
\operatorname{tr}_{1, \ldots, m} S E_{1} \ldots E_{m}=\operatorname{tr} E^{m}
$$

Example: Gelfand invariants.

Take $s=(m m-1 \ldots 1)$ in the Theorem. Then

$$
S=P_{m-1 m} \ldots P_{23} P_{12} .
$$

We get the Casimir elements (Gelfand invariants):

$$
\operatorname{tr}_{1, \ldots, m} S E_{1} \ldots E_{m}=\operatorname{tr} E^{m}
$$

For instance, for $m=2$ we get

$$
\operatorname{tr}_{1,2} P_{12} E_{1} E_{2}=\operatorname{tr}_{1,2} E_{2} P_{12} E_{2}=\operatorname{tr} E^{2}
$$

because $\operatorname{tr}_{1} P_{12}=1$.

The Newton identity

Theorem [Perelomov-Popov, 1966].
We have the identity

$$
1+\sum_{m=0}^{\infty} \frac{(-1)^{m} \operatorname{tr} E^{m}}{(u-N+1)^{m+1}}=\frac{C(u+1)}{C(u)} .
$$

The Newton identity

Theorem [Perelomov-Popov, 1966].
We have the identity

$$
1+\sum_{m=0}^{\infty} \frac{(-1)^{m} \operatorname{tr} E^{m}}{(u-N+1)^{m+1}}=\frac{C(u+1)}{C(u)}
$$

Proof. Verify

$$
\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N-1}-N+2\right)\left(u+E_{N}+1\right)=C(u+1) .
$$

The Newton identity

Theorem [Perelomov-Popov, 1966].
We have the identity

$$
1+\sum_{m=0}^{\infty} \frac{(-1)^{m} \operatorname{tr} E^{m}}{(u-N+1)^{m+1}}=\frac{C(u+1)}{C(u)}
$$

Proof. Verify

$$
\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N-1}-N+2\right)\left(u+E_{N}+1\right)=C(u+1) .
$$

Hence,

$$
\begin{aligned}
C(u+1)-C(u) & =N \operatorname{tr}_{1, \ldots, N} A^{(N)}\left(u+E_{1}\right) \ldots\left(u+E_{N-1}-N+2\right) \\
& =N \operatorname{tr}_{1, \ldots, N} A^{(N)} C(u)\left(u+E_{N}-N+1\right)^{-1} .
\end{aligned}
$$

Harish-Chandra isomorphism

Harish-Chandra isomorphism

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$ (the highest vector) such that

Harish-Chandra isomorphism

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra $\mathfrak{g l}_{N}$ is generated by a nonzero vector $\xi \in L(\lambda)$ (the highest vector) such that

$$
\begin{array}{lll}
E_{i j} \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
E_{i i} \xi=\lambda_{i} \xi & \text { for } & 1 \leqslant i \leqslant N .
\end{array}
$$

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

When regarded as a function of the highest weight, $\chi(z)$ is a symmetric polynomial in the variables l_{1}, \ldots, l_{N}, where
$l_{i}=\lambda_{i}-i+1$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

When regarded as a function of the highest weight, $\chi(z)$ is a symmetric polynomial in the variables l_{1}, \ldots, l_{N}, where
$l_{i}=\lambda_{i}-i+1$.
The mapping $z \mapsto \chi(z)$ defines an algebra isomorphism

$$
\chi: \mathrm{Z}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathbb{C}\left[l_{1}, \ldots, l_{N}\right]^{\mathfrak{G}_{N}}
$$

known as the Harish-Chandra isomorphism.

Consider the standard triangular decomposition

$$
\mathfrak{g l}_{N}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+} .
$$

Consider the standard triangular decomposition
$\mathfrak{g l}_{N}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
Then χ can also be defined as the restriction to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ of the Harish-Chandra homomorphism

$$
\mathrm{U}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{h}} \rightarrow \mathrm{U}(\mathfrak{h})
$$

Consider the standard triangular decomposition
$\mathfrak{g l}_{N}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
Then χ can also be defined as the restriction to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ of the Harish-Chandra homomorphism

$$
\mathrm{U}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{h}} \rightarrow \mathrm{U}(\mathfrak{h})
$$

which is the projection of the \mathfrak{h}-centralizer $\mathrm{U}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{h}}$ with respect
to the direct sum decomposition

$$
\mathrm{U}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{h}}=\mathrm{U}(\mathfrak{h}) \oplus\left(\mathrm{U}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{h}} \cap \mathrm{U}\left(\mathfrak{g l}_{N}\right) \mathfrak{n}_{+}\right) .
$$

Example. Under the Harish-Chandra isomorphism we have

$$
\chi: C(u) \mapsto\left(u+l_{1}\right) \ldots\left(u+l_{N}\right), \quad l_{i}=E_{i i}-i+1
$$

Example. Under the Harish-Chandra isomorphism we have

$$
\chi: C(u) \mapsto\left(u+l_{1}\right) \ldots\left(u+l_{N}\right), \quad l_{i}=E_{i i}-i+1
$$

This is immediate from the definition

$$
C(u)=\sum_{\sigma \in \mathfrak{S}_{N}} \operatorname{sgn} \sigma \cdot(u+E)_{\sigma(1) 1} \ldots(u+E-N+1)_{\sigma(N) N} .
$$

Example. Under the Harish-Chandra isomorphism we have

$$
\chi: C(u) \mapsto\left(u+l_{1}\right) \ldots\left(u+l_{N}\right), \quad l_{i}=E_{i i}-i+1
$$

This is immediate from the definition

$$
C(u)=\sum_{\sigma \in \mathfrak{S}_{N}} \operatorname{sgn} \sigma \cdot(u+E)_{\sigma(1) 1} \ldots(u+E-N+1)_{\sigma(N) N} .
$$

By the Newton formula, the Harish-Chandra images of the
Gelfand invariants are found by

$$
1+\sum_{m=0}^{\infty} \frac{(-1)^{m} \chi\left(\operatorname{tr} E^{m}\right)}{(u-N+1)^{m+1}}=\prod_{i=1}^{N} \frac{u+l_{i}+1}{u+l_{i}}
$$

Let \mathfrak{g} be a simple Lie algebra of rank n and $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.

Let \mathfrak{g} be a simple Lie algebra of rank n and $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
We have the direct sum decomposition

$$
\mathrm{U}(\mathfrak{g})^{\mathfrak{h}}=\mathrm{U}(\mathfrak{h}) \oplus\left(\mathrm{U}(\mathfrak{g})^{\mathfrak{h}} \cap \mathrm{U}(\mathfrak{g}) \mathfrak{n}_{+}\right)
$$

Let \mathfrak{g} be a simple Lie algebra of rank n and $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
We have the direct sum decomposition

$$
\mathrm{U}(\mathfrak{g})^{\mathfrak{h}}=\mathrm{U}(\mathfrak{h}) \oplus\left(\mathrm{U}(\mathfrak{g})^{\mathfrak{h}} \cap \mathrm{U}(\mathfrak{g}) \mathfrak{n}_{+}\right)
$$

and the Harish-Chandra isomorphism

$$
\chi: \mathrm{Z}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{h})^{W}, \quad \text { with a shifted action of } W \text {. }
$$

Let \mathfrak{g} be a simple Lie algebra of rank n and $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$.
We have the direct sum decomposition

$$
\mathrm{U}(\mathfrak{g})^{\mathfrak{h}}=\mathrm{U}(\mathfrak{h}) \oplus\left(\mathrm{U}(\mathfrak{g})^{\mathfrak{h}} \cap \mathrm{U}(\mathfrak{g}) \mathfrak{n}_{+}\right)
$$

and the Harish-Chandra isomorphism

$$
\chi: \mathrm{Z}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{h})^{W}, \quad \text { with a shifted action of } W .
$$

We have

$$
\mathrm{Z}(\mathfrak{g})=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]
$$

for certain algebraically independent invariants P_{1}, \ldots, P_{n}
whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 .

Brauer algebra $\mathcal{B}_{m}(\omega)$

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

The dimension of the Brauer algebra $\mathcal{B}_{m}(\omega)$ is $(2 m-1)!!$.

The dimension of the Brauer algebra $\mathcal{B}_{m}(\omega)$ is $(2 m-1)!!$.

For $1 \leqslant a<b \leqslant m$ denote by $s_{a b}$ and $g_{a b}$ the diagrams

The dimension of the Brauer algebra $\mathcal{B}_{m}(\omega)$ is $(2 m-1)!!$.

For $1 \leqslant a<b \leqslant m$ denote by $s_{a b}$ and $g_{a b}$ the diagrams

The symmetrizer in $\mathcal{B}_{m}(\omega)$ is the idempotent $s^{(m)}$ such that

$$
s_{a b} s^{(m)}=s^{(m)} s_{a b}=s^{(m)} \quad \text { and } \quad g_{a b} s^{(m)}=s^{(m)} g_{a b}=0
$$

Explicitly,

$$
s^{(m)}=\frac{1}{m!} \sum_{r=0}^{\lfloor m / 2\rfloor}(-1)^{r}\binom{\omega / 2+m-2}{r}^{-1} \sum_{d \in \mathcal{D}^{(r)}} d
$$

where $\mathcal{D}^{(r)} \subset \mathcal{B}_{m}(\omega)$ denotes the set of diagrams which have exactly r horizontal edges in the top.

Explicitly,

$$
s^{(m)}=\frac{1}{m!} \sum_{r=0}^{\lfloor m / 2\rfloor}(-1)^{r}\binom{\omega / 2+m-2}{r}^{-1} \sum_{d \in \mathcal{D}^{(r)}} d
$$

where $\mathcal{D}^{(r)} \subset \mathcal{B}_{m}(\omega)$ denotes the set of diagrams which have exactly r horizontal edges in the top. Also,

$$
s^{(m)}=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{g_{a b}}{\omega+a+b-3}\right) h^{(m)}
$$

and

Explicitly,

$$
s^{(m)}=\frac{1}{m!} \sum_{r=0}^{\lfloor m / 2\rfloor}(-1)^{r}\binom{\omega / 2+m-2}{r}^{-1} \sum_{d \in \mathcal{D}^{(r)}} d
$$

where $\mathcal{D}^{(r)} \subset \mathcal{B}_{m}(\omega)$ denotes the set of diagrams which have exactly r horizontal edges in the top. Also,

$$
s^{(m)}=\prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{g_{a b}}{\omega+a+b-3}\right) h^{(m)}
$$

and

$$
s^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{s_{a b}}{b-a}-\frac{g_{a b}}{\omega / 2+b-a-1}\right),
$$

where the products are in the lexicographic order.

Brauer-Schur-Weyl duality

Brauer-Schur-Weyl duality

There are commuting actions of the classical groups in types B, C or D and the Brauer algebra with a specialized parameter ω on the tensor product space

Brauer-Schur-Weyl duality

There are commuting actions of the classical groups in types B, C or D and the Brauer algebra with a specialized parameter ω on the tensor product space

The dual pairs are

$$
\left(\mathcal{B}_{m}(N), O_{N}\right)
$$

Brauer-Schur-Weyl duality

There are commuting actions of the classical groups in types B, C or D and the Brauer algebra with a specialized parameter ω on the tensor product space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m} .
$$

The dual pairs are

$$
\left(\mathcal{B}_{m}(N), O_{N}\right)
$$

and

$$
\left(\mathcal{B}_{m}(-N), S p_{N}\right) \quad \text { with } \quad N=2 n .
$$

Action in tensors

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_{N}$ set $\omega=N$. The generators of $\mathcal{B}_{m}(N)$ act
in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad g_{a b} \mapsto Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_{N}$ set $\omega=N$. The generators of $\mathcal{B}_{m}(N)$ act in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad g_{a b} \mapsto Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

where $i^{\prime}=N-i+1$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad g_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad g_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

with $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad g_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

with $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$ under the action in tensors,

$$
S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m}
$$

Explicitly, in the orthogonal case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

Explicitly, in the orthogonal case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

and in the symplectic case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right)
$$

Explicitly, in the orthogonal case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

and in the symplectic case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Remark. $S^{(n+1)}=0$ for $\mathfrak{g}=\mathfrak{s p}_{2 n}$.

Explicitly, in the orthogonal case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

and in the symplectic case

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Remark. $S^{(n+1)}=0$ for $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Consider $\gamma_{m}(-2 n) S^{(m)}$,

$$
\gamma_{m}(\omega)=\frac{\omega+m-2}{\omega+2 m-2}, \quad \omega=\left\{\begin{array}{cll}
N & \text { for } & \mathfrak{g}=\mathfrak{o}_{N} \\
-2 n & \text { for } & \mathfrak{g}=\mathfrak{s p}_{2 n}
\end{array}\right.
$$

Lie algebras \mathfrak{o}_{N} and $\mathfrak{s p}_{N}$

Lie algebras \mathfrak{o}_{N} and $\mathfrak{s p}_{N}$

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.

Lie algebras \mathfrak{o}_{N} and $\mathfrak{s p}_{N}$

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

respectively.

Lie algebras \mathfrak{o}_{N} and $\mathfrak{s p}_{N}$

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

respectively.
Introduce the $N \times N$ matrix $F=\left[F_{i j}\right]$

$$
F=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{g})
$$

Theorem. For any $s \in \mathcal{B}_{m}(\omega)$ with $\omega= \pm N$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}$ the element

$$
\operatorname{tr}_{1, \ldots, m} S\left(u_{1}+F_{1}\right) \ldots\left(u_{m}+F_{m}\right)
$$

belongs to the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$.

Theorem. For any $s \in \mathcal{B}_{m}(\omega)$ with $\omega= \pm N$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}$ the element

$$
\operatorname{tr}_{1, \ldots, m} S\left(u_{1}+F_{1}\right) \ldots\left(u_{m}+F_{m}\right)
$$

belongs to the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$.

In particular, there are analogues of the Capelli determinant and Gelfand invariants.

Theorem. For any $s \in \mathcal{B}_{m}(\omega)$ with $\omega= \pm N$ and $u_{1}, \ldots, u_{m} \in \mathbb{C}$ the element

$$
\operatorname{tr}_{1, \ldots, m} S\left(u_{1}+F_{1}\right) \ldots\left(u_{m}+F_{m}\right)
$$

belongs to the center $\mathrm{Z}(\mathfrak{g})$ of $\mathrm{U}(\mathfrak{g})$.

In particular, there are analogues of the Capelli determinant and Gelfand invariants.

A version of the Newton identity also holds.

Proof of the theorem relies on the matrix form of the defining
relations for $\mathrm{U}(\mathfrak{g})$:

Proof of the theorem relies on the matrix form of the defining relations for $\mathrm{U}(\mathfrak{g})$:

$$
F_{1} F_{2}-F_{2} F_{1}=\left(P_{12}-Q_{12}\right) F_{2}-F_{2}\left(P_{12}-Q_{12}\right)
$$

Proof of the theorem relies on the matrix form of the defining relations for $\mathrm{U}(\mathfrak{g})$:

$$
F_{1} F_{2}-F_{2} F_{1}=\left(P_{12}-Q_{12}\right) F_{2}-F_{2}\left(P_{12}-Q_{12}\right)
$$

where both sides are regarded as elements of the algebra
$\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{g})$ and

$$
F_{1}=\sum_{i, j=1}^{N} e_{i j} \otimes 1 \otimes F_{i j}, \quad F_{2}=\sum_{i, j=1}^{N} 1 \otimes e_{i j} \otimes F_{i j}
$$

Theorem. For $\mathfrak{g}=\mathfrak{o}_{N}$ the image of the Casimir element

$$
\gamma_{2 k}(N) \operatorname{tr} S^{(2 k)}\left(F_{1}-k\right) \ldots\left(F_{2 k}+k-1\right)
$$

under the Harish-Chandra isomorphism is given by

Theorem. For $\mathfrak{g}=\mathfrak{o}_{N}$ the image of the Casimir element

$$
\gamma_{2 k}(N) \operatorname{tr} S^{(2 k)}\left(F_{1}-k\right) \ldots\left(F_{2 k}+k-1\right)
$$

under the Harish-Chandra isomorphism is given by

$$
\sum_{1 \leqslant j_{1} \leqslant \cdots \leqslant j_{k} \leqslant n}\left(l_{j_{1}}^{2}-\left(j_{1}-1 / 2\right)^{2}\right) \ldots\left(l_{j_{k}}^{2}-\left(j_{k}+k-3 / 2\right)^{2}\right),
$$

where $l_{i}=F_{i i}+n-i+1 / 2$ in the case $N=2 n+1$; and

Theorem. For $\mathfrak{g}=\mathfrak{o}_{N}$ the image of the Casimir element

$$
\gamma_{2 k}(N) \operatorname{tr} S^{(2 k)}\left(F_{1}-k\right) \ldots\left(F_{2 k}+k-1\right)
$$

under the Harish-Chandra isomorphism is given by

$$
\sum_{1 \leqslant j_{1} \leqslant \cdots \leqslant j_{k} \leqslant n}\left(l_{j_{1}}^{2}-\left(j_{1}-1 / 2\right)^{2}\right) \ldots\left(l_{j_{k}}^{2}-\left(j_{k}+k-3 / 2\right)^{2}\right),
$$

where $l_{i}=F_{i i}+n-i+1 / 2$ in the case $N=2 n+1$; and

$$
\sum_{1 \leqslant j_{1} \leqslant \cdots \leqslant j_{k} \leqslant n}\left(l_{j_{1}}^{2}-\left(j_{1}-1\right)^{2}\right) \ldots\left(l_{j_{k}}^{2}-\left(j_{k}+k-2\right)^{2}\right),
$$

where $l_{i}=F_{i i}+n-i$ in the case $N=2 n$.

Theorem. For $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$ the image of the Casimir element

$$
\gamma_{2 k}(-2 n) \operatorname{tr} S^{(2 k)}\left(F_{1}+k\right) \ldots\left(F_{2 k}-k+1\right)
$$

under the Harish-Chandra isomorphism is given by

Theorem. For $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$ the image of the Casimir element

$$
\gamma_{2 k}(-2 n) \operatorname{tr} S^{(2 k)}\left(F_{1}+k\right) \ldots\left(F_{2 k}-k+1\right)
$$

under the Harish-Chandra isomorphism is given by

$$
(-1)^{k} \sum_{1 \leqslant j_{1}<\cdots<j_{k} \leqslant n}\left(l_{j_{1}}^{2}-j_{1}^{2}\right) \ldots\left(l_{j_{k}}^{2}-\left(j_{k}-k+1\right)^{2}\right),
$$

where $l_{i}=F_{i i}+n-i+1$ for $i=1, \ldots, n$.

More constructions of Casimir elements for the Lie algebras
$\mathfrak{g l}_{N}, \mathfrak{o}_{N}$ and $\mathfrak{s p}_{2 n}$ are known.

More constructions of Casimir elements for the Lie algebras
$\mathfrak{g l}_{N}, \mathfrak{o}_{N}$ and $\mathfrak{s p}_{2 n}$ are known.

In particular, there is a linear basis of $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ formed by the
quantum immanants \mathbb{S}_{λ} with λ running over partitions with at most N parts (Okounkov-Olshanski, 1996, 1998).

More constructions of Casimir elements for the Lie algebras
$\mathfrak{g l}_{N}, \mathfrak{o}_{N}$ and $\mathfrak{s p}_{2 n}$ are known.

In particular, there is a linear basis of $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ formed by the quantum immanants \mathbb{S}_{λ} with λ running over partitions with at most N parts (Okounkov-Olshanski, 1996, 1998).

The Harish-Chandra images $\chi\left(\mathbb{S}_{\lambda}\right)$ are the shifted Schur polynomials.

Affine Kac-Moody algebras

Affine Kac-Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g},

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

Affine Kac-Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g},

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.
For the classical types, $\quad\langle X, Y\rangle=$ const $\cdot \operatorname{tr} X Y$,

$$
h^{\vee}=\left\{\begin{array}{lll}
N & \text { for } \mathfrak{g}=\mathfrak{s l}_{N}, & \text { const }=1 \\
N-2 & \text { for } \mathfrak{g}=\mathfrak{o}_{N}, & \text { const }=\frac{1}{2} \\
n+1 & \text { for } \mathfrak{g}=\mathfrak{s p}_{2 n}, & \text { const }=1
\end{array}\right.
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

Problem: What are Casimir elements for $\widehat{\mathfrak{g}}$?

The universal enveloping algebra at the critical level $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is the quotient of $\mathrm{U}(\hat{\mathfrak{g}})$ by the ideal generated by $K+h^{\vee}$.

The universal enveloping algebra at the critical level $U_{-h \vee}(\widehat{\mathfrak{g}})$ is the quotient of $\mathrm{U}(\hat{\mathfrak{g}})$ by the ideal generated by $K+h^{\vee}$.

By [Kac 1974], the canonical quadratic Casimir element belongs to a completion $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$ of $\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})$ with respect to the left ideals $\mathrm{I}_{m}, m \geqslant 0$, generated by $t^{m} \mathfrak{g}[t]$.

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h \vee}(\widehat{\mathfrak{g}})$.

Let $\mathrm{Z}(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of $Z(\widehat{\mathfrak{g}})$.

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of $Z(\widehat{\mathfrak{g}})$.
- Explicit generators for classical types A, B, C, D.

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of $Z(\widehat{\mathfrak{g}})$.
- Explicit generators for classical types A, B, C, D.

Questions:

- Extension to Lie superalgebras.

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of $Z(\widehat{\mathfrak{g}})$.
- Explicit generators for classical types A, B, C, D.

Questions:

- Extension to Lie superalgebras.
- Extension to quantum affine algebras.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right) K .
\end{aligned}
$$

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right) K .
\end{aligned}
$$

The critical level is $K=-N$.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right) K .
\end{aligned}
$$

The critical level is $K=-N$.

For all $r \in \mathbb{Z}$ the sums

$$
\sum_{i=1}^{N} E_{i i}[r]
$$

are Casimir elements.

For $r \in \mathbb{Z}$ set

$$
C_{r}=\sum_{i, j=1}^{N}\left(\sum_{s<0} E_{i j}[s] E_{j i}[r-s]+\sum_{s \geqslant 0} E_{j i}[r-s] E_{i j}[s]\right)
$$

For $r \in \mathbb{Z}$ set

$$
C_{r}=\sum_{i, j=1}^{N}\left(\sum_{s<0} E_{i j}[s] E_{j i}[r-s]+\sum_{s \geqslant 0} E_{j i}[r-s] E_{i j}[s]\right) .
$$

All C_{r} are Casimir elements at the critical level, they belong to the completed universal enveloping algebra $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Introduce the (formal) Laurent series

$$
E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

Introduce the (formal) Laurent series

$$
E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

and use the notation

$$
E_{i j}(z)_{+}=\sum_{r<0} E_{i j}[r] z^{-r-1}, \quad E_{i j}(z)_{-}=\sum_{r \geqslant 0} E_{i j}[r] z^{-r-1}
$$

Introduce the (formal) Laurent series

$$
E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

and use the notation

$$
E_{i j}(z)_{+}=\sum_{r<0} E_{i j}[r] z^{-r-1}, \quad E_{i j}(z)_{-}=\sum_{r \geqslant 0} E_{i j}[r] z^{-r-1}
$$

Given two Laurent series $a(z)$ and $b(z)$,
their normally ordered product is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}
$$

Note

$$
\sum_{r \in \mathbb{Z}} C_{r} z^{-r-2}=\sum_{i, j=1}^{N}\left(E_{i j}(z)_{+} E_{j i}(z)+E_{j i}(z) E_{i j}(z)_{-}\right)
$$

Note

$$
\sum_{r \in \mathbb{Z}} C_{r} z^{-r-2}=\sum_{i, j=1}^{N}\left(E_{i j}(z)_{+} E_{j i}(z)+E_{j i}(z) E_{i j}(z)_{-}\right)
$$

Hence, all coefficients of the series

$$
\operatorname{tr}: E(z)^{2}:=\sum_{i, j=1}^{N}: E_{i j}(z) E_{j i}(z):
$$

are Casimir elements.

Similarly, all coefficients of the series

$$
\operatorname{tr}: E(z)^{3}:=\sum_{i, j, k=1}^{N}: E_{i j}(z) E_{j k}(z) E_{k i}(z):
$$

are Casimir elements, where the normal ordering is applied
from right to left.

Similarly, all coefficients of the series

$$
\operatorname{tr}: E(z)^{3}:=\sum_{i, j, k=1}^{N}: E_{i j}(z) E_{j k}(z) E_{k i}(z):
$$

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $\operatorname{tr}: E(z)^{4}:!$

Similarly, all coefficients of the series

$$
\operatorname{tr}: E(z)^{3}:=\sum_{i, j, k=1}^{N}: E_{i j}(z) E_{j k}(z) E_{k i}(z):
$$

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $\operatorname{tr}: E(z)^{4}:!$

Correction term: all coefficients of the series

$$
\operatorname{tr}: E(z)^{4}:-\operatorname{tr}:\left(\partial_{z} E(z)\right)^{2}:
$$

are Casimir elements.

Invariants of the vacuum module

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$-invariants

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$-invariants

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$-invariants

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Properties:

- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is commutative.

Properties:

- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is commutative.
- It is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Properties:

- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is commutative.
- It is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Any element of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Explicit constructions of such sets and a new proof of the theorem for the classical types A, B, C, D :
[Chervov-Talalaev, 2006, Chervov-M., 2009, M. 2013].

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$.
Set $\quad \tau=-d / d t$ and consider the $N \times N$ matrix

$$
\tau+E[-1]=\left[\begin{array}{cccc}
\tau+E_{11}[-1] & E_{12}[-1] & \ldots & E_{1 N}[-1] \\
E_{21}[-1] & \tau+E_{22}[-1] & \ldots & E_{2 N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
E_{N 1}[-1] & E_{N 2}[-1] & \ldots & \tau+E_{N N}[-1]
\end{array}\right]
$$

The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors.

The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors.

For $N=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+\phi_{1} \tau+\phi_{2}
\end{aligned}
$$

The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors.

For $N=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+\phi_{1} \tau+\phi_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& \phi_{1}=E_{11}[-1]+E_{22}[-1] \\
& \phi_{2}=E_{11}[-1] E_{22}[-1]-E_{21}[-1] E_{12}[-1]+E_{22}[-2] .
\end{aligned}
$$

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
$$

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
$$

All coefficients $\theta_{m i}$ belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$.

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
$$

All coefficients $\theta_{m i}$ belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$.

The elements $\theta_{11}, \ldots, \theta_{N N}$ form
a complete set of Segal-Sugawara vectors.

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
$$

All coefficients $\theta_{m i}$ belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

The elements $\theta_{11}, \ldots, \theta_{N N}$ form
a complete set of Segal-Sugawara vectors.

The following are Segal-Sugawara vectors for $\mathfrak{g l}_{N}$:

$$
\operatorname{tr} E[-1], \quad \operatorname{tr} E[-1]^{2}, \quad \operatorname{tr} E[-1]^{3}, \quad \operatorname{tr} E[-1]^{4}-\operatorname{tr} E[-2]^{2} .
$$

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$ are recovered by the state-field correspondence map Y which takes elements of the vacuum module $V\left(\mathfrak{g l}_{N}\right)$ to Laurent series in z;

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$ are recovered by the state-field correspondence map Y which takes elements of the vacuum module $V\left(\mathfrak{g l}_{N}\right)$ to Laurent series in z;
its application to Segal-Sugawara vectors yields Laurent series whose coefficients are Casimir elements.

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$ are recovered by the state-field correspondence map Y which takes elements of the vacuum module $V\left(\mathfrak{g l}_{N}\right)$ to Laurent series in z;
its application to Segal-Sugawara vectors yields Laurent series whose coefficients are Casimir elements.

By definition,

$$
Y: E_{i j}[-1] \mapsto E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1} .
$$

Also,

$$
Y: E_{i j}[-r-1] \mapsto \frac{1}{r!} \partial_{z}^{r} E_{i j}(z), \quad r \geqslant 0,
$$

Also,

$$
Y: E_{i j}[-r-1] \mapsto \frac{1}{r!} \partial_{z}^{r} E_{i j}(z), \quad r \geqslant 0,
$$

and

$$
Y: E_{i j}[-1] E_{k l}[-1] \mapsto: E_{i j}(z) E_{k l}(z):
$$

Also,

$$
Y: E_{i j}[-r-1] \mapsto \frac{1}{r!} \partial_{z}^{r} E_{i j}(z), \quad r \geqslant 0,
$$

and

$$
Y: E_{i j}[-1] E_{k l}[-1] \mapsto: E_{i j}(z) E_{k l}(z):
$$

We have

$$
\begin{gathered}
Y: \operatorname{tr} E[-1] \mapsto \operatorname{tr} E(z) \\
Y: \operatorname{tr} E[-1]^{2} \mapsto \operatorname{tr}: E(z)^{2}: \\
Y: \operatorname{tr} E[-1]^{3} \mapsto \operatorname{tr}: E(z)^{3}: \\
Y: \operatorname{tr} E[-1]^{4}-\operatorname{tr} E[-2]^{2} \mapsto \operatorname{tr}: E(z)^{4}:-\operatorname{tr}:\left(\partial_{z} E(z)\right)^{2}:
\end{gathered}
$$

Write

$$
\operatorname{tr}:\left(\partial_{z}+E(z)\right)^{m}:=\theta_{m 0}(z) \partial_{z}^{m}+\cdots+\theta_{m m}(z)
$$

Write

$$
\operatorname{tr}:\left(\partial_{z}+E(z)\right)^{m}:=\theta_{m 0}(z) \partial_{z}^{m}+\cdots+\theta_{m m}(z)
$$

Theorem. The coefficients of the Laurent series

$$
\theta_{11}(z), \ldots, \theta_{N N}(z)
$$

are topological generators of the center of $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g} l}_{N}\right)$.

Write

$$
\operatorname{tr}:\left(\partial_{z}+E(z)\right)^{m}:=\theta_{m 0}(z) \partial_{z}^{m}+\cdots+\theta_{m m}(z)
$$

Theorem. The coefficients of the Laurent series

$$
\theta_{11}(z), \ldots, \theta_{N N}(z)
$$

are topological generators of the center of $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Remark. The theorem holds in the same form for any complete set of Segal-Sugawara vectors.

Proving the Feigin-Frenkel theorem for the classical types:

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

which yields a $\mathfrak{g}[t]$-module structure on the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathrm{S}\left(\mathfrak{g}\left[t, t^{-1}\right] / \mathfrak{g}[t]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is a $\mathfrak{g}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is a $\mathfrak{g}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Theorem (Raïs-Tauvel 1992, Beilinson-Drinfeld 1997).
If P_{1}, \ldots, P_{n} are algebraically independent generators of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$,
then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \geqslant 0$ are algebraically independent generators of $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

and

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right) .
$$

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

and

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right) .
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right)
$$

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

and

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right) .
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right)
$$

and recall its elements $H^{(m)}$ and $A^{(m)}$.

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
\operatorname{tr}_{1, \ldots, m} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m}
\end{aligned}
$$

and

$$
\operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \operatorname{tr}_{1, \ldots, m} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m}
\end{aligned}
$$

and

$$
\operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Proof. Use the matrix form of the defining relations of $\mathrm{U}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$:

Proof. Use the matrix form of the defining relations of $\mathrm{U}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$:
For any $r \in \mathbb{Z}$ set

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)
$$

Proof. Use the matrix form of the defining relations of $\mathrm{U}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$:
For any $r \in \mathbb{Z}$ set

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)
$$

The defining relations can be written in the form

$$
\begin{aligned}
E[r]_{1} E[s]_{2}- & E[s]_{2} E[r]_{1} \\
& =\left(E[r+s]_{1}-E[r+s]_{2}\right) P_{12}+r \delta_{r,-s}\left(1-N P_{12}\right)
\end{aligned}
$$

The required relations in the vacuum module are

$$
E[0]_{0} \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right)=0
$$

The required relations in the vacuum module are

$$
E[0]_{0} \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right)=0
$$

and

$$
E[1]_{0} \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right)=0 .
$$

The required relations in the vacuum module are

$$
E[0]_{0} \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right)=0
$$

and

$$
E[1]_{0} \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right)=0 .
$$

The elements $\psi_{m a}$ and $\theta_{m a}$ are expressed in terms of the $\phi_{m a}$ through the MacMahon Master Theorem and the Newton identities, respectively.

The coefficients of the column-determinant are related to the

 $\phi_{m a}$ through the relation$$
\operatorname{cdet}(\tau+E[-1])=\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{N}\right)
$$

The coefficients of the column-determinant are related to the

$\phi_{m a}$ through the relation

$$
\operatorname{cdet}(\tau+E[-1])=\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{N}\right)
$$

This follows from the property

$$
\begin{aligned}
A^{(N)}\left(\tau+E[-1]_{1}\right) & \ldots\left(\tau+E[-1]_{N}\right) \\
& =A^{(N)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{N}\right) A^{(N)}
\end{aligned}
$$

The coefficients of the column-determinant are related to the

 $\phi_{m a}$ through the relation$$
\operatorname{cdet}(\tau+E[-1])=\operatorname{tr}_{1, \ldots, N} A^{(N)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{N}\right)
$$

This follows from the property

$$
\begin{aligned}
A^{(N)}\left(\tau+E[-1]_{1}\right) \ldots & \ldots\left(\tau+E[-1]_{N}\right) \\
& =A^{(N)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{N}\right) A^{(N)}
\end{aligned}
$$

implied by the fact that $\tau+E[-1]$ is a Manin matrix.

Types B, C and D

Types B, C and D

Recall the symmetrizers associated with \mathfrak{o}_{N} and $\mathfrak{s p}_{2 n}$:

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

Types B, C and D

Recall the symmetrizers associated with \mathfrak{o}_{N} and $\mathfrak{s p}_{2 n}$:

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Types B, C and D

Recall the symmetrizers associated with \mathfrak{o}_{N} and $\mathfrak{s p}_{2 n}$:

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Also,

$$
\gamma_{m}(\omega)=\frac{\omega+m-2}{\omega+2 m-2}, \quad \omega=\left\{\begin{array}{cl}
N & \text { for } \mathfrak{g}=\mathfrak{o}_{N} \\
-2 n & \text { for } \\
\mathfrak{g}=\mathfrak{s p}_{2 n}
\end{array}\right.
$$

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
As before,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
As before,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

and

$$
F_{i j}[r]=F_{i j} t^{r} \in \mathfrak{g}\left[t, t^{-1}\right] .
$$

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
As before,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

and

$$
F_{i j}[r]=F_{i j} t^{r} \in \mathfrak{g}\left[t, t^{-1}\right] .
$$

Combine into a matrix

$$
F[r]=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g}\left[t, t^{-1}\right]\right)
$$

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) & \operatorname{tr}_{1, \ldots, m} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) & \operatorname{tr}_{1, \ldots, m} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) & \operatorname{tr}_{1, \ldots, m} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

In addition, in the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

belongs to $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{2 n}\right)$.

Moreover, $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$ and $\mathfrak{s p}_{2 n}$, whereas

Moreover, $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$ and $\mathfrak{s p}_{2 n}$, whereas
$\phi_{22}, \phi_{44}, \ldots, \phi_{2 n-22 n-2}, \phi_{n}^{\prime}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{o}_{2 n}$, where $\phi_{n}^{\prime}=\operatorname{Pf} F[-1]$.

Affine Harish-Chandra isomorphism

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$consider the Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

Affine Harish-Chandra isomorphism

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$consider the Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right),
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{-}\left[t^{-1}\right]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

$$
\mathfrak{f}: \mathfrak{z}(\widehat{\mathfrak{g}}) \rightarrow \mathcal{W}\left({ }^{L} \mathfrak{g}\right),
$$

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

$$
\mathfrak{f}: \mathfrak{z}(\widehat{\mathfrak{g}}) \rightarrow \mathcal{W}\left({ }^{L} \mathfrak{g}\right),
$$

where $\mathcal{W}\left({ }^{L} \mathfrak{g}\right)$ is the classical \mathcal{W}-algebra associated with the
Langlands dual Lie algebra ${ }^{L} \mathfrak{g} \quad$ [Feigin and Frenkel, 1992].

Example $\mathfrak{g}=\mathfrak{g l}_{N}$. Set $\mu_{i}[r]=E_{i i}[r]$. We have

$$
\mathfrak{f}: \operatorname{cdet}(\tau+E[-1]) \mapsto\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)
$$

Example $\mathfrak{g}=\mathfrak{g l}_{N}$. Set $\mu_{i}[r]=E_{i i}[r]$. We have

$$
\mathfrak{f}: \operatorname{cdet}(\tau+E[-1]) \mapsto\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)
$$

Define the elements $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}$ by the Miura transformation

$$
\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=\tau^{N}+\mathcal{E}_{1} \tau^{N-1}+\cdots+\mathcal{E}_{N}
$$

Example $\mathfrak{g}=\mathfrak{g l}_{N}$. Set $\mu_{i}[r]=E_{i i}[r]$. We have

$$
\mathfrak{f}: \operatorname{cdet}(\tau+E[-1]) \mapsto\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)
$$

Define the elements $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}$ by the Miura transformation

$$
\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=\tau^{N}+\mathcal{E}_{1} \tau^{N-1}+\cdots+\mathcal{E}_{N} .
$$

Explicitly,

$$
\mathcal{E}_{m}=e_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

is the noncommutative elementary symmetric function,

$$
e_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1}>\cdots>i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

If $N=2$ then

$$
\begin{aligned}
& \mathcal{E}_{1}=\mu_{1}[-1]+\mu_{2}[-1] \\
& \mathcal{E}_{2}=\mu_{1}[-1] \mu_{2}[-1]+\mu_{1}[-2] .
\end{aligned}
$$

If $N=2$ then

$$
\begin{aligned}
& \mathcal{E}_{1}=\mu_{1}[-1]+\mu_{2}[-1] \\
& \mathcal{E}_{2}=\mu_{1}[-1] \mu_{2}[-1]+\mu_{1}[-2]
\end{aligned}
$$

If $N=3$ then
$\mathcal{E}_{1}=\mu_{1}[-1]+\mu_{2}[-1]+\mu_{3}[-1]$,
$\mathcal{E}_{2}=\mu_{1}[-1] \mu_{2}[-1]+\mu_{1}[-1] \mu_{3}[-1]+\mu_{2}[-1] \mu_{3}[-1]$

$$
+2 \mu_{1}[-2]+\mu_{2}[-2]
$$

$\mathcal{E}_{3}=\mu_{1}[-1] \mu_{2}[-1] \mu_{3}[-1]+\mu_{1}[-2] \mu_{2}[-1]$

$$
+\mu_{1}[-2] \mu_{3}[-1]+\mu_{1}[-1] \mu_{2}[-2]+2 \mu_{1}[-3] .
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

where

$$
\mathcal{H}_{m}=h_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

is the noncommutative complete symmetric function,

$$
h_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}} .
$$

Example $\mathfrak{g}=\mathfrak{o}_{N}$. Set $\mu_{i}[r]=F_{i i}[r]$.

Example $\mathfrak{g}=\mathfrak{o}_{N}$. Set $\mu_{i}[r]=F_{i i}[r]$.

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals

Example $\mathfrak{g}=\mathfrak{o}_{N}$. Set $\mu_{i}[r]=F_{i i}[r]$.

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals

$$
h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right)
$$

Example $\mathfrak{g}=\mathfrak{o}_{N}$. Set $\mu_{i}[r]=F_{i i}[r]$.

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals

$$
h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right)
$$

for $N=2 n+1$.

For the Lie algebra $\mathfrak{g}=\mathfrak{o}_{2 n}$ the image is

$$
\begin{aligned}
& \frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n-1}[-1], \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right) \\
& \quad+\frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n-1}[-1], \ldots, \tau-\mu_{1}[-1]\right)
\end{aligned}
$$

For the Lie algebra $\mathfrak{g}=\mathfrak{o}_{2 n}$ the image is

$$
\begin{aligned}
& \frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n-1}[-1], \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right) \\
& \quad+\frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n-1}[-1], \ldots, \tau-\mu_{1}[-1]\right)
\end{aligned}
$$

The Harish-Chandra image of the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is found by

For the Lie algebra $\mathfrak{g}=\mathfrak{o}_{2 n}$ the image is

$$
\begin{aligned}
& \frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n-1}[-1], \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right) \\
& \quad+\frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n-1}[-1], \ldots, \tau-\mu_{1}[-1]\right)
\end{aligned}
$$

The Harish-Chandra image of the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is found by

$$
\operatorname{Pf} F[-1] \mapsto\left(\mu_{1}[-1]-T\right) \ldots\left(\mu_{n}[-1]-T\right) 1
$$

Example $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Set $\mu_{i}[r]=F_{i i}[r]$.

Example $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Set $\mu_{i}[r]=F_{i i}[r]$.

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(-2 n) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

with $1 \leqslant m \leqslant 2 n+1$ equals

Example $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Set $\mu_{i}[r]=F_{i i}[r]$.

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(-2 n) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

with $1 \leqslant m \leqslant 2 n+1$ equals

$$
e_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau, \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right)
$$

Example $\mathfrak{g}=\mathfrak{s p}_{2 n}$. Set $\mu_{i}[r]=F_{i i}[r]$.
The Harish-Chandra image of the polynomial

$$
\gamma_{m}(-2 n) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

with $1 \leqslant m \leqslant 2 n+1$ equals

$$
e_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau, \tau-\mu_{n}[-1], \ldots, \tau-\mu_{1}[-1]\right) .
$$

Miura transformation for $\mathfrak{o}_{2 n+1}$ [Drinfeld-Sokolov 1985]:

$$
\begin{aligned}
\left(\tau-\mu_{1}[-1]\right) \ldots(& \left.\tau-\mu_{n}[-1]\right) \tau\left(\tau+\mu_{n}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right) \\
& =\tau^{2 n+1}+\mathcal{E}_{2} \tau^{2 n-1}+\mathcal{E}_{3} \tau^{2 n-2}+\cdots+\mathcal{E}_{2 n+1} .
\end{aligned}
$$

Classical \mathcal{W}-algebras

Classical \mathcal{W}-algebras

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Classical \mathcal{W}-algebras

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

Classical \mathcal{W}-algebras

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

Classical \mathcal{W}-algebras

Let μ_{1}, \ldots, μ_{n} be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

the V_{i} are the screening operators.

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right)
$$

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
\begin{gathered}
V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right) \\
\sum_{r=0}^{\infty} V_{i(r)} z^{r}=\exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m]-\mu_{i+1}[-m]}{m} z^{m}
\end{gathered}
$$

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
\begin{gathered}
V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right) \\
\sum_{r=0}^{\infty} V_{i(r)} z^{r}=\exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m]-\mu_{i+1}[-m]}{m} z^{m}
\end{gathered}
$$

One verifies directly that

$$
V_{i}\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=0
$$

Equivalently,

$$
\begin{aligned}
& V_{i}: \mu_{i}(z) \mapsto \exp \int\left(\mu_{i}(z)-\mu_{i+1}(z)\right) d z \\
& V_{i}: \mu_{i+1}(z) \mapsto-\exp \int\left(\mu_{i}(z)-\mu_{i+1}(z)\right) d z
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
& \qquad \begin{array}{l}
V_{i}: \mu_{i}(z) \mapsto \exp \int\left(\mu_{i}(z)-\mu_{i+1}(z)\right) d z \\
V_{i}: \mu_{i+1}(z) \mapsto-\exp \int\left(\mu_{i}(z)-\mu_{i+1}(z)\right) d z
\end{array} \\
& \text { and } V_{i}: \mu_{j}(z) \mapsto 0 \text { for } j \neq i, i+1,
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
& V_{i}: \mu_{i}(z) \mapsto \exp \int\left(\mu_{i}(z)-\mu_{i+1}(z)\right) d z \\
& V_{i}: \mu_{i+1}(z) \mapsto-\exp \int\left(\mu_{i}(z)-\mu_{i+1}(z)\right) d z
\end{aligned}
$$

and $V_{i}: \mu_{j}(z) \mapsto 0$ for $j \neq i, i+1$,
where

$$
\mu_{i}(z)=\sum_{r=0}^{\infty} \mu_{i}[-r-1] z^{r}, \quad i=1, \ldots, N .
$$

Affine Poisson vertex algebra $\mathcal{V}(\mathfrak{g})$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} and
let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g}.

Affine Poisson vertex algebra $\mathcal{V}(\mathfrak{g})$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} and
let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g}.
Consider the differential algebra $\mathcal{V}=\mathcal{V}(\mathfrak{g})$,

$$
\mathcal{V}=\mathbb{C}\left[X_{1}^{(r)}, \ldots, X_{d}^{(r)} \mid r=0,1,2, \ldots\right] \quad \text { with } \quad X_{i}^{(0)}=X_{i},
$$

Affine Poisson vertex algebra $\mathcal{V}(\mathfrak{g})$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} and
let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g}.
Consider the differential algebra $\mathcal{V}=\mathcal{V}(\mathfrak{g})$,

$$
\mathcal{V}=\mathbb{C}\left[X_{1}^{(r)}, \ldots, X_{d}^{(r)} \mid r=0,1,2, \ldots\right] \quad \text { with } \quad X_{i}^{(0)}=X_{i},
$$

equipped with the derivation ∂,

$$
\partial\left(X_{i}^{(r)}\right)=X_{i}^{(r+1)}
$$

for all $i=1, \ldots, d$ and $r \geqslant 0$.

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+\langle X, Y\rangle \lambda \quad \text { for } \quad X, Y \in \mathfrak{g},
$$

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+\langle X, Y\rangle \lambda \quad \text { for } \quad X, Y \in \mathfrak{g},
$$

and extended to \mathcal{V} by sesquilinearity $(a, b \in \mathcal{V})$:

$$
\left\{\partial a_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}
$$

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+\langle X, Y\rangle \lambda \quad \text { for } \quad X, Y \in \mathfrak{g},
$$

and extended to \mathcal{V} by sesquilinearity $(a, b \in \mathcal{V})$:

$$
\left\{\partial a_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}
$$

skewsymmetry $\quad\left\{a_{\lambda} b\right\}=-\left\{b_{-\lambda-\partial} a\right\}$,

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+\langle X, Y\rangle \lambda \quad \text { for } \quad X, Y \in \mathfrak{g}
$$

and extended to \mathcal{V} by sesquilinearity $(a, b \in \mathcal{V})$:

$$
\left\{\partial a_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}
$$

skewsymmetry

$$
\left\{a_{\lambda} b\right\}=-\left\{b_{-\lambda-\partial} a\right\}
$$

and the Leibniz rule $(a, b, c \in \mathcal{V})$:

$$
\left\{a_{\lambda} b c\right\}=\left\{a_{\lambda} b\right\} c+\left\{a_{\lambda} c\right\} b
$$

Hamiltonian reduction

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ set $\mathfrak{p}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{p}}: \mathfrak{g} \rightarrow \mathfrak{p}
$$

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ set $\mathfrak{p}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{p}}: \mathfrak{g} \rightarrow \mathfrak{p}
$$

Let $f \in \mathfrak{n}_{-}$be a principal nilpotent in \mathfrak{g}.

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$
set $\mathfrak{p}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{p}}: \mathfrak{g} \rightarrow \mathfrak{p}
$$

Let $f \in \mathfrak{n}_{-}$be a principal nilpotent in \mathfrak{g}.
Define the differential algebra homomorphism

$$
\rho: \mathcal{V} \rightarrow \mathcal{V}(\mathfrak{p}), \quad \rho(X)=\pi_{\mathfrak{p}}(X)+\langle f, X\rangle, \quad X \in \mathfrak{g}
$$

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$
set $\mathfrak{p}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{p}}: \mathfrak{g} \rightarrow \mathfrak{p}
$$

Let $f \in \mathfrak{n}_{-}$be a principal nilpotent in \mathfrak{g}.
Define the differential algebra homomorphism

$$
\rho: \mathcal{V} \rightarrow \mathcal{V}(\mathfrak{p}), \quad \rho(X)=\pi_{\mathfrak{p}}(X)+\langle f, X\rangle, \quad X \in \mathfrak{g}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{V}(\mathfrak{p}) \mid \rho\left\{X_{\lambda} P\right\}=0 \quad \text { for all } \quad X \in \mathfrak{n}_{+}\right\} .
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is a Poisson vertex algebra equipped with the λ-bracket

$$
\left\{a_{\lambda} b\right\}_{\rho}=\rho\left\{a_{\lambda} b\right\}, \quad a, b \in \mathcal{W}(\mathfrak{g}) .
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is a Poisson vertex algebra equipped with the λ-bracket

$$
\left\{a_{\lambda} b\right\}_{\rho}=\rho\left\{a_{\lambda} b\right\}, \quad a, b \in \mathcal{W}(\mathfrak{g})
$$

Motivation: Hamiltonian equations

$$
\frac{\partial u}{\partial t}=\left.\left\{H_{\lambda} u\right\}\right|_{\lambda=0}
$$

for $u=u(t) \in \mathcal{W}(\mathfrak{g})$ with the Hamiltonian $H \in \mathcal{W}(\mathfrak{g})$.

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is a Poisson vertex algebra equipped with the λ-bracket

$$
\left\{a_{\lambda} b\right\}_{\rho}=\rho\left\{a_{\lambda} b\right\}, \quad a, b \in \mathcal{W}(\mathfrak{g})
$$

Motivation: Hamiltonian equations

$$
\frac{\partial u}{\partial t}=\left.\left\{H_{\lambda} u\right\}\right|_{\lambda=0}
$$

for $u=u(t) \in \mathcal{W}(\mathfrak{g})$ with the Hamiltonian $H \in \mathcal{W}(\mathfrak{g})$.

De Sole, Kac and Valeri, 2013-15; Drinfeld and Sokolov, 1985.

Example. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the basis e, f, h.

Example. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the basis e, f, h.

$$
\mathcal{W}\left(\mathfrak{s l}_{2}\right)=\mathbb{C}\left[u, u^{\prime}, u^{\prime \prime}, \ldots\right], \quad u=\frac{h^{2}}{4}+\frac{h^{\prime}}{2}+f \in \mathcal{V}(\mathfrak{p})
$$

Example. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the basis e, f, h.

$$
\mathcal{W}\left(\mathfrak{s l}_{2}\right)=\mathbb{C}\left[u, u^{\prime}, u^{\prime \prime}, \ldots\right], \quad u=\frac{h^{2}}{4}+\frac{h^{\prime}}{2}+f \in \mathcal{V}(\mathfrak{p})
$$

The λ-bracket (of Virasoro-Magri) on $\mathcal{W}\left(\mathfrak{s l}_{2}\right)$ is given by

$$
\left\{u_{\lambda} u\right\}=(2 \lambda+\partial) u-\frac{\lambda^{3}}{2}
$$

Example. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with the basis e, f, h.

$$
\mathcal{W}\left(\mathfrak{s l}_{2}\right)=\mathbb{C}\left[u, u^{\prime}, u^{\prime \prime}, \ldots\right], \quad u=\frac{h^{2}}{4}+\frac{h^{\prime}}{2}+f \in \mathcal{V}(\mathfrak{p})
$$

The λ-bracket (of Virasoro-Magri) on $\mathcal{W}\left(\mathfrak{s l}_{2}\right)$ is given by

$$
\left\{u_{\lambda} u\right\}=(2 \lambda+\partial) u-\frac{\lambda^{3}}{2}
$$

The Hamiltonian equation with $H=\frac{u^{2}}{2}$ is equivalent to the KdV equation

$$
\frac{\partial u}{\partial t}=3 u u^{\prime}-\frac{1}{2} u^{\prime \prime \prime} .
$$

Another λ-bracket (of Gardner-Faddeev-Zakharov) on $\mathcal{W}\left(\mathfrak{s l}_{2}\right)$
is given by

$$
\left\{u_{\lambda} u\right\}_{0}=\lambda
$$

Another λ-bracket (of Gardner-Faddeev-Zakharov) on $\mathcal{W}\left(\mathfrak{s l}_{2}\right)$
is given by

$$
\left\{u_{\lambda} u\right\}_{0}=\lambda
$$

The Hamiltonian equation with

$$
K=\frac{1}{2} u^{3}-\frac{1}{4} u u^{\prime \prime}
$$

is also equivalent to the KdV equation.

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{p} is the subalgebra of lower triangular matrices.

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{p} is the subalgebra of lower triangular matrices. Set

$$
f=E_{21}+E_{32}+\cdots+E_{N N-1} .
$$

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{p} is the subalgebra of lower triangular matrices. Set

$$
f=E_{21}+E_{32}+\cdots+E_{N N-1} .
$$

We will work with the algebra $\mathcal{V}(\mathfrak{p}) \otimes \mathbb{C}[\partial]$,

$$
\partial E_{i j}^{(r)}-E_{i j}^{(r)} \partial=E_{i j}^{(r+1)}
$$

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{p} is the subalgebra of lower triangular matrices. Set

$$
f=E_{21}+E_{32}+\cdots+E_{N N-1} .
$$

We will work with the algebra $\mathcal{V}(\mathfrak{p}) \otimes \mathbb{C}[\partial]$,

$$
\partial E_{i j}^{(r)}-E_{i j}^{(r)} \partial=E_{i j}^{(r+1)} .
$$

The invariant symmetric bilinear form on $\mathfrak{g l}_{N}$ is defined by

$$
\langle X, Y\rangle=\operatorname{tr} X Y, \quad X, Y \in \mathfrak{g l}_{N}
$$

Expand the determinant with entries in $\mathcal{V}(\mathfrak{p}) \otimes \mathbb{C}[\partial]$,
$\operatorname{det}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \cdots & \cdots & \cdots & \cdots \\ E_{N-11} & E_{N-12} & E_{N-13} & \cdots & \ldots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \ldots & \ldots & \partial+E_{N N}\end{array}\right]$
$=\partial^{N}+w_{1} \partial^{N-1}+\cdots+w_{N}$.

Expand the determinant with entries in $\mathcal{V}(\mathfrak{p}) \otimes \mathbb{C}[\partial]$,
$\operatorname{det}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \cdots & \cdots & \cdots & \cdots & \cdots \\ E_{N-11} & E_{N-12} & E_{N-13} & \cdots & \ldots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \cdots & \ldots & \partial+E_{N N}\end{array}\right]$
$=\partial^{N}+w_{1} \partial^{N-1}+\cdots+w_{N}$.

Theorem. All elements w_{1}, \ldots, w_{N} belong to $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$. Moreover,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[w_{1}^{(r)}, \ldots, w_{N}^{(r)} \mid r \geqslant 0\right] .
$$

Chevalley-type theorem

Chevalley-type theorem

Let

$$
\phi: \mathcal{V}(\mathfrak{p}) \rightarrow \mathcal{V}(\mathfrak{h})
$$

denote the homomorphism of differential algebras defined on the generators as the projection $\mathfrak{p} \rightarrow \mathfrak{h}$ with the kernel \mathfrak{n}_{-}.

Chevalley-type theorem

Let

$$
\phi: \mathcal{V}(\mathfrak{p}) \rightarrow \mathcal{V}(\mathfrak{h})
$$

denote the homomorphism of differential algebras defined on the generators as the projection $\mathfrak{p} \rightarrow \mathfrak{h}$ with the kernel \mathfrak{n}_{-}.

The restriction of ϕ to $\mathcal{W}(\mathfrak{g})$ is injective. The embedding

$$
\phi: \mathcal{W}(\mathfrak{g}) \hookrightarrow \mathcal{V}(\mathfrak{h})
$$

is often called the Miura transformation.

Theorem.

The restriction of the homomorphism ϕ to the classical
\mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ yields an isomorphism

$$
\phi: \mathcal{W}(\mathfrak{g}) \rightarrow \widetilde{\mathcal{W}}(\mathfrak{g})
$$

Theorem.

The restriction of the homomorphism ϕ to the classical
\mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ yields an isomorphism

$$
\phi: \mathcal{W}(\mathfrak{g}) \rightarrow \widetilde{\mathcal{W}}(\mathfrak{g})
$$

where $\mathcal{W}(\mathfrak{g})$ is the subalgebra of $\mathcal{V}(\mathfrak{h})$ which consists of the elements annihilated by all screening operators V_{i},

$$
\widetilde{\mathcal{W}}(\mathfrak{g})=\bigcap_{i=1}^{n} \operatorname{ker} V_{i}
$$

