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Symmetric group Sm

Let Sm denote the group of permutations of the set {1, . . . ,m}.

Let sab denote the transposition (a, b) for a < b.

The symmetrizer is the element

h(m) =
1
m!

∑
s∈Sm

s ∈ C [Sm].

The anti-symmetrizer is the element

a(m) =
1
m!

∑
s∈Sm

sgn s · s ∈ C [Sm].
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Fusion formulas

Theorem [Jucys 1966].

The following factorization formulas hold:

h(m) =
1
m!

∏
16a<b6m

(
1 +

sab

b− a

)
,

a(m) =
1
m!

∏
16a<b6m

(
1− sab

b− a

)
,

where both products are taken in the lexicographical order on

the set of pairs (a, b).
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Action of Sm in tensors

The symmetric group Sm acts in the tensor space

CN ⊗ . . .⊗ CN︸ ︷︷ ︸
m

by the rule

sab 7→ Pab, 1 6 a < b 6 m,

where Pab is the permutation operator

Pab =
N∑

i,j=1

1⊗(a−1) ⊗ ei j ⊗ 1⊗(b−a−1) ⊗ ej i ⊗ 1⊗(m−b)

and ei j ∈ EndCN are the matrix units.
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The symmetrizer and anti-symmetrizer act as the operators

H(m) =
1
m!

∏
16a<b6m

(
1 +

Pab

b− a

)

and

A(m) =
1
m!

∏
16a<b6m

(
1− Pab

b− a

)

which we regard as elements of the algebra

End (CN)⊗m ∼= EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

.
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Lie algebra glN

We let Eij be the standard basis elements of glN .

The universal enveloping algebra U(glN) is the associative

algebra generated by the N2 elements Eij subject to the defining

relations

Eij Ekl − Ekl Eij = δkj Eil − δil Ekl.

We will combine the generators into the matrix E = [Eij] which

will also be regarded as the element

E =

N∑
i,j=1

eij ⊗ Eij ∈ EndCN ⊗ U(glN).
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Consider the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U(glN)

and for a = 1, . . . ,m introduce its elements by

Ea =
N∑

i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Eij.

Note the property Pab Ea = Eb Pab.

Key Lemma. The defining relations of U(glN) are equivalent

to the single relation

E1 E2 − E2 E1 = (E1 − E2)P12.
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The trace is the linear map EndCN → C

defined by tr : eij 7→ δij.

The partial trace tra acts on the a-th copy of EndCN in

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U(glN).

Theorem. For any s ∈ C [Sm] and u1, . . . , um ∈ C the element

tr1,...,m S (u1 + E1) . . . (um + Em)

belongs to the center Z(glN) of U(glN).
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Proof. Consider the tensor product

EndCN ⊗ End (CN)⊗m ⊗ U(glN)

with the copies of the algebra EndCN labelled by 0, 1, . . . ,m.

We will show that

[
E0, tr1,...,m S (u1 + E1) . . . (um + Em)

]
= 0.

By the Key Lemma,

[E0, ua + Ea] = P0a(ua + Ea)− (ua + Ea)P0a,

where we used the relations Pab Eb = Ea Pab.
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− S (u1 + E1) . . . (um + Em)
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a=1

P0 a,

because E0 S = SE0 and P0 a commutes with Eb for b 6= a.

The sum of the permutation operators P0a commutes with S

(the Schur–Weyl duality). Applying the trace tr1,...,m and using

its cyclic property we get 0.
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Example: Capelli determinant.

Take m = N and introduce the Capelli determinant by

C(u) = tr1,...,N A(N) (u + E1) . . . (u + EN − N + 1).

Then C(u) coincides with the column-determinant

C(u) = cdet



u + E11 E12 . . . E1N

E21 u + E22 − 1 . . . E2N

...
...

...

EN1 EN2 . . . u + ENN − N + 1


.

All coefficients of the polynomial C(u) are Casimir elements.
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Indeed, observe that by the Key Lemma

(
1− Pab

b− a

)
(u + Ea − a + 1)(u + Eb − b + 1)

= (u + Eb − b + 1)(u + Ea − a + 1)
(

1− Pab

b− a

)
.

Hence, the fusion formula for A(N) gives

A(N) (u+E1) . . . (u+EN−N+1) = (u+EN−N+1) . . . (u+E1)A(N)

and that this equals A(N) C(u).

It remains to note that tr1,...,N A(N) = 1.
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Example: Gelfand invariants.

Take s = (m m− 1 . . . 1) in the Theorem. Then

S = Pm−1 m . . .P2 3 P1 2.

We get the Casimir elements (Gelfand invariants):

tr1,...,m S E1 . . .Em = tr Em.

For instance, for m = 2 we get

tr1,2P12 E1 E2 = tr1,2 E2P12 E2 = tr E2

because tr1 P12 = 1.
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The Newton identity

Theorem [Perelomov–Popov, 1966].

We have the identity

1 +

∞∑
m=0

(−1)m tr Em

(u− N + 1)m+1 =
C(u + 1)

C(u)
.

Proof. Verify

tr1,...,N A(N) (u+E1) . . . (u+EN−1−N + 2)(u+EN + 1) = C(u+ 1).

Hence,

C(u + 1)− C(u) = N tr1,...,N A(N) (u + E1) . . . (u + EN−1 − N + 2)

= N tr1,...,N A(N) C(u) (u + EN − N + 1)−1.
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Harish-Chandra isomorphism

Given an N-tuple of complex numbers λ = (λ1, . . . , λN), the

corresponding irreducible highest weight representation L(λ) of

the Lie algebra glN is generated by a nonzero vector ξ ∈ L(λ)

(the highest vector) such that

Eij ξ = 0 for 1 6 i < j 6 N, and

Eii ξ = λi ξ for 1 6 i 6 N.
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Any element z ∈ Z(glN) acts in L(λ) by multiplying each vector

by a scalar χ(z).

When regarded as a function of the highest weight, χ(z) is a

symmetric polynomial in the variables l1, . . . , lN , where

li = λi − i + 1.

The mapping z 7→ χ(z) defines an algebra isomorphism

χ : Z(glN)→ C [l1, . . . , lN ]SN

known as the Harish-Chandra isomorphism.



Any element z ∈ Z(glN) acts in L(λ) by multiplying each vector

by a scalar χ(z).

When regarded as a function of the highest weight, χ(z) is a

symmetric polynomial in the variables l1, . . . , lN , where

li = λi − i + 1.

The mapping z 7→ χ(z) defines an algebra isomorphism

χ : Z(glN)→ C [l1, . . . , lN ]SN

known as the Harish-Chandra isomorphism.



Any element z ∈ Z(glN) acts in L(λ) by multiplying each vector

by a scalar χ(z).

When regarded as a function of the highest weight, χ(z) is a

symmetric polynomial in the variables l1, . . . , lN , where

li = λi − i + 1.

The mapping z 7→ χ(z) defines an algebra isomorphism

χ : Z(glN)→ C [l1, . . . , lN ]SN

known as the Harish-Chandra isomorphism.



Consider the standard triangular decomposition

glN = n− ⊕ h⊕ n+.

Then χ can also be defined as the restriction to Z(glN) of the

Harish-Chandra homomorphism

U(glN)
h → U(h)

which is the projection of the h-centralizer U(glN)
h with respect

to the direct sum decomposition

U(glN)
h = U(h)⊕

(
U(glN)

h ∩ U(glN)n+

)
.
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Example. Under the Harish-Chandra isomorphism we have

χ : C(u) 7→ (u + l1) . . . (u + lN), li = Eii − i + 1.

This is immediate from the definition

C(u) =
∑
σ∈SN

sgnσ · (u + E)σ(1)1 . . . (u + E − N + 1)σ(N)N .

By the Newton formula, the Harish-Chandra images of the

Gelfand invariants are found by

1 +
∞∑

m=0

(−1)m χ(tr Em)

(u− N + 1)m+1 =
N∏

i=1

u + li + 1
u + li

.
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Let g be a simple Lie algebra of rank n and g = n− ⊕ h⊕ n+.

We have the direct sum decomposition

U(g)h = U(h)⊕
(

U(g)h ∩ U(g)n+

)
and the Harish-Chandra isomorphism

χ : Z(g)→ U(h)W , with a shifted action of W.

We have
Z(g) = C [P1, . . . ,Pn],

for certain algebraically independent invariants P1, . . . ,Pn

whose degrees d1, . . . , dn are the exponents of g increased by 1.
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Brauer algebra Bm(ω)

Multiplication of m-diagrams (m = 8):
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Brauer algebra Bm(ω)

Multiplication of m-diagrams (m = 8):
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The dimension of the Brauer algebra Bm(ω) is (2m− 1)!!.

For 1 6 a < b 6 m denote by sab and gab the diagrams

q q q q q qq q q q q q
��

��
�PPPPP· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

1 a b m

and q q q q q qq q q q q q� �� �· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1 a b m

The symmetrizer in Bm(ω) is the idempotent s(m) such that

sab s(m) = s(m) sab = s(m) and gab s(m) = s(m)gab = 0.
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Explicitly,

s(m) =
1
m!

bm/2c∑
r=0

(−1)r
(
ω/2 + m− 2

r

)−1 ∑
d∈D(r)

d,

where D(r) ⊂ Bm(ω) denotes the set of diagrams which have

exactly r horizontal edges in the top.

Also,

s(m) =
∏

16a<b6m

(
1− gab

ω + a + b− 3

)
h(m),

and

s(m) =
1
m!

∏
16a<b6m

(
1 +

sab

b− a
− gab

ω/2 + b− a− 1

)
,

where the products are in the lexicographic order.
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Brauer–Schur–Weyl duality

There are commuting actions of the classical groups

in types B, C or D and the Brauer algebra with a specialized

parameter ω on the tensor product space

CN ⊗ . . .⊗ CN︸ ︷︷ ︸
m

.

The dual pairs are (
Bm(N),ON

)
and (

Bm(−N), SpN
)

with N = 2n.
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Action in tensors

In the case g = oN set ω = N. The generators of Bm(N) act

in the tensor space
CN ⊗ . . .⊗ CN︸ ︷︷ ︸

m

by the rule

sab 7→ Pab, gab 7→ Qab, 1 6 a < b 6 m,

where i ′ = N − i + 1 and

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ ei j ⊗ 1⊗(b−a−1) ⊗ ei ′j ′ ⊗ 1⊗(m−b).
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In the case g = spN with N = 2n set ω = −N. The

generators of Bm(−N) act in the tensor space (CN)⊗m by

sab 7→ −Pab, gab 7→ −Qab, 1 6 a < b 6 m,

with εi = −εn+i = 1 for i = 1, . . . , n and

Qab =
N∑

i,j=1

εiεj 1⊗(a−1) ⊗ ei j ⊗ 1⊗(b−a−1) ⊗ ei ′j ′ ⊗ 1⊗(m−b).

In both cases denote by S(m) the image of the symmetrizer s(m)

under the action in tensors,

S(m) ∈ EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

.
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Explicitly, in the orthogonal case

S(m) =
1
m!

∏
16a<b6m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
,

and in the symplectic case

S(m) =
1
m!

∏
16a<b6m

(
1− Pab

b− a
− Qab

n− b + a + 1

)
.

Remark. S(n+1) = 0 for g = sp2n. Consider γm(−2n) S(m),

γm(ω) =
ω + m− 2
ω + 2m− 2

, ω =


N for g = oN

−2n for g = sp2n.
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Lie algebras oN and spN

Let g = oN , spN with N = 2n or N = 2n + 1.

Set

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′ ,

respectively.

Introduce the N × N matrix F = [Fij]

F =
N∑

i,j=1

eij ⊗ Fi j ∈ EndCN ⊗ U(g).
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Theorem. For any s ∈ Bm(ω) with ω = ±N

and u1, . . . , um ∈ C the element

tr1,...,m S (u1 + F1) . . . (um + Fm)

belongs to the center Z(g) of U(g).

In particular, there are analogues of the Capelli determinant

and Gelfand invariants.

A version of the Newton identity also holds.



Theorem. For any s ∈ Bm(ω) with ω = ±N

and u1, . . . , um ∈ C the element

tr1,...,m S (u1 + F1) . . . (um + Fm)

belongs to the center Z(g) of U(g).

In particular, there are analogues of the Capelli determinant

and Gelfand invariants.

A version of the Newton identity also holds.



Theorem. For any s ∈ Bm(ω) with ω = ±N

and u1, . . . , um ∈ C the element

tr1,...,m S (u1 + F1) . . . (um + Fm)

belongs to the center Z(g) of U(g).

In particular, there are analogues of the Capelli determinant

and Gelfand invariants.

A version of the Newton identity also holds.



Proof of the theorem relies on the matrix form of the defining

relations for U(g):

F1 F2 − F2 F1 = (P12 − Q12)F2 − F2 (P12 − Q12)

where both sides are regarded as elements of the algebra

EndCN ⊗ EndCN ⊗ U(g) and

F1 =
N∑

i,j=1

eij ⊗ 1⊗ Fij, F2 =
N∑

i,j=1

1⊗ eij ⊗ Fij.
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Theorem. For g = oN the image of the Casimir element

γ2k(N) tr S(2k) (F1 − k) . . . (F2k + k − 1)

under the Harish-Chandra isomorphism is given by

∑
16j16···6jk6n

(
l2j1 − (j1 − 1/2)2) . . . (l2jk − (jk + k − 3/2)2),

where li = Fii + n− i + 1/2 in the case N = 2n + 1; and

∑
16j16···6jk6n

(
l2j1 − (j1 − 1)2) . . . (l2jk − (jk + k − 2)2),

where li = Fii + n− i in the case N = 2n.
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Theorem. For gN = sp2n the image of the Casimir element

γ2k(−2n) tr S(2k) (F1 + k) . . . (F2k − k + 1)

under the Harish-Chandra isomorphism is given by

(−1)k
∑

16j1<···<jk6n

(
l2j1 − j21

)
. . .
(
l2jk − (jk − k + 1)2),

where li = Fii + n− i + 1 for i = 1, . . . , n.
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More constructions of Casimir elements for the Lie algebras

glN , oN and sp2n are known.

In particular, there is a linear basis of Z(glN) formed by the

quantum immanants Sλ with λ running over partitions with at

most N parts (Okounkov–Olshanski, 1996, 1998).

The Harish-Chandra images χ(Sλ) are

the shifted Schur polynomials.
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Affine Kac–Moody algebras

Define an invariant bilinear form on a simple Lie algebra g,

〈X,Y〉 = 1
2h∨

tr(ad X ad Y),

where h∨ is the dual Coxeter number.

For the classical types, 〈X,Y〉 = const · tr X Y,

h∨ =



N for g = slN , const = 1

N − 2 for g = oN , const = 1
2

n + 1 for g = sp2n, const = 1.
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The affine Kac–Moody algebra ĝ is the central extension

ĝ = g[t, t−1]⊕ CK

with the commutation relations

[
X[r],Y[s]

]
= [X,Y][r + s] + r δr,−s〈X,Y〉K,

where X[r] = X t r for any X ∈ g and r ∈ Z .

Problem: What are Casimir elements for ĝ?
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The universal enveloping algebra at the critical level U−h∨(ĝ) is

the quotient of U(ĝ) by the ideal generated by K + h∨.

By [Kac 1974], the canonical quadratic Casimir element

belongs to a completion Ũ−h∨(ĝ) of U−h∨(ĝ) with respect to the

left ideals Im, m > 0, generated by tmg[t].
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Let Z(ĝ) be the center of the completed algebra Ũ−h∨(ĝ).

Known results:

I Algebraic structure of Z(ĝ).

I Explicit generators for classical types A,B,C,D.

Questions:

I Extension to Lie superalgebras.

I Extension to quantum affine algebras.
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Let Z(ĝ) be the center of the completed algebra Ũ−h∨(ĝ).
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Example: g = glN . Defining relations for U(ĝlN):

Eij[r]Ekl[s ]− Ekl[s ]Eij[r]

= δkj Ei l[r + s ]− δi l Ekj[r + s ] + rδr,−s

(
δkj δi l −

δij δkl

N

)
K.

The critical level is K = −N.

For all r ∈ Z the sums
N∑

i=1

Eii[r]

are Casimir elements.
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For r ∈ Z set

Cr =

N∑
i,j=1

(∑
s<0

Eij[s]Eji[r − s] +
∑
s>0

Eji[r − s]Eij[s]
)
.

All Cr are Casimir elements at the critical level, they belong to

the completed universal enveloping algebra Ũ−N(ĝlN).
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Introduce the (formal) Laurent series

Eij(z) =
∑
r∈Z

Eij[r] z−r−1

and use the notation

Eij(z)+ =
∑
r<0

Eij[r] z−r−1, Eij(z)− =
∑
r>0

Eij[r] z−r−1.

Given two Laurent series a(z) and b(z),

their normally ordered product is defined by

: a(z)b(z) : = a(z)+ b(z) + b(z) a(z)−.
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Note

∑
r∈Z

Cr z−r−2 =

N∑
i,j=1

(
Eij(z)+Eji(z) + Eji(z)Eij(z)−

)
.

Hence, all coefficients of the series

tr : E(z)2 : =
N∑

i,j=1

: Eij(z)Eji(z) :

are Casimir elements.
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Similarly, all coefficients of the series

tr : E(z)3 : =

N∑
i,j,k=1

: Eij(z)Ejk(z)Eki(z) :

are Casimir elements, where the normal ordering is applied

from right to left.

However, the claim does not extend to tr : E(z)4 : !

Correction term: all coefficients of the series

tr : E(z)4 : − tr :
(
∂z E(z)

)2
:

are Casimir elements.
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Invariants of the vacuum module

The vacuum module at the critical level is the ĝ-module

V(g) = U−h∨(ĝ)/U−h∨(ĝ)g[t].

The Feigin–Frenkel center z(ĝ) is the algebra of g[t]-invariants

z(ĝ) = {v ∈ V(g) | g[t]v = 0}.

Note V(g) ∼= U
(
t−1g[t−1]

)
as a vector space.

Hence, z(ĝ) is a subalgebra of U
(
t−1g[t−1]

)
.
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Hence, z(ĝ) is a subalgebra of U
(
t−1g[t−1]

)
.



Invariants of the vacuum module

The vacuum module at the critical level is the ĝ-module
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z(ĝ) = {v ∈ V(g) | g[t]v = 0}.

Note V(g) ∼= U
(
t−1g[t−1]

)
as a vector space.
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Properties:

I The subalgebra z(ĝ) of U
(
t−1g[t−1]

)
is commutative.

I It is invariant with respect to the translation operator T

defined as the derivation T = −d/dt.

Any element of z(ĝ) is called a Segal–Sugawara vector.



Properties:

I The subalgebra z(ĝ) of U
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Theorem (Feigin–Frenkel, 1992, Frenkel, 2007).

There exist Segal–Sugawara vectors S1, . . . , Sn ∈ U
(
t−1g[t−1]

)
,

n = rank g, such that

z(ĝ) = C [T kSl | l = 1, . . . , n, k > 0].

We call S1, . . . , Sn a complete set of Segal–Sugawara vectors.

Explicit constructions of such sets and a new proof of

the theorem for the classical types A,B,C,D:

[Chervov–Talalaev, 2006, Chervov–M., 2009, M. 2013].
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Example: g = glN .

Set τ = −d/dt and consider the N × N matrix

τ + E[−1] =



τ + E11[−1] E12[−1] . . . E1N [−1]

E21[−1] τ + E22[−1] . . . E2N [−1]
...

...
. . .

...

EN1[−1] EN2[−1] . . . τ + ENN [−1]
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The coefficients φ1, . . . , φN of the polynomial

cdet
(
τ + E[−1]

)
= τN + φ1 τ

N−1 + · · ·+ φN−1 τ + φN

form a complete set of Segal–Sugawara vectors.

For N = 2

cdet
(
τ + E[−1]

)
=
(
τ + E11[−1]

)(
τ + E22[−1]

)
− E21[−1]E12[−1]

= τ 2 + φ1 τ + φ2

with

φ1 = E11[−1] + E22[−1],

φ2 = E11[−1]E22[−1]− E21[−1]E12[−1] + E22[−2].
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To get another family of Segal–Sugawara vectors, expand

tr
(
τ + E[−1]

)m
= θm 0 τ

m + θm1 τ
m−1 + · · ·+ θmm

All coefficients θmi belong to the Feigin–Frenkel center z(ĝlN).

The elements θ11, . . . , θN N form

a complete set of Segal–Sugawara vectors.

The following are Segal–Sugawara vectors for glN :

tr E[−1], tr E[−1]2, tr E[−1]3, tr E[−1]4 − tr E[−2]2.
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The corresponding central elements in Ũ−N(ĝlN) are recovered

by the state-field correspondence map Y which takes

elements of the vacuum module V(glN) to Laurent series in z;

its application to Segal–Sugawara vectors yields Laurent series

whose coefficients are Casimir elements.

By definition,

Y : Eij[−1] 7→ Eij(z) =
∑
r∈Z

Eij[r] z−r−1.
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Write

tr :
(
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)m
: = θm0(z) ∂

m
z + · · ·+ θmm(z).

Theorem. The coefficients of the Laurent series

θ11(z), . . . , θN N(z)

are topological generators of the center of Ũ−N(ĝlN).

Remark. The theorem holds in the same form for any complete

set of Segal–Sugawara vectors.
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z + · · ·+ θmm(z).
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Remark. The theorem holds in the same form for any complete
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z + · · ·+ θmm(z).
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Proving the Feigin–Frenkel theorem for the classical types:

I Produce Segal–Sugawara vectors S1, . . . , Sn explicitly.

I Show that all elements T kSl with l = 1, . . . , n and k > 0 are

algebraically independent and generate z(ĝ).

Use the classical limit:

gr U
(
t−1g[t−1]

) ∼= S
(
t−1g[t−1]

)
which yields a g[t]-module structure on the symmetric algebra

S
(
t−1g[t−1]

) ∼= S
(
g[t, t−1]/g[t]

)
.



Proving the Feigin–Frenkel theorem for the classical types:

I Produce Segal–Sugawara vectors S1, . . . , Sn explicitly.

I Show that all elements T kSl with l = 1, . . . , n and k > 0 are

algebraically independent and generate z(ĝ).
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Use the classical limit:

gr U
(
t−1g[t−1]

) ∼= S
(
t−1g[t−1]

)

which yields a g[t]-module structure on the symmetric algebra

S
(
t−1g[t−1]

) ∼= S
(
g[t, t−1]/g[t]

)
.



Proving the Feigin–Frenkel theorem for the classical types:

I Produce Segal–Sugawara vectors S1, . . . , Sn explicitly.

I Show that all elements T kSl with l = 1, . . . , n and k > 0 are

algebraically independent and generate z(ĝ).
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Let X1, . . . ,Xd be a basis of g and let P = P(X1, . . . ,Xd) be a

g-invariant in the symmetric algebra S(g).

Then each element

P(r) = T r P
(
X1[−1], . . . ,Xd[−1]

)
, r > 0,

is a g[t]-invariant in the symmetric algebra S
(
t−1g[t−1]

)
.

Theorem (Raïs–Tauvel 1992, Beilinson–Drinfeld 1997).

If P1, . . . ,Pn are algebraically independent generators of S(g)g,

then the elements P1,(r), . . . ,Pn,(r) with r > 0 are algebraically

independent generators of S
(
t−1g[t−1]

)g[t].
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Explicit generators of z(ĝ). Type A

Set
Eij[r] = Eij tr ∈ glN [t, t

−1]

and

E[r] =
N∑

i,j=1

eij ⊗ Eij[r] ∈ EndCN ⊗ U
(
glN [t, t

−1]
)
.

Consider the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U
(
glN [t, t

−1]
)

and recall its elements H(m) and A(m).
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Theorem. All coefficients of the polynomials in τ = −d/d t

tr1,...,m A(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= φm 0 τ

m + φm1 τ
m−1 + · · ·+ φmm,

tr1,...,m H(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= ψm 0 τ

m + ψm1 τ
m−1 + · · ·+ ψmm,

and

tr (τ + E[−1])m = θm 0 τ
m + θm 1 τ

m−1 + · · ·+ θmm

belong to the Feigin–Frenkel center z(ĝlN).
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Proof. Use the matrix form of the defining relations of U−N(ĝlN):

For any r ∈ Z set

E[r] =
N∑

i,j=1

eij ⊗ Eij[r] ∈ EndCN ⊗ U−N(ĝlN).

The defining relations can be written in the form

E[r]1 E[s]2 − E[s]2 E[r]1

=
(
E[r + s]1 − E[r + s]2

)
P12 + rδr,−s

(
1− N P12

)
.
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The required relations in the vacuum module are

E[0]0 tr1,...,m A(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= 0

and

E[1]0 tr1,...,m A(m)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]m

)
= 0.

The elements ψma and θma are expressed in terms of the

φma through the MacMahon Master Theorem and the Newton

identities, respectively.
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and

E[1]0 tr1,...,m A(m)
(
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)
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)
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The elements ψma and θm a are expressed in terms of the

φma through the MacMahon Master Theorem and the Newton

identities, respectively.



The coefficients of the column-determinant are related to the

φma through the relation

cdet
(
τ + E[−1]

)
= tr1,...,N A(N)

(
τ + E[−1]1

)
. . .
(
τ + E[−1]N

)
.

This follows from the property

A(N)
(
τ + E[−1]1

)
. . .
(
τ + E[−1]N

)
= A(N)

(
τ + E[−1]1

)
. . .
(
τ + E[−1]N

)
A(N),

implied by the fact that τ + E[−1] is a Manin matrix.
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Types B, C and D

Recall the symmetrizers associated with oN and sp2n:

S(m) =
1
m!

∏
16a<b6m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
,

and

S(m) =
1
m!

∏
16a<b6m

(
1− Pab

b− a
− Qab

n− b + a + 1

)
.

Also,

γm(ω) =
ω + m− 2
ω + 2m− 2

, ω =


N for g = oN

−2n for g = sp2n.
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Let g = oN , spN with N = 2n or N = 2n + 1.

As before,

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′

and

Fi j[r] = Fi j tr ∈ g[t, t−1].

Combine into a matrix

F[r] =
N∑

i,j=1

eij ⊗ Fi j[r] ∈ EndCN ⊗ U
(
g[t, t−1]

)
.
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Theorem. All coefficients of the polynomial in τ = −d/d t

γm(ω) tr1,...,m S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
= φm 0 τ

m + φm1 τ
m−1 + · · ·+ φmm

belong to the Feigin–Frenkel center z(ĝ).

In addition, in the case g = o2n, the Pfaffian

Pf F[−1] =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ [−1] . . .Fσ(2n−1)σ(2n)′ [−1]

belongs to z(ô2n).
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Moreover, φ22, φ44, . . . , φ2n 2n is a complete set of

Segal–Sugawara vectors for o2n+1 and sp2n, whereas

φ22, φ44, . . . , φ2n−2 2n−2, φ
′
n is a complete set of

Segal–Sugawara vectors for o2n, where φ ′n = Pf F[−1].
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Affine Harish-Chandra isomorphism

For a triangular decomposition g = n− ⊕ h⊕ n+ consider the

Harish-Chandra homomorphism

U
(
t−1g[t−1]

)h → U
(
t−1h[t−1]

)
,

the projection modulo the left ideal generated by t−1n−[t−1].
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The restriction to z(ĝ) yields the Harish-Chandra isomorphism

f : z(ĝ)→W(Lg),

whereW(Lg) is the classicalW-algebra associated with the

Langlands dual Lie algebra Lg [Feigin and Frenkel, 1992].



The restriction to z(ĝ) yields the Harish-Chandra isomorphism

f : z(ĝ)→W(Lg),

whereW(Lg) is the classicalW-algebra associated with the

Langlands dual Lie algebra Lg [Feigin and Frenkel, 1992].



Example g = glN . Set µi[r] = Ei i[r]. We have

f : cdet
(
τ + E[−1]

)
7→
(
τ + µN [−1]

)
. . .
(
τ + µ1[−1]

)
.

Define the elements E1, . . . , EN by the Miura transformation

(
τ + µN [−1]

)
. . .
(
τ + µ1[−1]

)
= τN + E1 τ

N−1 + · · ·+ EN .

Explicitly,

Em = em
(
T + µ1[−1], . . . ,T + µN [−1]

)
1

is the noncommutative elementary symmetric function,

em(x1, . . . , xp) =
∑

i1>···>im

xi1 . . . xim .
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Example g = oN . Set µi[r] = Fi i[r].

The Harish-Chandra image of the polynomial

γm(N) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
equals

hm
(
τ + µ1[−1], . . . , τ + µn[−1], τ − µn[−1], . . . , τ − µ1[−1]

)
for N = 2n + 1.
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Example g = sp2n. Set µi[r] = Fi i[r].

The Harish-Chandra image of the polynomial

γm(−2n) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
with 1 6 m 6 2n + 1 equals

em
(
τ + µ1[−1], . . . , τ + µn[−1], τ, τ − µn[−1], . . . , τ − µ1[−1]

)
.

Miura transformation for o2n+1 [Drinfeld–Sokolov 1985]:
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τ − µ1[−1]

)
. . .
(
τ − µn[−1]

)
τ
(
τ + µn[−1]
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. . .
(
τ + µ1[−1]

)
= τ 2n+1 + E2 τ

2n−1 + E3 τ
2n−2 + · · ·+ E2n+1.
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ClassicalW-algebras

Let µ1, . . . , µn be a basis of the Cartan subalgebra h of g.

Set µi[r] = µi tr and identify

U
(
t−1h[t−1]

)
= C

[
µ1[r], . . . , µn[r] | r < 0

]
=: Pn.

The classicalW-algebraW(g) is defined by

W(g) = {P ∈ Pn | Vi P = 0, i = 1, . . . , n},

the Vi are the screening operators.
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Example. ForW(glN) the operators V1, . . . ,VN−1 are

Vi =
∞∑

r=0

Vi (r)

( ∂

∂µi[−r − 1]
− ∂

∂µi+1[−r − 1]

)
,

∞∑
r=0

Vi (r) zr = exp
∞∑

m=1

µi[−m]− µi+1[−m]

m
zm.

One verifies directly that

Vi
(
τ + µN [−1]

)
. . .
(
τ + µ1[−1]

)
= 0.
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Equivalently,

Vi : µi(z) 7→ exp
∫ (

µi(z)− µi+1(z)
)

dz,

Vi : µi+1(z) 7→ − exp
∫ (

µi(z)− µi+1(z)
)

dz,

and Vi : µj(z) 7→ 0 for j 6= i, i + 1,

where

µi(z) =
∞∑

r=0

µi[−r − 1] zr, i = 1, . . . ,N.
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Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and

let X1, . . . ,Xd be a basis of g.

Consider the differential algebra V = V(g),

V = C [X(r)
1 , . . . ,X(r)

d | r = 0, 1, 2, . . . ] with X(0)
i = Xi,

equipped with the derivation ∂,

∂ (X(r)
i ) = X(r+1)

i

for all i = 1, . . . , d and r > 0.



Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and

let X1, . . . ,Xd be a basis of g.

Consider the differential algebra V = V(g),

V = C [X(r)
1 , . . . ,X(r)

d | r = 0, 1, 2, . . . ] with X(0)
i = Xi,

equipped with the derivation ∂,

∂ (X(r)
i ) = X(r+1)

i

for all i = 1, . . . , d and r > 0.



Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and

let X1, . . . ,Xd be a basis of g.

Consider the differential algebra V = V(g),

V = C [X(r)
1 , . . . ,X(r)

d | r = 0, 1, 2, . . . ] with X(0)
i = Xi,

equipped with the derivation ∂,

∂ (X(r)
i ) = X(r+1)

i

for all i = 1, . . . , d and r > 0.



Introduce the λ-bracket on V as a linear map

V ⊗ V → C [λ]⊗ V, a⊗ b 7→ {aλ b}.

By definition, it is given by

{Xλ Y} = [X,Y] + 〈X,Y〉λ for X,Y ∈ g,

and extended to V by sesquilinearity (a, b ∈ V):

{∂aλ b} = −λ {aλ b},

skewsymmetry {aλ b} = −{b−λ−∂ a},

and the Leibniz rule (a, b, c ∈ V):

{aλ bc} = {aλ b}c + {aλ c}b.
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Hamiltonian reduction

For a triangular decomposition g = n− ⊕ h⊕ n+

set p = n− ⊕ h and define the projection

πp : g→ p.

Let f ∈ n− be a principal nilpotent in g.

Define the differential algebra homomorphism

ρ : V → V(p), ρ(X) = πp(X) + 〈 f ,X〉, X ∈ g.

The classicalW-algebraW(g) is defined by

W(g) = {P ∈ V(p) | ρ{XλP} = 0 for all X ∈ n+}.
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The classicalW-algebraW(g) is a Poisson vertex algebra

equipped with the λ-bracket

{aλ b}ρ = ρ{aλ b}, a, b ∈ W(g).

Motivation: Hamiltonian equations

∂u
∂ t

= {Hλ u}
∣∣
λ=0

for u = u(t) ∈ W(g) with the Hamiltonian H ∈ W(g).

De Sole, Kac and Valeri, 2013-15; Drinfeld and Sokolov, 1985.
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Example. Let g = sl2 with the basis e, f , h.

W(sl2) = C [u, u′, u′′, . . . ], u =
h2

4
+

h ′

2
+ f ∈ V(p).

The λ-bracket (of Virasoro–Magri) onW(sl2) is given by

{uλ u} = (2λ+ ∂)u− λ3

2
.

The Hamiltonian equation with H =
u2

2
is equivalent to

the KdV equation
∂u
∂ t

= 3uu′ − 1
2

u′′′.
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Generators ofW(glN)

Consider glN = span of {Eij | i, j = 1, . . . ,N}. Here p is the

subalgebra of lower triangular matrices.

Set

f = E21 + E32 + · · ·+ EN N−1.

We will work with the algebra V(p)⊗ C [∂],

∂ E(r)
ij − E(r)

ij ∂ = E (r+1)
ij .

The invariant symmetric bilinear form on glN is defined by

〈X,Y〉 = tr XY, X,Y ∈ glN .
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Expand the determinant with entries in V(p)⊗ C [∂],

det



∂ + E11 1 0 0 . . . 0

E21 ∂ + E22 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

EN−11 EN−12 EN−13 . . . . . . 1

EN 1 EN 2 EN 3 . . . . . . ∂ + EN N



= ∂ N + w1 ∂
N−1 + · · ·+ wN .

Theorem. All elements w1, . . . ,wN belong toW(glN). Moreover,

W(glN) = C [w(r)
1 , . . . ,w(r)

N | r > 0].
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Chevalley-type theorem

Let

φ : V(p)→ V(h)

denote the homomorphism of differential algebras defined on

the generators as the projection p→ h with the kernel n−.

The restriction of φ toW(g) is injective. The embedding

φ :W(g) ↪→ V(h)

is often called the Miura transformation.
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Theorem.

The restriction of the homomorphism φ to the classical

W-algebraW(g) yields an isomorphism

φ :W(g)→ W̃(g),

where W̃(g) is the subalgebra of V(h) which consists of the

elements annihilated by all screening operators Vi,

W̃(g) =
n⋂

i=1

ker Vi.
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