Generators of affine \mathcal{W}-algebras

Alexander Molev

University of Sydney

The \mathcal{W}-algebras first appeared as certain symmetry algebras in conformal field theory.

The \mathcal{W}-algebras first appeared as certain symmetry algebras in conformal field theory.

The \mathcal{W}-algebra associated with $\mathfrak{s l}_{3}$ was constructed by
A. Zamolodchikov, 1985. The construction relied on the seminal work of A. Belavin, A. Polyakov and A. Zamolodchikov, 1984.

The \mathcal{W}-algebras first appeared as certain symmetry algebras in conformal field theory.

The \mathcal{W}-algebra associated with $\mathfrak{s l}_{3}$ was constructed by
A. Zamolodchikov, 1985. The construction relied on the seminal work of A. Belavin, A. Polyakov and A. Zamolodchikov, 1984.

The \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ associated with any simple Lie algebra \mathfrak{g} was constructed by B. Feigin and E. Frenkel, 1990, via the quantum Drinfeld-Sokolov reduction.

More recently, the \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{g}, f)$ were introduced by
V. Kac, S.-S. Roan and M. Wakimoto, 2004.

Here $f \in \mathfrak{g}$ is a nilpotent element.
$\mathcal{W}^{k}(\mathfrak{g}, f)=\mathcal{W}^{k}(\mathfrak{g})$ for the principal nilpotent f.

More recently, the \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{g}, f)$ were introduced by
V. Kac, S.-S. Roan and M. Wakimoto, 2004.

Here $f \in \mathfrak{g}$ is a nilpotent element.
$\mathcal{W}^{k}(\mathfrak{g}, f)=\mathcal{W}^{k}(\mathfrak{g})$ for the principal nilpotent f.

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is obtained as a limit of $\mathcal{W}^{k}(\mathfrak{g})$
when $k \rightarrow \infty$. The algebra $\mathcal{W}(\mathfrak{g})$ is commutative.

More recently, the \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{g}, f)$ were introduced by
V. Kac, S.-S. Roan and M. Wakimoto, 2004.

Here $f \in \mathfrak{g}$ is a nilpotent element.
$\mathcal{W}^{k}(\mathfrak{g}, f)=\mathcal{W}^{k}(\mathfrak{g})$ for the principal nilpotent f.

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is obtained as a limit of $\mathcal{W}^{k}(\mathfrak{g})$ when $k \rightarrow \infty$. The algebra $\mathcal{W}(\mathfrak{g})$ is commutative.

It plays the role of the Weyl group invariants in the affine Harish-Chandra isomorphism $\mathfrak{z}(\widehat{\mathfrak{g}}) \cong \mathcal{W}\left({ }^{L} \mathfrak{g}\right)$
[Feigin-Frenkel, 1992].

Moreover, the Feigin-Frenkel duality provides an isomorphism

$$
\mathcal{W}^{k}(\mathfrak{g}) \cong \mathcal{W}^{k^{\prime}}\left({ }^{L} \mathfrak{g}\right) \quad \text { if } \quad\left(k+h^{\vee}\right)\left(k^{\prime}+{ }^{L} h^{\vee}\right) r^{\vee}=1
$$

Moreover, the Feigin-Frenkel duality provides an isomorphism

$$
\mathcal{W}^{k}(\mathfrak{g}) \cong \mathcal{W}^{k^{\prime}}\left({ }^{L} \mathfrak{g}\right) \quad \text { if } \quad\left(k+h^{\vee}\right)\left(k^{\prime}+{ }^{L} h^{\vee}\right) r^{\vee}=1
$$

In particular,
$\mathfrak{z}(\widehat{\mathfrak{g}}) \cong \mathcal{W}^{-h^{\vee}}(\mathfrak{g}) \cong \mathcal{W}\left({ }^{L_{\mathfrak{g}}}\right)$.

Moreover, the Feigin-Frenkel duality provides an isomorphism

$$
\mathcal{W}^{k}(\mathfrak{g}) \cong \mathcal{W}^{k^{\prime}}\left({ }^{L} \mathfrak{g}\right) \quad \text { if } \quad\left(k+h^{\vee}\right)\left(k^{\prime}+{ }^{L} h^{\vee}\right) r^{\vee}=1
$$

In particular,
$\mathfrak{z}(\widehat{\mathfrak{g}}) \cong \mathcal{W}^{-h^{\vee}}(\mathfrak{g}) \cong \mathcal{W}\left({ }^{L_{g}} \mathfrak{g}\right)$.

Recent work: representation theory of \mathcal{W}-algebras
[T. Arakawa]; classical \mathcal{W}-algebras and integrable Hamiltonian hierarchies [A. De Sole, V. Kac, D. Valeri].

Connection with finite \mathcal{W}-algebras:

Connection with finite \mathcal{W}-algebras:
affine \mathcal{W}-algebra

$$
\mathcal{W}^{k}(\mathfrak{g}, f)
$$

Zhu algebra
$\mathcal{W}(\mathfrak{g}, f)$
finite \mathcal{W}-algebra

Connection with finite \mathcal{W}-algebras:
affine \mathcal{W}-algebra

$$
\begin{aligned}
& \mathcal{W}^{k}(\mathfrak{g}, f) \\
& \quad \downarrow \text { Zhu algebra } \\
& \mathcal{W}(\mathfrak{g}, f)
\end{aligned}
$$

finite \mathcal{W}-algebra
[T. Arakawa, 2007, A. De Sole, V. Kac, 2006]

Connection with finite \mathcal{W}-algebras:
affine \mathcal{W}-algebra universal affine vertex algebra

$$
\begin{aligned}
& \mathcal{W}^{k}(\mathfrak{g}, f) \\
& \mid \text { Zhu algebra } \\
& \mathcal{W}(\mathfrak{g}, f) \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

finite \mathcal{W}-algebra
universal enveloping algebra
[T. Arakawa, 2007, A. De Sole, V. Kac, 2006]

Vacuum modules

Vacuum modules

Let \mathfrak{b} be a finite-dimensional Lie algebra with an invariant symmetric bilinear form \langle,$\rangle .$

Vacuum modules

Let \mathfrak{b} be a finite-dimensional Lie algebra with an invariant symmetric bilinear form \langle,$\rangle . Its Kac-Moody affinization is the$ centrally extended Lie algebra $\widehat{\mathfrak{b}}=\mathfrak{b}\left[t, t^{-1}\right] \oplus \mathbb{C} 1$ with

Vacuum modules

Let \mathfrak{b} be a finite-dimensional Lie algebra with an invariant symmetric bilinear form \langle,$\rangle . Its Kac-Moody affinization is the$ centrally extended Lie algebra $\widehat{\mathfrak{b}}=\mathfrak{b}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{1}$ with

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle \mathbf{1},
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{b}$ and $r \in \mathbb{Z}$.

The vacuum module $V(\mathfrak{b})$ over $\widehat{\mathfrak{b}}$ is defined by

$$
V(\mathfrak{b})=\mathrm{U}(\widehat{\mathfrak{b}}) \otimes_{\mathrm{U}(\mathfrak{b}[t \oplus \oplus \mathbf{C})} \mathbb{C},
$$

where \mathbb{C} is regarded as the one-dimensional representation of
$\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1}$ on which $\mathfrak{b}[t]$ acts trivially and $\mathbf{1}$ acts as 1 .

The vacuum module $V(\mathfrak{b})$ over $\widehat{\mathfrak{b}}$ is defined by

$$
V(\mathfrak{b})=\mathrm{U}(\widehat{\mathfrak{b}}) \otimes_{\mathrm{U}(\mathfrak{b}[t \oplus \oplus \mathbf{C})} \mathbb{C},
$$

where \mathbb{C} is regarded as the one-dimensional representation of $\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1}$ on which $\mathfrak{b}[t]$ acts trivially and $\mathbf{1}$ acts as 1 .

By the PBW theorem, $V(\mathfrak{b}) \cong \mathrm{U}\left(t^{-1} \mathfrak{b}\left[t^{-1}\right]\right)$ as a vector space.

The vacuum module $V(\mathfrak{b})$ over $\widehat{\mathfrak{b}}$ is defined by

$$
V(\mathfrak{b})=\mathrm{U}(\widehat{\mathfrak{b}}) \otimes_{\mathrm{U}(\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1})} \mathbb{C},
$$

where \mathbb{C} is regarded as the one-dimensional representation of
$\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1}$ on which $\mathfrak{b}[t]$ acts trivially and $\mathbf{1}$ acts as 1 .

By the PBW theorem, $V(\mathfrak{b}) \cong \mathrm{U}\left(t^{-1} \mathfrak{b}\left[t^{-1}\right]\right)$ as a vector space.
$V(\mathfrak{b})$ is a vertex algebra with the vacuum vector 1 , the
translation operator $\tau: V(\mathfrak{b}) \rightarrow V(\mathfrak{b})$ which is the derivation
$\tau=-\partial_{t}$ of the enveloping algebra $X[-r] \mapsto r X[-r-1]$, and
the following state-field correspondence map
$Y: a \mapsto a(z)$, where $a \in V(\mathfrak{b})$ and

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)}: V(\mathfrak{b}) \rightarrow V(\mathfrak{b})
$$

the following state-field correspondence map
$Y: a \mapsto a(z)$, where $a \in V(\mathfrak{b})$ and

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)}: V(\mathfrak{b}) \rightarrow V(\mathfrak{b})
$$

By definition, for any $X \in \mathfrak{b}$ the map Y acts by

$$
X[-1] \mapsto X(z)=\sum_{n \in \mathbb{Z}} X[n] z^{-n-1}
$$

the following state-field correspondence map
$Y: a \mapsto a(z)$, where $a \in V(\mathfrak{b})$ and

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)}: V(\mathfrak{b}) \rightarrow V(\mathfrak{b})
$$

By definition, for any $X \in \mathfrak{b}$ the map Y acts by

$$
X[-1] \mapsto X(z)=\sum_{n \in \mathbb{Z}} X[n] z^{-n-1}
$$

$$
X[-r-1] \mapsto \frac{\partial_{z}^{r}}{r!} X(z), \quad r \geqslant 0
$$

Furthermore, if $a=X[-r-1]$ and $b \in V(\mathfrak{b})$ then

$$
a b \mapsto: a(z) b(z):,
$$

Furthermore, if $a=X[-r-1]$ and $b \in V(\mathfrak{b})$ then

$$
a b \mapsto: a(z) b(z):,
$$

where the normally ordered product is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}
$$

Furthermore, if $a=X[-r-1]$ and $b \in V(\mathfrak{b})$ then

$$
a b \mapsto: a(z) b(z):,
$$

where the normally ordered product is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}
$$

with

$$
a(z)_{+}=\sum_{n<0} a_{(n)} z^{-n-1}, \quad a(z)_{-}=\sum_{n \geqslant 0} a_{(n)} z^{-n-1} .
$$

Vertex algebra axioms

Vertex algebra axioms

The state-field correspondence map Y thus equips $V(\mathfrak{b})$ with a family of bilinear n-products: $(a, b) \mapsto a_{(n)} b$ for $n \in \mathbb{Z}$,

Vertex algebra axioms

The state-field correspondence map Y thus equips $V(\mathfrak{b})$ with a family of bilinear n-products: $(a, b) \mapsto a_{(n)} b$ for $n \in \mathbb{Z}$, such that $a_{(n)} b=0$ for $n \gg 0$.

Vertex algebra axioms

The state-field correspondence map Y thus equips $V(\mathfrak{b})$ with a family of bilinear n-products: $(a, b) \mapsto a_{(n)} b$ for $n \in \mathbb{Z}$, such that $a_{(n)} b=0$ for $n \gg 0$. Furthermore,

- $1(z)=\operatorname{id}_{V(\mathfrak{b})}$,

Vertex algebra axioms

The state-field correspondence map Y thus equips $V(\mathfrak{b})$ with a family of bilinear n-products: $(a, b) \mapsto a_{(n)} b$ for $n \in \mathbb{Z}$, such that $a_{(n)} b=0$ for $n \gg 0$. Furthermore,

- $1(z)=\mathrm{id}_{V(\mathfrak{b})}$,
- $a(z) 1$ is a Taylor series in z and $\left.a(z) 1\right|_{z=0}=a$ for $a \in V(\mathfrak{b})$,

Vertex algebra axioms

The state-field correspondence map Y thus equips $V(\mathfrak{b})$ with a family of bilinear n-products: $(a, b) \mapsto a_{(n)} b$ for $n \in \mathbb{Z}$, such that $a_{(n)} b=0$ for $n \gg 0$. Furthermore,

- $1(z)=\operatorname{id}_{V(\mathfrak{b})}$,
- $a(z) 1$ is a Taylor series in z and $\left.a(z) 1\right|_{z=0}=a$ for $a \in V(\mathfrak{b})$,
- $\tau 1=0$ and $\quad[\tau, a(z)]=\partial_{z} a(z)$ for $a \in V(\mathfrak{b})$,

Vertex algebra axioms

The state-field correspondence map Y thus equips $V(\mathfrak{b})$ with a family of bilinear n-products: $(a, b) \mapsto a_{(n)} b$ for $n \in \mathbb{Z}$, such that $a_{(n)} b=0$ for $n \gg 0$. Furthermore,

- $1(z)=\operatorname{id}_{V(\mathfrak{b})}$,
- $a(z) 1$ is a Taylor series in z and $\left.a(z) 1\right|_{z=0}=a$ for $a \in V(\mathfrak{b})$,
- $\tau 1=0$ and $\quad[\tau, a(z)]=\partial_{z} a(z)$ for $a \in V(\mathfrak{b})$,
- for any $a, b \in V(\mathfrak{b})$ there exists $N \in \mathbb{Z}_{+}$such that

$$
(z-w)^{N}[a(z), b(w)]=0
$$

We will regard $V(\mathfrak{b})$ as an algebra with respect to the
(-1)-product $(a, b) \mapsto a_{(-1)} b$.

We will regard $V(\mathfrak{b})$ as an algebra with respect to the
(-1)-product $(a, b) \mapsto a_{(-1)} b$.
This product is quasi-associative:

$$
\begin{aligned}
& \left(a_{(-1)} b\right)_{(-1)} c \\
& \quad=a_{(-1)}\left(b_{(-1)} c\right)+\sum_{j \geqslant 0} a_{(-j-2)}\left(b_{(j)} c\right)+\sum_{j \geqslant 0} b_{(-j-2)}\left(a_{(j)} c\right) .
\end{aligned}
$$

We will regard $V(\mathfrak{b})$ as an algebra with respect to the
(-1)-product $(a, b) \mapsto a_{(-1)} b$.
This product is quasi-associative:

$$
\begin{aligned}
& \left(a_{(-1)} b\right)_{(-1)} c \\
& \quad=a_{(-1)}\left(b_{(-1)} c\right)+\sum_{j \geqslant 0} a_{(-j-2)}\left(b_{(j)} c\right)+\sum_{j \geqslant 0} b_{(-j-2)}\left(a_{(j)} c\right) .
\end{aligned}
$$

Note that if $a=X[-r-1]$ and $b \in V(\mathfrak{b})$ then

$$
a_{(-1)} b=a b
$$

so we will omit the (-1)-subscript in such cases.
\mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{g l}_{N}$

\mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{g l}_{N}$

We use the definition of $\mathcal{W}^{k}(\mathfrak{g})$ via the BRST cohomology following E. Frenkel and D. Ben-Zvi, 2004.

\mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{g l}_{N}$

We use the definition of $\mathcal{W}^{k}(\mathfrak{g})$ via the BRST cohomology
following E. Frenkel and D. Ben-Zvi, 2004.

Set $\quad \mathfrak{b}=$ span of $\left\{e_{i j} \mid i \geqslant j\right\}, \quad \mathfrak{m}=\operatorname{span}$ of $\left\{e_{i j} \mid i>j\right\}$.

\mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{g l}_{N}$

We use the definition of $\mathcal{W}^{k}(\mathfrak{g})$ via the BRST cohomology
following E. Frenkel and D. Ben-Zvi, 2004.

Set $\quad \mathfrak{b}=\operatorname{span}$ of $\left\{e_{i j} \mid i \geqslant j\right\}, \quad \mathfrak{m}=\operatorname{span}$ of $\left\{e_{i j} \mid i>j\right\}$.
Given $k \in \mathbb{C}$ consider the affinization $\widehat{\mathfrak{b}}$ of \mathfrak{b} with respect to the form: for $i \geqslant i^{\prime}$ and $j \geqslant j^{\prime}$

$$
\left\langle e_{i i^{\prime}}, e_{j j^{\prime}}\right\rangle=\delta_{i i^{\prime}} \delta_{j j^{\prime}}(k+N)\left(\delta_{i j}-\frac{1}{N}\right) .
$$

\mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{g l}_{N}$

We use the definition of $\mathcal{W}^{k}(\mathfrak{g})$ via the BRST cohomology following E. Frenkel and D. Ben-Zvi, 2004.

Set $\quad \mathfrak{b}=\operatorname{span}$ of $\left\{e_{i j} \mid i \geqslant j\right\}, \quad \mathfrak{m}=\operatorname{span}$ of $\left\{e_{i j} \mid i>j\right\}$.
Given $k \in \mathbb{C}$ consider the affinization $\widehat{\mathfrak{b}}$ of \mathfrak{b} with respect to the form: for $i \geqslant i^{\prime}$ and $j \geqslant j^{\prime}$

$$
\left\langle e_{i i^{\prime}}, e_{j j^{\prime}}\right\rangle=\delta_{i i^{\prime}} \delta_{j^{\prime}}(k+N)\left(\delta_{i j}-\frac{1}{N}\right) .
$$

Let $V^{k}(\mathfrak{b})$ be the corresponding vacuum module over $\widehat{\mathfrak{b}}$.

The \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ is a vertex subalgebra of $V^{k}(\mathfrak{b})$.

The \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ is a vertex subalgebra of $V^{k}(\mathfrak{b})$.

To define it, introduce the Lie superalgebra

$$
\widehat{\mathfrak{a}}=\widehat{\mathfrak{a}}_{0} \oplus \widehat{\mathfrak{a}}_{1} \quad \text { with } \quad \widehat{\mathfrak{a}}_{0}=\widehat{\mathfrak{b}}, \quad \widehat{\mathfrak{a}}_{1}=\mathfrak{m}\left[t, t^{-1}\right],
$$

with the adjoint action of $\widehat{\mathfrak{a}}_{0}$ on $\widehat{\mathfrak{a}}_{1}$, whereas $\widehat{\mathfrak{a}}_{1}$ is regarded as a supercommutative Lie superalgebra.

The \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$ is a vertex subalgebra of $V^{k}(\mathfrak{b})$.

To define it, introduce the Lie superalgebra

$$
\widehat{\mathfrak{a}}=\widehat{\mathfrak{a}}_{0} \oplus \widehat{\mathfrak{a}}_{1} \quad \text { with } \quad \widehat{\mathfrak{a}}_{0}=\widehat{\mathfrak{b}}, \quad \widehat{\mathfrak{a}}_{1}=\mathfrak{m}\left[t, t^{-1}\right],
$$

with the adjoint action of $\widehat{\mathfrak{a}}_{0}$ on $\widehat{\mathfrak{a}}_{1}$, whereas $\widehat{\mathfrak{a}}_{1}$ is regarded as a supercommutative Lie superalgebra.

We will write $\psi_{j i}[r]=e_{j i} t^{r-1}$ for $e_{j i} t^{r-1} \in \mathfrak{m}\left[t, t^{-1}\right]$ when it is considered as an element of $\widehat{\mathfrak{a}}_{1}$.

Let $V^{k}(\mathfrak{a})$ be the vacuum module for $\widehat{\mathfrak{a}}$ induced from the representation \mathbb{C} of $(\mathfrak{b}[t] \oplus \mathbb{C} 1) \oplus \mathfrak{m}[t]$ where $\mathfrak{b}[t] \subset \widehat{\mathfrak{a}}_{0}$ and $\mathfrak{m}[t] \subset \widehat{\mathfrak{a}}_{1}$ act trivially and $\mathbf{1}$ acts as 1 .

Let $V^{k}(\mathfrak{a})$ be the vacuum module for $\widehat{\mathfrak{a}}$ induced from the representation \mathbb{C} of $(\mathfrak{b}[t] \oplus \mathbb{C} 1) \oplus \mathfrak{m}[t]$ where $\mathfrak{b}[t] \subset \widehat{\mathfrak{a}}_{0}$ and $\mathfrak{m}[t] \subset \widehat{\mathfrak{a}}_{1}$ act trivially and $\mathbf{1}$ acts as 1 .

Equip $V^{k}(\mathfrak{a})$ with the (-1)-product and introduce its derivation

$$
Q: V^{k}(\mathfrak{a}) \rightarrow V^{k}(\mathfrak{a})
$$

determined by the following properties.

Let $V^{k}(\mathfrak{a})$ be the vacuum module for $\widehat{\mathfrak{a}}$ induced from the representation \mathbb{C} of $(\mathfrak{b}[t] \oplus \mathbb{C} \mathbf{1}) \oplus \mathfrak{m}[t]$ where $\mathfrak{b}[t] \subset \widehat{\mathfrak{a}}_{0}$ and $\mathfrak{m}[t] \subset \widehat{\mathfrak{a}}_{1}$ act trivially and $\mathbf{1}$ acts as 1 .

Equip $V^{k}(\mathfrak{a})$ with the (-1)-product and introduce its derivation

$$
Q: V^{k}(\mathfrak{a}) \rightarrow V^{k}(\mathfrak{a})
$$

determined by the following properties.

First, Q commutes with $\tau=-\partial_{t}$.

Furthermore, $[Q, \mathcal{E}]=(\Psi \mathcal{E})^{\mathrm{op}}-(\mathcal{E} \Psi)^{\mathrm{op}}$ and $[Q, \Psi]=\Psi^{2}$ with

Furthermore, $[Q, \mathcal{E}]=(\Psi \mathcal{E})^{\mathrm{op}}-(\mathcal{E} \Psi)^{\mathrm{op}}$ and $[Q, \Psi]=\Psi^{2}$ with

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \ldots & \ldots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

for $\alpha=k+N-1$ and

Furthermore, $[Q, \mathcal{E}]=(\Psi \mathcal{E})^{\mathrm{op}}-(\mathcal{E} \Psi)^{\mathrm{op}}$ and $[Q, \Psi]=\Psi^{2}$ with

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \ldots & \ldots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

for $\alpha=k+N-1$ and

$$
\Psi=\left[\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
\psi_{21}[0] & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & 0 \\
\psi_{N 1}[0] & \psi_{N 2}[0] & \ldots & \psi_{N N-1}[0] & 0
\end{array}\right] .
$$

Explicitly, $[Q, \mathcal{E}]=(\Psi \mathcal{E})^{\mathrm{op}}-(\mathcal{E} \Psi)^{\mathrm{op}}$ reads

$$
\begin{aligned}
& {\left[Q, e_{j i}[-1]\right]=\sum_{a=i}^{j-1} e_{a i}[-1] \psi_{j a}[0]} \\
& \quad-\sum_{a=i+1}^{j} \psi_{a i}[0] e_{j a}[-1]+\alpha \psi_{j i}[-1]+\psi_{j+1 i}[0]-\psi_{j i-1}[0]
\end{aligned}
$$

Explicitly, $[Q, \mathcal{E}]=(\Psi \mathcal{E})^{\mathrm{op}}-(\mathcal{E} \Psi)^{\mathrm{op}}$ reads

$$
\begin{aligned}
{\left[Q, e_{j i}[\right.} & -1]]= \\
& \quad \sum_{a=i}^{j-1} e_{a i}[-1] \psi_{j a}[0] \\
& -\sum_{a=i+1}^{j} \psi_{a i}[0] e_{j a}[-1]+\alpha \psi_{j i}[-1]+\psi_{j+1 i}[0]-\psi_{j i-1}[0]
\end{aligned}
$$

The derivation Q is the differential of the BRST complex of the quantum Drinfeld-Sokolov reduction.

Explicitly, $[Q, \mathcal{E}]=(\Psi \mathcal{E})^{\mathrm{op}}-(\mathcal{E} \Psi)^{\mathrm{op}}$ reads

$$
\begin{aligned}
& {\left[Q, e_{j i}[-1]\right]=\sum_{a=i}^{j-1} e_{a i}[-1] \psi_{j a}[0]} \\
& \quad-\sum_{a=i+1}^{j} \psi_{a i}[0] e_{j a}[-1]+\alpha \psi_{j i}[-1]+\psi_{j+1 i}[0]-\psi_{j i-1}[0]
\end{aligned}
$$

The derivation Q is the differential of the BRST complex of the quantum Drinfeld-Sokolov reduction.

The definition of the \mathcal{W}-algebra can be stated in the form

$$
\mathcal{W}^{k}(\mathfrak{g})=\left\{v \in V^{k}(\mathfrak{b}) \mid Q v=0\right\}
$$

Generators of $\mathcal{W}^{k}(\mathfrak{g})$

Generators of $\mathcal{W}^{k}(\mathfrak{g})$

Recall that

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \ldots & \ldots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

Generators of $\mathcal{W}^{k}(\mathfrak{g})$

Recall that

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \ldots & \ldots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

and write

$$
\operatorname{cdet} \mathcal{E}=(\alpha \tau)^{N}+W^{(1)}(\alpha \tau)^{N-1}+\cdots+W^{(N)}, \quad W^{(i)} \in V^{k}(\mathfrak{b})
$$

Explicitly,

$\operatorname{cdet} \mathcal{E}=$
$\sum(\alpha \tau+e[-1])_{k_{1} k_{0}+1}(\alpha \tau+e[-1])_{k_{2} k_{1}+1} \ldots(\alpha \tau+e[-1])_{k_{m} k_{m-1}+1}$,

Explicitly,

$\operatorname{cdet} \mathcal{E}=$

$$
\sum(\alpha \tau+e[-1])_{k_{1} k_{0}+1}(\alpha \tau+e[-1])_{k_{2} k_{1}+1} \ldots(\alpha \tau+e[-1])_{k_{m} k_{m-1}+1}
$$

summed over $m=1, \ldots, N$ and $0=k_{0}<k_{1}<\cdots<k_{m}=N$.

Explicitly,

$\operatorname{cdet} \mathcal{E}=$
$\sum(\alpha \tau+e[-1])_{k_{1} k_{0}+1}(\alpha \tau+e[-1])_{k_{2} k_{1}+1} \ldots(\alpha \tau+e[-1])_{k_{m} k_{m-1}+1}$,
summed over $m=1, \ldots, N$ and $0=k_{0}<k_{1}<\cdots<k_{m}=N$.

Theorem [T. Arakawa-A. M., 2014]
All coefficients $W^{(1)}, \ldots, W^{(N)}$ of $\operatorname{cdet} \mathcal{E}$ belong to $\mathcal{W}^{k}(\mathfrak{g})$.

Explicitly,
$\operatorname{cdet} \mathcal{E}=$
$\sum(\alpha \tau+e[-1])_{k_{1} k_{0}+1}(\alpha \tau+e[-1])_{k_{2} k_{1}+1} \ldots(\alpha \tau+e[-1])_{k_{m} k_{m-1}+1}$,
summed over $m=1, \ldots, N$ and $0=k_{0}<k_{1}<\cdots<k_{m}=N$.

Theorem [T. Arakawa-A. M., 2014]
All coefficients $W^{(1)}, \ldots, W^{(N)}$ of $\operatorname{cdet} \mathcal{E}$ belong to $\mathcal{W}^{k}(\mathfrak{g})$.
Moreover, they generate the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g}) \subset V^{k}(\mathfrak{b})$.

Take the reverse determinant of the matrix $\widetilde{\mathcal{E}}$ obtained from \mathcal{E} by replacing α with $\beta=-\alpha=-(k+N-1)$.

Take the reverse determinant of the matrix $\widetilde{\mathcal{E}}$ obtained from \mathcal{E} by replacing α with $\beta=-\alpha=-(k+N-1)$. We have

$$
\begin{aligned}
& \operatorname{rev}-\operatorname{det} \widetilde{\mathcal{E}}= \\
& \sum(\beta \tau+e[-1])_{l_{0} l_{1}+1}(\beta \tau+e[-1])_{l_{1} l_{2}+1} \ldots(\beta \tau+e[-1])_{l_{m-1} l_{m+1}},
\end{aligned}
$$

Take the reverse determinant of the matrix $\widetilde{\mathcal{E}}$ obtained from \mathcal{E} by replacing α with $\beta=-\alpha=-(k+N-1)$. We have

```
rev-det \widetilde{\mathcal{E}}=
```

$\sum(\beta \tau+e[-1])_{l_{0} l_{1}+1}(\beta \tau+e[-1])_{l_{1} l_{2}+1} \ldots(\beta \tau+e[-1])_{l_{m-1} l_{m+1}}$,
summed over $m=1, \ldots, N$ and $N=l_{0}>l_{1}>\cdots>l_{m}=0$.

Take the reverse determinant of the matrix $\widetilde{\mathcal{E}}$ obtained from \mathcal{E} by replacing α with $\beta=-\alpha=-(k+N-1)$. We have
rev-det $\widetilde{\mathcal{E}}=$
$\sum(\beta \tau+e[-1])_{l_{0} l_{1}+1}(\beta \tau+e[-1])_{l_{1} l_{2}+1} \ldots(\beta \tau+e[-1])_{l_{m-1} l_{m+1}}$,
summed over $m=1, \ldots, N$ and $N=l_{0}>l_{1}>\cdots>l_{m}=0$.

The coefficients $U^{(1)}, \ldots, U^{(N)}$ defined by

$$
\operatorname{rev}-\operatorname{det} \widetilde{\mathcal{E}}=(\beta \tau)^{N}+U^{(1)}(\beta \tau)^{N-1}+\cdots+U^{(N)},
$$

are generators of the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g})$.

Example. $\quad \mathcal{W}^{k}\left(\mathfrak{s l}_{2}\right)=\mathcal{W}^{k}\left(\mathfrak{g l}_{2}\right) /\left(W^{(1)}=0\right)$.

$$
\begin{aligned}
& W^{(1)}=e_{11}[-1]+e_{22}[-1] \\
& W^{(2)}=e_{11}[-1] e_{22}[-1]+(k+1) e_{22}[-2]+e_{21}[-1] .
\end{aligned}
$$

Example. $\quad \mathcal{W}^{k}\left(\mathfrak{s l}_{2}\right)=\mathcal{W}^{k}\left(\mathfrak{g l}_{2}\right) /\left(W^{(1)}=0\right)$.

$$
\begin{aligned}
& W^{(1)}=e_{11}[-1]+e_{22}[-1] \\
& W^{(2)}=e_{11}[-1] e_{22}[-1]+(k+1) e_{22}[-2]+e_{21}[-1] .
\end{aligned}
$$

The coefficients L_{n} of the series $L(z)=Y(\omega)$ given by

$$
L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}, \quad \omega=-\frac{W^{(2)}}{k+2}, \quad k \neq-2
$$

generate the Virasoro algebra.

Miura map

Miura map

Introduce the abelian subalgebra $\mathfrak{r} \subset \mathfrak{g l}_{N}$ by
$\mathfrak{l}=\operatorname{span}$ of $\left\{e_{i i} \mid i=1, \ldots, N\right\}$.

Miura map

Introduce the abelian subalgebra $\mathfrak{r} \subset \mathfrak{g l}_{N}$ by
$\mathfrak{l}=\operatorname{span}$ of $\left\{e_{i i} \mid i=1, \ldots, N\right\}$.
For $k \in \mathbb{C}$ consider the affinization $\widehat{\mathfrak{l}}$ of \mathfrak{l} with respect to the form

$$
\left\langle e_{i i}, e_{j j}\right\rangle=(k+N)\left(\delta_{i j}-\frac{1}{N}\right) .
$$

Miura map

Introduce the abelian subalgebra $\mathfrak{r} \subset \mathfrak{g l}_{N}$ by
$\mathfrak{l}=\operatorname{span}$ of $\left\{e_{i i} \mid i=1, \ldots, N\right\}$.
For $k \in \mathbb{C}$ consider the affinization $\hat{\mathfrak{l}}$ of \mathfrak{l} with respect to the form

$$
\left\langle e_{i i}, e_{j j}\right\rangle=(k+N)\left(\delta_{i j}-\frac{1}{N}\right) .
$$

Let $V^{k}(\mathfrak{l})$ be the corresponding vacuum module.

Miura map

Introduce the abelian subalgebra $\mathfrak{r} \subset \mathfrak{g l}_{N}$ by
$\mathfrak{l}=\operatorname{span}$ of $\left\{e_{i i} \mid i=1, \ldots, N\right\}$.
For $k \in \mathbb{C}$ consider the affinization $\hat{\mathfrak{l}}$ of \mathfrak{l} with respect to the form

$$
\left\langle e_{i i}, e_{j j}\right\rangle=(k+N)\left(\delta_{i j}-\frac{1}{N}\right) .
$$

Let $V^{k}(\mathfrak{l})$ be the corresponding vacuum module.
The projection $\mathfrak{b} \rightarrow \mathfrak{l}$ induces the vertex algebra homomorphism

$$
V^{k}(\mathfrak{b}) \rightarrow V^{k}(\mathfrak{r}) .
$$

By restricting to the subalgebra $\mathcal{W}^{k}(\mathfrak{g}) \subset V^{k}(\mathfrak{b})$ we get the map

$$
\Upsilon: \mathcal{W}^{k}(\mathfrak{g}) \rightarrow V^{k}(\mathfrak{r})
$$

called the Miura map (or Miura transformation).

By restricting to the subalgebra $\mathcal{W}^{k}(\mathfrak{g}) \subset V^{k}(\mathfrak{b})$ we get the map

$$
\Upsilon: \mathcal{W}^{k}(\mathfrak{g}) \rightarrow V^{k}(\mathfrak{l})
$$

called the Miura map (or Miura transformation).
This is an injective vertex algebra homomorphism [T. Arakawa].

By restricting to the subalgebra $\mathcal{W}^{k}(\mathfrak{g}) \subset V^{k}(\mathfrak{b})$ we get the map

$$
\Upsilon: \mathcal{W}^{k}(\mathfrak{g}) \rightarrow V^{k}(\mathfrak{l})
$$

called the Miura map (or Miura transformation).
This is an injective vertex algebra homomorphism [T. Arakawa].

For generic k we have [B. Feigin and E. Frenkel]:

$$
\operatorname{im} \Upsilon=\bigcap_{i=1}^{N-1} \operatorname{ker} V_{i}
$$

where V_{i} are the screening operators acting on $V^{k}(\mathfrak{l})$.

To define the V_{i}, for $i=1, \ldots, N-1$ set

$$
V_{i}(z)=\exp \left(\sum_{r<0} \frac{b_{i}[r]}{r} z^{-r}\right) \exp \left(\sum_{r>0} \frac{b_{i}[r]}{r} z^{-r}\right)
$$

To define the V_{i}, for $i=1, \ldots, N-1$ set

$$
V_{i}(z)=\exp \left(\sum_{r<0} \frac{b_{i}[r]}{r} z^{-r}\right) \exp \left(\sum_{r>0} \frac{b_{i}[r]}{r} z^{-r}\right)
$$

where

$$
b_{i}[r]=\frac{1}{k+N}\left(e_{i i}[r]-e_{i+1 i+1}[r]\right) .
$$

To define the V_{i}, for $i=1, \ldots, N-1$ set

$$
V_{i}(z)=\exp \left(\sum_{r<0} \frac{b_{i}[r]}{r} z^{-r}\right) \exp \left(\sum_{r>0} \frac{b_{i}[r]}{r} z^{-r}\right)
$$

where

$$
b_{i}[r]=\frac{1}{k+N}\left(e_{i i}[r]-e_{i+1 i+1}[r]\right) .
$$

For the screening operator we have $V_{i}=V_{i}^{(1)}$, where

$$
V_{i}(z)=\sum_{n \in \mathbb{Z}} V_{i}^{(n)} z^{-n}
$$

Under the Miura map we have

$$
\Upsilon: \operatorname{cdet} \mathcal{E} \mapsto\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{N N}[-1]\right) .
$$

Under the Miura map we have

$$
\Upsilon: \operatorname{cdet} \mathcal{E} \mapsto\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{N N}[-1]\right)
$$

Expand the product as

$$
(\alpha \tau)^{N}+w^{(1)}(\alpha \tau)^{N-1}+\cdots+w^{(N)}, \quad w^{(i)} \in V^{k}(\mathfrak{l})
$$

Under the Miura map we have

$$
\Upsilon: \operatorname{cdet} \mathcal{E} \mapsto\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{N N}[-1]\right) .
$$

Expand the product as

$$
(\alpha \tau)^{N}+w^{(1)}(\alpha \tau)^{N-1}+\cdots+w^{(N)}, \quad w^{(i)} \in V^{k}(\mathfrak{l})
$$

Corollary [Fateev and Lukyanov, 1988].
The coefficients $w^{(1)}, \ldots, w^{(N)}$ generate the \mathcal{W}-algebra
$\mathcal{W}^{k}(\mathfrak{g}) \subset V^{k}(\mathfrak{l})$.

Suppose that $(k+N)\left(k^{\prime}+N\right)=1$.

Suppose that $(k+N)\left(k^{\prime}+N\right)=1$. We have

$$
\begin{aligned}
& \left((k+N-1) \tau+e_{11}[-1]\right) \ldots\left((k+N-1) \tau+e_{N N}[-1]\right) \\
& =(-k-N)^{N}\left(\alpha^{\prime} \tau+e_{11}^{\prime}[-1]\right) \ldots\left(\alpha^{\prime} \tau+e_{N N}^{\prime}[-1]\right)
\end{aligned}
$$

Suppose that $(k+N)\left(k^{\prime}+N\right)=1$. We have

$$
\begin{aligned}
& \left((k+N-1) \tau+e_{11}[-1]\right) \ldots\left((k+N-1) \tau+e_{N N}[-1]\right) \\
& =(-k-N)^{N}\left(\alpha^{\prime} \tau+e_{11}^{\prime}[-1]\right) \ldots\left(\alpha^{\prime} \tau+e_{N N}^{\prime}[-1]\right)
\end{aligned}
$$

for

$$
\alpha^{\prime}=k^{\prime}+N-1 \quad \text { and } \quad e_{i i}^{\prime}[-1]=-\frac{e_{i i}[-1]}{k+N}
$$

Suppose that $(k+N)\left(k^{\prime}+N\right)=1$. We have

$$
\begin{aligned}
& \left((k+N-1) \tau+e_{11}[-1]\right) \ldots\left((k+N-1) \tau+e_{N N}[-1]\right) \\
& =(-k-N)^{N}\left(\alpha^{\prime} \tau+e_{11}^{\prime}[-1]\right) \ldots\left(\alpha^{\prime} \tau+e_{N N}^{\prime}[-1]\right)
\end{aligned}
$$

for

$$
\alpha^{\prime}=k^{\prime}+N-1 \quad \text { and } \quad e_{i i}^{\prime}[-1]=-\frac{e_{i i}[-1]}{k+N}
$$

Corollary [Feigin-Frenkel duality].

$$
\mathcal{W}^{k}(\mathfrak{g}) \cong \mathcal{W}^{k^{\prime}}(\mathfrak{g})
$$

The \mathcal{W}-algebra $\mathcal{W}^{k}\left(\mathfrak{g l}_{N}, f\right)$

The \mathcal{W}-algebra $\mathcal{W}^{k}\left(\mathfrak{g l}_{N}, f\right)$

Fix a partition of N and depict it as the right justified pyramid

The \mathcal{W}-algebra $\mathcal{W}^{k}\left(\mathfrak{g l}_{N}, f\right)$

Fix a partition of N and depict it as the right justified pyramid

Let $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{n}$ be the lengths of the rows
and $q_{1} \leqslant q_{2} \leqslant \cdots \leqslant q_{l}$ be the lengths of the columns.

Number the bricks of a pyramid π by the rule

\[

\]

Number the bricks of a pyramid π by the rule

\[

\]

Define the corresponding nilpotent element $f \in \mathfrak{g l}_{N}$ by

$$
f=\sum e_{j i}
$$

summed over all dominoes | i | j |
| :--- | :--- |
| occurring in π : | |

Number the bricks of a pyramid π by the rule

		8
	3	5
7	7	
1	2	4

Define the corresponding nilpotent element $f \in \mathfrak{g l}_{N}$ by

$$
f=\sum e_{j i}
$$

summed over all dominoes | i | j |
| :--- | :--- |
| occurring in π : | |

$$
f=e_{21}+e_{42}+e_{64}+e_{53}+e_{75}
$$

Number the bricks of a pyramid π by the rule

	3	5

Define the corresponding nilpotent element $f \in \mathfrak{g l}_{N}$ by

$$
f=\sum e_{j i}
$$

summed over all dominoes | i | j |
| :--- | :--- |
| occurring in π : | |

$$
f=e_{21}+e_{42}+e_{64}+e_{53}+e_{75}
$$

Introduce a grading on $\mathfrak{g l}_{N}$ by $\operatorname{deg} e_{i j}=\operatorname{col}(j)-\operatorname{col}(i)$.

We have

$$
\mathfrak{g l}_{N}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}, \quad f \in \mathfrak{g}_{-1}
$$

We have

$$
\mathfrak{g l}_{N}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}, \quad f \in \mathfrak{g}_{-1}
$$

In particular,

$$
\mathfrak{g}_{0} \cong \mathfrak{g l}_{q_{1}} \oplus \mathfrak{g l}_{q_{2}} \oplus \cdots \oplus \mathfrak{g l}_{q_{l}}
$$

We have

$$
\mathfrak{g l}_{N}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}, \quad f \in \mathfrak{g}_{-1}
$$

In particular,

$$
\mathfrak{g}_{0} \cong \mathfrak{g l}_{q_{1}} \oplus \mathfrak{g l}_{q_{2}} \oplus \cdots \oplus \mathfrak{g l}_{q_{l}}
$$

Set

$$
\mathfrak{b}=\bigoplus_{p \leqslant 0} \mathfrak{g}_{p} \quad \text { and } \quad \mathfrak{m}=\bigoplus_{p<0} \mathfrak{g}_{p}
$$

We have

$$
\mathfrak{g l}_{N}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}, \quad f \in \mathfrak{g}_{-1}
$$

In particular,

$$
\mathfrak{g}_{0} \cong \mathfrak{g l}_{q_{1}} \oplus \mathfrak{g l}_{q_{2}} \oplus \cdots \oplus \mathfrak{g l}_{q_{l}}
$$

Set

$$
\mathfrak{b}=\bigoplus_{p \leqslant 0} \mathfrak{g}_{p} \quad \text { and } \quad \mathfrak{m}=\bigoplus_{p<0} \mathfrak{g}_{p}
$$

Equip \mathfrak{b} with the symmetric invariant bilinear form

$$
\langle X, Y\rangle=\frac{k+N}{2 N} \operatorname{tr}_{\mathfrak{b}}(\operatorname{ad} X \operatorname{ad} Y)-\frac{1}{2} \operatorname{tr}_{\mathfrak{g}_{0}}(\operatorname{ad} X \operatorname{ad} Y) .
$$

Consider the affinization $\widehat{\mathfrak{b}}$ of \mathfrak{b} with respect to this form and let
$V^{k}(\mathfrak{b})$ be the corresponding vacuum module over $\widehat{\mathfrak{b}}$.

Consider the affinization $\widehat{\mathfrak{b}}$ of \mathfrak{b} with respect to this form and let $V^{k}(\mathfrak{b})$ be the corresponding vacuum module over $\widehat{\mathfrak{b}}$.

Introduce the Lie superalgebra

$$
\widehat{\mathfrak{a}}=\widehat{\mathfrak{a}}_{0} \oplus \widehat{\mathfrak{a}}_{1} \quad \text { with } \quad \widehat{\mathfrak{a}}_{0}=\widehat{\mathfrak{b}}, \quad \widehat{\mathfrak{a}}_{1}=\mathfrak{m}\left[t, t^{-1}\right]
$$

with the adjoint action of $\widehat{\mathfrak{a}}_{0}$ on $\widehat{\mathfrak{a}}_{1}$, whereas $\widehat{\mathfrak{a}}_{1}$ is regarded as a supercommutative Lie superalgebra.

Consider the affinization $\widehat{\mathfrak{b}}$ of \mathfrak{b} with respect to this form and let $V^{k}(\mathfrak{b})$ be the corresponding vacuum module over $\widehat{\mathfrak{b}}$.

Introduce the Lie superalgebra

$$
\widehat{\mathfrak{a}}=\widehat{\mathfrak{a}}_{0} \oplus \widehat{\mathfrak{a}}_{1} \quad \text { with } \quad \widehat{\mathfrak{a}}_{0}=\widehat{\mathfrak{b}}, \quad \widehat{\mathfrak{a}}_{1}=\mathfrak{m}\left[t, t^{-1}\right],
$$

with the adjoint action of $\widehat{\mathfrak{a}}_{0}$ on $\widehat{\mathfrak{a}}_{1}$, whereas $\widehat{\mathfrak{a}}_{1}$ is regarded as a supercommutative Lie superalgebra.

We will write $\psi_{j i}[r]=e_{j i} t^{r-1}$ for $e_{j i} t^{r-1} \in \mathfrak{m}\left[t, t^{-1}\right]$.

Equip the vacuum module $V^{k}(\mathfrak{a})$ with the (-1)-product and introduce its derivation

$$
Q: V^{k}(\mathfrak{a}) \rightarrow V^{k}(\mathfrak{a})
$$

Equip the vacuum module $V^{k}(\mathfrak{a})$ with the (-1)-product and introduce its derivation

$$
Q: V^{k}(\mathfrak{a}) \rightarrow V^{k}(\mathfrak{a})
$$

for which we have

$$
\begin{aligned}
{\left[Q, e_{j i}[-1]\right]=} & \sum_{\operatorname{col}(a)=i}^{j-1} \psi_{j a}[0] e_{a i}[-1]-\sum_{\operatorname{col}(a)=i+1}^{j} e_{j a}[-1] \psi_{a i}[0] \\
& +\left(k+N-q_{\operatorname{col}(i)}\right) \psi_{j i}[-1]+\psi_{j^{+} i}[0]-\psi_{j i^{-}}[0]
\end{aligned}
$$

for dominoes $i^{-} i$ and $j j^{+}$occurring in π.

Equip the vacuum module $V^{k}(\mathfrak{a})$ with the (-1)-product and introduce its derivation

$$
Q: V^{k}(\mathfrak{a}) \rightarrow V^{k}(\mathfrak{a})
$$

for which we have

$$
\begin{aligned}
{\left[Q, e_{j i}[-1]\right]=} & \sum_{\operatorname{col}(a)=i}^{j-1} \psi_{j a}[0] e_{a i}[-1]-\sum_{\operatorname{col}(a)=i+1}^{j} e_{j a}[-1] \psi_{a i}[0] \\
& +\left(k+N-q_{\operatorname{col}(i)}\right) \psi_{j i}[-1]+\psi_{j^{+} i}[0]-\psi_{j i^{-}}[0]
\end{aligned}
$$

for dominoes $i^{-} i$ and $j j^{+}$occurring in π.
The \mathcal{W}-algebra is defined by

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=\left\{v \in V^{k}(\mathfrak{b}) \mid Q v=0\right\}
$$

By a theorem of [V. Kac and M. Wakimoto, 2004]
(also [T. Arakawa 2005]),
there exists a filtration $F_{p} \mathcal{W}^{k}(\mathfrak{g}, f)$ such that

$$
\operatorname{gr}^{F} \mathcal{W}^{k}(\mathfrak{g}, f) \cong V\left(\mathfrak{g}^{f}\right)
$$

By a theorem of [V. Kac and M. Wakimoto, 2004]

(also [T. Arakawa 2005]),
there exists a filtration $F_{p} \mathcal{W}^{k}(\mathfrak{g}, f)$ such that

$$
\operatorname{gr}^{F} \mathcal{W}^{k}(\mathfrak{g}, f) \cong V\left(\mathfrak{g}^{f}\right) .
$$

Hence, the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g}, f)$ admits generators associated with basis elements of the centralizer \mathfrak{g}^{f}.

By a theorem of [V. Kac and M. Wakimoto, 2004]

(also [T. Arakawa 2005]),
there exists a filtration $F_{p} \mathcal{W}^{k}(\mathfrak{g}, f)$ such that

$$
\operatorname{gr}^{F} \mathcal{W}^{k}(\mathfrak{g}, f) \cong V\left(\mathfrak{g}^{f}\right)
$$

Hence, the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g}, f)$ admits generators associated with basis elements of the centralizer \mathfrak{g}^{f}.

In the principal nilpotent case, the generator $W^{(i)}$ is associated with the element $e_{i 1}+e_{i+12}+\cdots+e_{N N-i+1} \in \mathfrak{g}^{f}$.

Rectangular pyramids

Rectangular pyramids

Take a pyramid with n rows and l columns,

Rectangular pyramids

Take a pyramid with n rows and l columns,

so that $p_{1}=\cdots=p_{n}=l$ are the lengths of the rows and $q_{1}=\cdots=q_{l}=n$ are the lengths of the columns.

Rectangular pyramids

Take a pyramid with n rows and l columns,

so that $p_{1}=\cdots=p_{n}=l$ are the lengths of the rows and $q_{1}=\cdots=q_{l}=n$ are the lengths of the columns.

We have $\quad \operatorname{dim} \mathfrak{g}^{f}=\ln ^{2}$.

We will use the isomorphism $\mathfrak{g l}_{l} \otimes \mathfrak{g l}_{n} \cong \mathfrak{g l}_{N}$ such that

$$
\left[e_{i j}\right]_{i, j=1}^{N}=\left[\begin{array}{ccc}
e_{11} \otimes E & \ldots & e_{1 l} \otimes E \\
\ldots & \ldots & \ldots \\
e_{l 1} \otimes E & \ldots & e_{l l} \otimes E
\end{array}\right]
$$

where $E=\left[e_{a b}\right]_{a, b=1}^{n}$.

We will use the isomorphism $\mathfrak{g l}_{l} \otimes \mathfrak{g l}_{n} \cong \mathfrak{g l}_{N}$ such that

$$
\left[e_{i j}\right]_{i, j=1}^{N}=\left[\begin{array}{ccc}
e_{11} \otimes E & \ldots & e_{1 l} \otimes E \\
\ldots & \ldots & \ldots \\
e_{l 1} \otimes E & \ldots & e_{l l} \otimes E
\end{array}\right]
$$

where $E=\left[e_{a b}\right]_{a, b=1}^{n}$.

Explicitly,

$$
e_{(i-1) n+a,(j-1) n+b}=e_{i j} \otimes e_{a b}
$$

Define the homomorphism from the tensor algebra

$$
\mathcal{T}: \mathrm{T}\left(\mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1}\right) \rightarrow \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t^{-1}\right] t^{-1}\right)
$$

Define the homomorphism from the tensor algebra

$$
\begin{aligned}
\mathcal{T} & : \mathrm{T}\left(\mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1}\right) \rightarrow \text { End } \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t^{-1}\right] t^{-1}\right), \\
x & \mapsto \mathcal{T}(x)=\sum_{a, b=1}^{n} e_{a b} \otimes \mathcal{T}_{a b}(x)
\end{aligned}
$$

Define the homomorphism from the tensor algebra

$$
\begin{aligned}
& \mathcal{T}: \mathrm{T}\left(\mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1}\right) \rightarrow \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t^{-1}\right] t^{-1}\right), \\
& x \mapsto \mathcal{T}(x)=\sum_{a, b=1}^{n} e_{a b} \otimes \mathcal{T}_{a b}(x)
\end{aligned}
$$

by setting for $x \in \mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1}$:

$$
\mathcal{T}_{a b}(x)=x \otimes e_{b a} \in \mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1} \otimes \mathfrak{g l}_{n}=\mathfrak{g l}_{N}\left[t^{-1}\right] t^{-1}
$$

Define the homomorphism from the tensor algebra

$$
\begin{aligned}
& \mathcal{T}: \mathrm{T}\left(\mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1}\right) \rightarrow \operatorname{End} \mathbb{C}^{n} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t^{-1}\right] t^{-1}\right), \\
& x \mapsto \mathcal{T}(x)=\sum_{a, b=1}^{n} e_{a b} \otimes \mathcal{T}_{a b}(x)
\end{aligned}
$$

by setting for $x \in \mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1}$:

$$
\mathcal{T}_{a b}(x)=x \otimes e_{b a} \in \mathfrak{g l}_{l}\left[t^{-1}\right] t^{-1} \otimes \mathfrak{g l}_{n}=\mathfrak{g l}_{N}\left[t^{-1}\right] t^{-1}
$$

Hence, for any elements x, y of the tensor algebra,

$$
\mathcal{T}_{a b}(x y)=\sum_{c=1}^{n} \mathcal{T}_{a c}(x) \mathcal{T}_{c b}(y)
$$

Consider the matrix

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{l 1}[-1] & e_{l 2}[-1] & \ldots & \ldots & \alpha \tau+e_{l l}[-1]
\end{array}\right]
$$

with $\alpha=k+N-n$,

Consider the matrix

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{l 1}[-1] & e_{l 2}[-1] & \ldots & \ldots & \alpha \tau+e_{l l}[-1]
\end{array}\right]
$$

with $\alpha=k+N-n$, and introduce n^{2} polynomials in τ, each
of degree l, by setting

Consider the matrix

$$
\mathcal{E}=\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{l 1}[-1] & e_{l 2}[-1] & \ldots & \ldots & \alpha \tau+e_{l l}[-1]
\end{array}\right]
$$

with $\alpha=k+N-n$, and introduce n^{2} polynomials in τ, each of degree l, by setting

$$
W_{a b}=\mathcal{T}_{a b}(\operatorname{cdet} \mathcal{E}), \quad a, b=1, \ldots, n
$$

Write

$$
W_{a b}=\delta_{a b}(\alpha \tau)^{l}+W_{a b}^{(1)}(\alpha \tau)^{l-1}+\cdots+W_{a b}^{(l)}
$$

and regard $W_{a b}^{(r)}$ as elements of $V^{k}(\mathfrak{b})$.

Write

$$
W_{a b}=\delta_{a b}(\alpha \tau)^{l}+W_{a b}^{(1)}(\alpha \tau)^{l-1}+\cdots+W_{a b}^{(l)}
$$

and regard $W_{a b}^{(r)}$ as elements of $V^{k}(\mathfrak{b})$.

Theorem [T. Arakawa-A. M., 2014]
The coefficients $W_{a b}^{(r)}$ with $a, b \in\{1, \ldots, n\}$ and $r=1, \ldots, l$ generate the \mathcal{W}-algebra $\mathcal{W}^{k}(\mathfrak{g}, f)$.

The Miura map $V^{k}(\mathfrak{b}) \rightarrow V^{k}(\mathfrak{l})$ with $\mathfrak{l}=\mathfrak{g l}_{n} \oplus \cdots \oplus \mathfrak{g l}_{n}$ is induced by the projection $\mathfrak{b} \rightarrow \mathfrak{l}$.

The Miura map $V^{k}(\mathfrak{b}) \rightarrow V^{k}(\mathfrak{l})$ with $\mathfrak{l}=\mathfrak{g l}_{n} \oplus \cdots \oplus \mathfrak{g l}_{n}$ is induced by the projection $\mathfrak{b} \rightarrow \mathfrak{l}$.

Corollary. Under the Miura map we have

$$
\Upsilon: \mathcal{T}_{a b}(\operatorname{cdet} \mathcal{E}) \mapsto \mathcal{T}_{a b}\left(\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{l l}[-1]\right)\right) .
$$

The Miura map $V^{k}(\mathfrak{b}) \rightarrow V^{k}(\mathfrak{l})$ with $\mathfrak{l}=\mathfrak{g l}_{n} \oplus \cdots \oplus \mathfrak{g l}_{n}$ is induced by the projection $\mathfrak{b} \rightarrow \mathfrak{l}$.

Corollary. Under the Miura map we have

$$
\Upsilon: \mathcal{T}_{a b}(\operatorname{cdet} \mathcal{E}) \mapsto \mathcal{T}_{a b}\left(\left(\alpha \tau+e_{11}[-1]\right) \ldots\left(\alpha \tau+e_{l l}[-1]\right)\right)
$$

By a general result of [N. Genra, 2016] the image of the Miura map coincides with the intersection of the kernels of screening operators (k is generic).

Classical \mathcal{W}-algebras

Classical \mathcal{W}-algebras

Divide by k each row of the matrix

$$
\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \ldots & \ldots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

and set $\bar{e}_{i j}[r]=e_{i j}[r] / k$.

Classical \mathcal{W}-algebras

Divide by k each row of the matrix

$$
\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \ldots & \cdots & \cdots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \ldots & \ldots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

and set $\bar{e}_{i j}[r]=e_{i j}[r] / k$. Since $\alpha=k+N-1$, in the limit $k \rightarrow \infty$ the column-determinant equals

Classical \mathcal{W}-algebras

Divide by k each row of the matrix

$$
\left[\begin{array}{ccccc}
\alpha \tau+e_{11}[-1] & -1 & 0 & \ldots & 0 \\
e_{21}[-1] & \alpha \tau+e_{22}[-1] & -1 & \ldots & 0 \\
\ldots & \cdots & \cdots & \cdots & -1 \\
e_{N 1}[-1] & e_{N 2}[-1] & \cdots & \cdots & \alpha \tau+e_{N N}[-1]
\end{array}\right]
$$

and set $\bar{e}_{i j}[r]=e_{i j}[r] / k$. Since $\alpha=k+N-1$, in the limit $k \rightarrow \infty$ the column-determinant equals

$$
\left(\tau+\bar{e}_{11}[-1]\right) \ldots\left(\tau+\bar{e}_{N N}[-1]\right)
$$

We thus recover the (classical) Miura transformation

$$
\left(\tau+\bar{e}_{11}[-1]\right) \ldots\left(\tau+\bar{e}_{N N}[-1]\right)=\tau^{N}+u^{(1)} \tau^{N-1}+\cdots+u^{(N)}
$$

We thus recover the (classical) Miura transformation

$$
\left(\tau+\bar{e}_{11}[-1]\right) \ldots\left(\tau+\bar{e}_{N N}[-1]\right)=\tau^{N}+u^{(1)} \tau^{N-1}+\cdots+u^{(N)}
$$

providing generators $u^{(i)}$ of the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$
[M. Adler, 1979; I. M. Gelfand and L. A. Dickey, 1978].

We thus recover the (classical) Miura transformation

$$
\left(\tau+\bar{e}_{11}[-1]\right) \ldots\left(\tau+\bar{e}_{N N}[-1]\right)=\tau^{N}+u^{(1)} \tau^{N-1}+\cdots+u^{(N)}
$$

providing generators $u^{(i)}$ of the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$
[M. Adler, 1979; I. M. Gelfand and L. A. Dickey, 1978].

The elements $u^{(i)}$ and all their derivatives are algebraically independent generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$.

At the critical level $k=-N$ the expansion of the
column-determinant yields a different presentation of the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$.

At the critical level $k=-N$ the expansion of the
column-determinant yields a different presentation of the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$.

Its elements are understood as differential polynomials in the
variables $E_{i j}:=e_{i j}[-1]$ with $N \geqslant i \geqslant j \geqslant 1$.

Expand the column-determinant

$\operatorname{cdet}\left[\begin{array}{cccccc}-\tau+E_{11} & -1 & 0 & 0 & \ldots & 0 \\ E_{21} & -\tau+E_{22} & -1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \cdots & \cdots & \cdots \\ E_{N 1} & E_{N 2} & E_{N 3} & \ldots & \ldots & -\tau+E_{N N}\end{array}\right]$
$=(-\tau)^{N}+w^{(1)}(-\tau)^{N-1}+\cdots+w^{(N)}$.

Expand the column-determinant

$$
\begin{aligned}
& \operatorname{cdet}\left[\begin{array}{cccccc}
-\tau+E_{11} & -1 & 0 & 0 & \ldots & 0 \\
E_{21} & -\tau+E_{22} & -1 & 0 & \ldots & 0 \\
\ldots & \ldots & \cdots & \cdots & \cdots & \cdots \\
E_{N 1} & E_{N 2} & E_{N 3} & \cdots & \ldots & -\tau+E_{N N}
\end{array}\right] \\
& =(-\tau)^{N}+w^{(1)}(-\tau)^{N-1}+\cdots+w^{(N)} .
\end{aligned}
$$

The elements $w^{(1)}, \ldots, w^{(N)}$ together with all their derivatives are algebraically independent generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$.

By taking the Zhu algebra of $\mathcal{W}^{k}\left(\mathfrak{g l}_{N}, f\right)$ for a rectangular pyramid, we recover the generators of the finite \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{N}, f\right)$.
[E. Ragoucy and P. Sorba, 1999];
[J. Brundan and A. Kleshchev, 2006].

Affine Poisson vertex algebra $\mathcal{V}(\mathfrak{g})$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} and
let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g}.

Affine Poisson vertex algebra $\mathcal{V}(\mathfrak{g})$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} and
let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g}.
Consider the differential algebra $\mathcal{V}=\mathcal{V}(\mathfrak{g})$,

$$
\mathcal{V}=\mathbb{C}\left[X_{1}^{(r)}, \ldots, X_{d}^{(r)} \mid r=0,1,2, \ldots\right] \quad \text { with } \quad X_{i}^{(0)}=X_{i},
$$

Affine Poisson vertex algebra $\mathcal{V}(\mathfrak{g})$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} and
let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g}.
Consider the differential algebra $\mathcal{V}=\mathcal{V}(\mathfrak{g})$,

$$
\mathcal{V}=\mathbb{C}\left[X_{1}^{(r)}, \ldots, X_{d}^{(r)} \mid r=0,1,2, \ldots\right] \quad \text { with } \quad X_{i}^{(0)}=X_{i},
$$

equipped with the derivation ∂,

$$
\partial\left(X_{i}^{(r)}\right)=X_{i}^{(r+1)}
$$

for all $i=1, \ldots, d$ and $r \geqslant 0$.

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+(X \mid Y) \lambda \quad \text { for } \quad X, Y \in \mathfrak{g}
$$

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+(X \mid Y) \lambda \quad \text { for } \quad X, Y \in \mathfrak{g}
$$

and extended to \mathcal{V} by sesquilinearity $(a, b \in \mathcal{V})$:

$$
\left\{\partial a_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}
$$

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+(X \mid Y) \lambda \quad \text { for } \quad X, Y \in \mathfrak{g}
$$

and extended to \mathcal{V} by sesquilinearity $(a, b \in \mathcal{V})$:

$$
\left\{\partial a_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}
$$

skewsymmetry $\quad\left\{a_{\lambda} b\right\}=-\left\{b_{-\lambda-\partial} a\right\}$,

Introduce the λ-bracket on \mathcal{V} as a linear map

$$
\mathcal{V} \otimes \mathcal{V} \rightarrow \mathbb{C}[\lambda] \otimes \mathcal{V}, \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}
$$

By definition, it is given by

$$
\left\{X_{\lambda} Y\right\}=[X, Y]+(X \mid Y) \lambda \quad \text { for } \quad X, Y \in \mathfrak{g}
$$

and extended to \mathcal{V} by sesquilinearity $(a, b \in \mathcal{V})$:

$$
\left\{\partial a_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}
$$

skewsymmetry $\quad\left\{a_{\lambda} b\right\}=-\left\{b_{-\lambda-\partial} a\right\}$,
and the Leibniz rule $(a, b, c \in \mathcal{V})$:

$$
\left\{a_{\lambda} b c\right\}=\left\{a_{\lambda} b\right\} c+\left\{a_{\lambda} c\right\} b
$$

Hamiltonian reduction

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ set $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{b}}: \mathfrak{g} \rightarrow \mathfrak{b}
$$

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$
set $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{b}}: \mathfrak{g} \rightarrow \mathfrak{b}
$$

Let $f \in \mathfrak{n}_{-}$be a principal nilpotent in \mathfrak{g}.

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$
set $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{b}}: \mathfrak{g} \rightarrow \mathfrak{b}
$$

Let $f \in \mathfrak{n}_{-}$be a principal nilpotent in \mathfrak{g}.
Define the differential algebra homomorphism

$$
\rho: \mathcal{V} \rightarrow \mathcal{V}(\mathfrak{b}), \quad \rho(X)=\pi_{\mathfrak{b}}(X)+(f \mid X), \quad X \in \mathfrak{g}
$$

Hamiltonian reduction

For a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$
set $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$ and define the projection

$$
\pi_{\mathfrak{b}}: \mathfrak{g} \rightarrow \mathfrak{b}
$$

Let $f \in \mathfrak{n}_{-}$be a principal nilpotent in \mathfrak{g}.
Define the differential algebra homomorphism

$$
\rho: \mathcal{V} \rightarrow \mathcal{V}(\mathfrak{b}), \quad \rho(X)=\pi_{\mathfrak{b}}(X)+(f \mid X), \quad X \in \mathfrak{g}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{V}(\mathfrak{b}) \mid \rho\left\{X_{\lambda} P\right\}=0 \quad \text { for all } \quad X \in \mathfrak{n}_{+}\right\} .
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is a Poisson vertex algebra equipped with the λ-bracket

$$
\left\{a_{\lambda} b\right\}_{\rho}=\rho\left\{a_{\lambda} b\right\}, \quad a, b \in \mathcal{W}(\mathfrak{g})
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is a Poisson vertex algebra equipped with the λ-bracket

$$
\left\{a_{\lambda} b\right\}_{\rho}=\rho\left\{a_{\lambda} b\right\}, \quad a, b \in \mathcal{W}(\mathfrak{g})
$$

Motivation: integrable Hamiltonian hierarchies
Drinfeld and Sokolov, 1985;
De Sole, Kac and Valeri, 2013-16.

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{b} is the subalgebra of lower triangular matrices.

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{b} is the subalgebra of lower triangular matrices. Set

$$
f=E_{21}+E_{32}+\cdots+E_{N N-1} .
$$

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{b} is the subalgebra of lower triangular matrices. Set

$$
f=E_{21}+E_{32}+\cdots+E_{N N-1} .
$$

We will work with the algebra $\mathcal{V}(\mathfrak{b}) \otimes \mathbb{C}[\partial]$,

$$
\partial E_{i j}^{(r)}-E_{i j}^{(r)} \partial=E_{i j}^{(r+1)} .
$$

Generators of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$

Consider $\mathfrak{g l}_{N}=$ span of $\quad\left\{E_{i j} \mid i, j=1, \ldots, N\right\}$. Here \mathfrak{b} is the subalgebra of lower triangular matrices. Set

$$
f=E_{21}+E_{32}+\cdots+E_{N N-1} .
$$

We will work with the algebra $\mathcal{V}(\mathfrak{b}) \otimes \mathbb{C}[\partial]$,

$$
\partial E_{i j}^{(r)}-E_{i j}^{(r)} \partial=E_{i j}^{(r+1)} .
$$

The invariant symmetric bilinear form on $\mathfrak{g l}_{N}$ is defined by

$$
(X \mid Y)=\operatorname{tr} X Y, \quad X, Y \in \mathfrak{g l}_{N}
$$

Expand the column-determinant with entries in $\mathcal{V}(\mathfrak{b}) \otimes \mathbb{C}[\partial]$,
$\operatorname{cdet}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ E_{N-11} & E_{N-12} & E_{N-13} & \ldots & \ldots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \ldots & \ldots & \partial+E_{N N}\end{array}\right]$
$=\partial^{N}+w_{1} \partial^{N-1}+\cdots+w_{N}$.

Expand the column-determinant with entries in $\mathcal{V}(\mathfrak{b}) \otimes \mathbb{C}[\partial]$,

$\operatorname{cdet}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ E_{N-11} & E_{N-12} & E_{N-13} & \ldots & \ldots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \ldots & \ldots & \partial+E_{N N}\end{array}\right]$	
	$=\partial^{N}+w_{1} \partial^{N-1}+\cdots+w_{N}$.

Theorem [M.-Ragoucy, 2015], [De Sole-Kac-Valeri, 2015].
All elements w_{1}, \ldots, w_{N} belong to $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$. Moreover,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[w_{1}^{(r)}, \ldots, w_{N}^{(r)} \mid r \geqslant 0\right] .
$$

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$

Given a positive integer $N=2 n$, or $N=2 n+1$ set $i^{\prime}=N-i+1$.

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$

Given a positive integer $N=2 n$, or $N=2 n+1$ set $i^{\prime}=N-i+1$.
The Lie subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, N
$$

is the orthogonal Lie algebra \mathfrak{o}_{N}.

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$

Given a positive integer $N=2 n$, or $N=2 n+1$ set $i^{\prime}=N-i+1$.
The Lie subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, N
$$

is the orthogonal Lie algebra \mathfrak{o}_{N}.
Cartan subalgebra $\mathfrak{h}=$ span of $\left\{F_{11}, \ldots, F_{n n}\right\}$.

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$

Given a positive integer $N=2 n$, or $N=2 n+1$ set $i^{\prime}=N-i+1$.
The Lie subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, N
$$

is the orthogonal Lie algebra \mathfrak{o}_{N}.
Cartan subalgebra $\mathfrak{h}=$ span of $\left\{F_{11}, \ldots, F_{n n}\right\}$.
The subalgebras \mathfrak{n}_{+}and \mathfrak{n}_{-}are spanned by $F_{i j}$ with $i<j$ and
$i>j$, respectively, and $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$.

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$

Given a positive integer $N=2 n$, or $N=2 n+1$ set $i^{\prime}=N-i+1$.
The Lie subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, N
$$

is the orthogonal Lie algebra \mathfrak{o}_{N}.
Cartan subalgebra $\mathfrak{h}=$ span of $\left\{F_{11}, \ldots, F_{n n}\right\}$.
The subalgebras \mathfrak{n}_{+}and \mathfrak{n}_{-}are spanned by $F_{i j}$ with $i<j$ and
$i>j$, respectively, and $\mathfrak{b}=\mathfrak{n}_{-} \oplus \mathfrak{h}$.

$$
f=F_{21}+F_{32}+\cdots+F_{n+1 n} \in \mathfrak{o}_{2 n+1} .
$$

Expand the column-determinant of the matrix

$\left[\begin{array}{ccccccccc}\partial+F_{11} & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ F_{21} & \partial+F_{22} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n 1} & F_{n 2} & \ldots & \partial+F_{n n} & 1 & 0 & \ldots & 0 & 0 \\ F_{n+11} & F_{n+12} & \ldots & F_{n+1 n} & \partial & -1 & \ldots & 0 & 0 \\ F_{n^{\prime} 1} & F_{n^{\prime} 2} & \ldots & 0 & F_{n^{\prime} n+1} & \partial+F_{n^{\prime} n^{\prime}} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ddots & \ldots & \ldots \\ F_{2^{\prime} 1} & 0 & \ldots & \ldots & F_{2^{\prime} n+1} & \ldots & \ldots & \partial+F_{2^{\prime} 2^{\prime}} & -1 \\ 0 & F_{1^{\prime} 2} & \ldots & \ldots & F_{1^{\prime} n+1} & \ldots & \ldots & F_{1^{\prime} 2^{\prime}} & \partial+F_{1^{\prime} 1^{\prime}}\end{array}\right]$

Expand the column-determinant of the matrix
$\left[\begin{array}{ccccccccc}\partial+F_{11} & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ F_{21} & \partial+F_{22} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n 1} & F_{n 2} & \ldots & \partial+F_{n n} & 1 & 0 & \ldots & 0 & 0 \\ F_{n+11} & F_{n+12} & \ldots & F_{n+1 n} & \partial & -1 & \ldots & 0 & 0 \\ F_{n^{\prime} 1} & F_{n^{\prime} 2} & \ldots & 0 & F_{n^{\prime} n+1} & \partial+F_{n^{\prime} n^{\prime}} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ddots & \ldots & \ldots \\ F_{2^{\prime} 1} & 0 & \ldots & \ldots & F_{2^{\prime} n+1} & \ldots & \ldots & \partial+F_{2^{\prime} 2^{\prime}} & -1 \\ 0 & F_{1^{\prime} 2} & \ldots & \ldots & F_{1^{\prime} n+1} & \ldots & \ldots & F_{1^{\prime} 2^{\prime}} & \partial+F_{1^{\prime} 1^{\prime}}\end{array}\right]$
as a differential operator

$$
\partial^{2 n+1}+w_{2} \partial^{2 n-1}+w_{3} \partial^{2 n-2}+\cdots+w_{2 n+1}, \quad w_{i} \in \mathcal{V}(\mathfrak{b})
$$

Theorem [MR]. All elements $w_{2}, \ldots, w_{2 n+1}$ belong to $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$.
Moreover,

$$
\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
$$

Theorem [MR]. All elements $w_{2}, \ldots, w_{2 n+1}$ belong to $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$.
Moreover,

$$
\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
$$

One proof is based on the folding procedure. The subalgebra
$\mathfrak{o}_{2 n+1} \subset \mathfrak{g l}_{2 n+1}$ is considered as the fixed point subalgebra for an involutive automorphism of $\mathfrak{g l}_{2 n+1}$.

Theorem [MR]. All elements $w_{2}, \ldots, w_{2 n+1}$ belong to $\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)$.
Moreover,

$$
\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
$$

One proof is based on the folding procedure. The subalgebra
$\mathfrak{o}_{2 n+1} \subset \mathfrak{g l}_{2 n+1}$ is considered as the fixed point subalgebra for an involutive automorphism of $\mathfrak{g l} l_{2 n+1}$. For the principal nilpotent we have

$$
f \mapsto \widetilde{f}=E_{21}+E_{32}+\cdots+E_{n+1 n}-E_{n+2 n+1}-\cdots-E_{2 n+12 n} .
$$

Generators of $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$

The Lie subalgebra of $\mathfrak{g}_{2 n}$ spanned by the elements

$$
F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, 2 n,
$$

is the symplectic Lie algebra $\mathfrak{s p}_{2 n}$, where
$\varepsilon_{i}=1$ for $i=1, \ldots, n$ and $\varepsilon_{i}=-1$ for $i=n+1, \ldots, 2 n$.

Generators of $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$

The Lie subalgebra of $\mathfrak{g}_{2 n}$ spanned by the elements

$$
F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, 2 n,
$$

is the symplectic Lie algebra $\mathfrak{s p}_{2 n}$, where
$\varepsilon_{i}=1$ for $i=1, \ldots, n$ and $\varepsilon_{i}=-1$ for $i=n+1, \ldots, 2 n$.
Cartan subalgebra $\mathfrak{h}=$ span of $\left\{F_{11}, \ldots, F_{n n}\right\}$.

Generators of $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$

The Lie subalgebra of $\mathfrak{g}_{2 n}$ spanned by the elements

$$
F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}, \quad i, j=1, \ldots, 2 n,
$$

is the symplectic Lie algebra $\mathfrak{s p}_{2 n}$, where
$\varepsilon_{i}=1$ for $i=1, \ldots, n$ and $\varepsilon_{i}=-1$ for $i=n+1, \ldots, 2 n$.
Cartan subalgebra $\mathfrak{h}=$ span of $\left\{F_{11}, \ldots, F_{n n}\right\}$.

$$
f=F_{21}+F_{32}+\cdots+F_{n n-1}+\frac{1}{2} F_{n^{\prime} n} \in \mathfrak{s p}_{2 n} .
$$

Expand the column-determinant of the matrix

$\left[\begin{array}{ccccccccc}\partial+F_{11} & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ F_{21} & \partial+F_{22} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n 1} & F_{n 2} & \ldots & \partial+F_{n n} & 1 & 0 & \ldots & 0 & 0 \\ F_{n^{\prime} 1} & F_{n^{\prime} 2} & \ldots & F_{n^{\prime} n} & \partial+F_{n^{\prime} n^{\prime}} & -1 & \ldots & 0 & 0 \\ \ldots & \ldots \\ F_{2^{\prime} 1} & F_{2^{\prime} 2} & \ldots & F_{2^{\prime} n} & F_{2^{\prime} n^{\prime}} & \ldots & \ldots & \partial+F_{2^{\prime} 2^{\prime}} & -1 \\ F_{1^{\prime} 1} & F_{1^{\prime} 2} & \ldots & F_{1^{\prime} n} & F_{1^{\prime} n^{\prime}} & \ldots & \ldots & F_{1^{\prime} 2^{\prime}} & \partial+F_{1^{\prime} 1^{\prime}}\end{array}\right]$

Expand the column-determinant of the matrix

$\left[\begin{array}{ccccccccc}\partial+F_{11} & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ F_{21} & \partial+F_{22} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n 1} & F_{n 2} & \ldots & \partial+F_{n n} & 1 & 0 & \ldots & 0 & 0 \\ F_{n^{\prime} 1} & F_{n^{\prime} 2} & \ldots & F_{n^{\prime} n} & \partial+F_{n^{\prime} n^{\prime}} & -1 & \ldots & 0 & 0 \\ \ldots & \ldots \\ F_{2^{\prime} 1} & F_{2^{\prime} 2} & \ldots & F_{2^{\prime} n} & F_{2^{\prime} n^{\prime}} & \ldots & \ldots & \partial+F_{2^{\prime} 2^{\prime}} & -1 \\ F_{1^{\prime} 1} & F_{1^{\prime} 2} & \ldots & F_{1^{\prime} n} & F_{1^{\prime} n^{\prime}} & \ldots & \ldots & F_{1^{\prime} 2^{\prime}} & \partial+F_{1^{\prime} 1^{\prime}}\end{array}\right]$
as a differential operator

$$
\partial^{2 n}+w_{2} \partial^{2 n-2}+w_{3} \partial^{2 n-3}+\cdots+w_{2 n}, \quad w_{i} \in \mathcal{V}(\mathfrak{b})
$$

Theorem [MR]. All elements $w_{2}, \ldots, w_{2 n}$ belong to $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$.
Moreover,

$$
\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
$$

Theorem [MR]. All elements $w_{2}, \ldots, w_{2 n}$ belong to $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$.
Moreover,

$$
\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
$$

This can be proved by using the folding procedure for the subalgebra $\mathfrak{s p}_{2 n} \subset \mathfrak{g l}_{2 n}$.

Theorem [MR]. All elements $w_{2}, \ldots, w_{2 n}$ belong to $\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)$.
Moreover,

$$
\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
$$

This can be proved by using the folding procedure for the subalgebra $\mathfrak{s p}_{2 n} \subset \mathfrak{g l}_{2 n}$. For the principal nilpotent we have

$$
f \mapsto \widetilde{f}=E_{21}+E_{32}+\cdots+E_{n+1 n}-E_{n+2 n+1}-\cdots-E_{2 n 2 n-1}
$$

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n}\right)$

Introduce the algebra of pseudo-differential operators
$\mathcal{V}(\mathfrak{b}) \otimes \mathbb{C}\left(\left(\partial^{-1}\right)\right)$,

$$
\partial^{-1} F_{i j}^{(r)}=\sum_{s=0}^{\infty}(-1)^{s} F_{i j}^{(r+s)} \partial^{-s-1}
$$

Generators of $\mathcal{W}\left(\mathfrak{o}_{2 n}\right)$

Introduce the algebra of pseudo-differential operators
$\mathcal{V}(\mathfrak{b}) \otimes \mathbb{C}\left(\left(\partial^{-1}\right)\right)$,

$$
\partial^{-1} F_{i j}^{(r)}=\sum_{s=0}^{\infty}(-1)^{s} F_{i j}^{(r+s)} \partial^{-s-1}
$$

Take the principal nilpotent element $f \in \mathfrak{o}_{2 n}$ in the form

$$
f=F_{21}+F_{32}+\cdots+F_{n n-1}+F_{n^{\prime} n-1} .
$$

Remark. Under the embedding $\mathfrak{o}_{2 n} \subset \mathfrak{g l}_{2 n}, \quad f \mapsto \widetilde{f}$,
\widetilde{f} is not a principal nilpotent in $\mathfrak{g l}_{2 n}$:

Remark. Under the embedding $\mathfrak{o}_{2 n} \subset \mathfrak{g l}_{2 n}, f \mapsto \tilde{f}$,
\tilde{f} is not a principal nilpotent in $\mathfrak{g l}_{2 n}$:
$\widetilde{f}=\left[\begin{array}{ccccccccccc}0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ \mathbf{1} & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & \mathbf{1} & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots \\ 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & \mathbf{1} & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & \mathbf{1} & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & -\mathbf{1} & -\mathbf{1} & 0 & \ldots & 0 & 0 \\ \ldots & \ddots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & -\mathbf{1} & 0\end{array}\right]$

Expand the column-determinant of the $(2 n+1) \times(2 n+1)$ matrix
$\left[\begin{array}{ccccccccc}\partial+F_{11} & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ F_{21} & \partial+F_{22} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n 1}-F_{n^{\prime} 1} & F_{n 2}-F_{n^{\prime} 2} & \ldots & \partial+F_{n n} & 0 & -2 \partial & \ldots & 0 & 0 \\ 0 & 0 & \ldots & 0 & \partial^{-1} & 0 & \ldots & 0 & 0 \\ F_{n^{\prime} 1} & F_{n^{\prime} 2} & \ldots & 0 & 0 & \partial+F_{n^{\prime} n^{\prime}} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ddots & \ldots & \ldots \\ F_{2^{\prime} 1} & 0 & \ldots & \ldots & 0 & F_{2^{\prime} n^{\prime}}-F_{2^{\prime} n} & \ldots & \partial+F_{2^{\prime} 2^{\prime}} & -1 \\ 0 & F_{1^{\prime} 2} & \ldots & \ldots & 0 & F_{1^{\prime} n^{\prime}}-F_{1^{\prime} n} & \ldots & F_{1^{\prime} 2^{\prime}} & \partial+F_{1^{\prime} 1^{\prime}}\end{array}\right]$

Expand the column-determinant of the $(2 n+1) \times(2 n+1)$ matrix
$\left[\begin{array}{ccccccccc}\partial+F_{11} & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ F_{21} & \partial+F_{22} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ddots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n 1}-F_{n^{\prime} 1} & F_{n 2}-F_{n^{\prime} 2} & \ldots & \partial+F_{n n} & 0 & -2 \partial & \ldots & 0 & 0 \\ 0 & 0 & \ldots & 0 & \partial^{-1} & 0 & \ldots & 0 & 0 \\ F_{n^{\prime} 1} & F_{n^{\prime} 2} & \ldots & 0 & 0 & \partial+F_{n^{\prime} n^{\prime}} & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ddots & \ldots & \ldots \\ F_{2^{\prime} 1} & 0 & \ldots & \ldots & 0 & F_{2^{\prime} n^{\prime}}-F_{2^{\prime} n} & \ldots & \partial+F_{2^{\prime} 2^{\prime}} & -1 \\ 0 & F_{1^{\prime} 2} & \ldots & \ldots & 0 & F_{1^{\prime} n^{\prime}}-F_{1^{\prime} n} & \ldots & F_{1^{\prime} 2^{\prime}} & \partial+F_{1^{\prime} 1^{\prime}}\end{array}\right]$
as a pseudo-differential operator

$$
\partial^{2 n-1}+w_{2} \partial^{2 n-3}+w_{3} \partial^{2 n-4}+\cdots+w_{2 n-1}+(-1)^{n} y_{n} \partial^{-1} y_{n}
$$

Theorem [MR]. All elements $w_{2}, w_{3}, \ldots, w_{2 n-1}$ and y_{n} belong to $\mathcal{W}\left(\mathfrak{o}_{2 n}\right)$. Moreover,

$$
\mathcal{W}\left(\mathfrak{o}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n-2}^{(r)}, y_{n}^{(r)} \mid r \geqslant 0\right] .
$$

Theorem [MR]. All elements $w_{2}, w_{3}, \ldots, w_{2 n-1}$ and y_{n} belong to $\mathcal{W}\left(\mathfrak{o}_{2 n}\right)$. Moreover,

$$
\mathcal{W}\left(\mathfrak{o}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n-2}^{(r)}, y_{n}^{(r)} \mid r \geqslant 0\right] .
$$

We have
$y_{n}=\operatorname{cdet}\left[\begin{array}{cccccc}\partial+F_{11} & 1 & 0 & 0 & \ldots & 0 \\ F_{21} & \partial+F_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ F_{n-11} & F_{n-12} & F_{n-13} & \ldots & \ldots & 1 \\ F_{n 1}-F_{n^{\prime} 1} & F_{n 2}-F_{n^{\prime} 2} & F_{n 3}-F_{n^{\prime} 3} & \ldots & \ldots & \partial+F_{n n}\end{array}\right]$
1.

Chevalley-type theorem

Chevalley-type theorem

Let

$$
\phi: \mathcal{V}(\mathfrak{b}) \rightarrow \mathcal{V}(\mathfrak{h})
$$

denote the homomorphism of differential algebras defined on the generators as the projection $\mathfrak{b} \rightarrow \mathfrak{h}$ with the kernel \mathfrak{n}_{-}.

Chevalley-type theorem

Let

$$
\phi: \mathcal{V}(\mathfrak{b}) \rightarrow \mathcal{V}(\mathfrak{h})
$$

denote the homomorphism of differential algebras defined on the generators as the projection $\mathfrak{b} \rightarrow \mathfrak{h}$ with the kernel \mathfrak{n}_{-}.

The restriction of ϕ to $\mathcal{W}(\mathfrak{g})$ is injective. The embedding

$$
\phi: \mathcal{W}(\mathfrak{g}) \hookrightarrow \mathcal{V}(\mathfrak{h})
$$

is known as the Miura transformation.

For $\mathfrak{g}=\mathfrak{g l}_{N}$, the image of the column-determinant
$\operatorname{cdet}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \cdots & \cdots & \cdots \\ E_{N-11} & E_{N-12} & E_{N-13} & \cdots & \cdots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \cdots & \cdots & \partial+E_{N N}\end{array}\right]$

For $\mathfrak{g}=\mathfrak{g l}_{N}$, the image of the column-determinant
$\operatorname{cdet}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ E_{N-11} & E_{N-12} & E_{N-13} & \ldots & \ldots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \ldots & \ldots & \partial+E_{N N}\end{array}\right]$
equals

$$
\left(\partial+E_{11}\right) \ldots\left(\partial+E_{N N}\right)=\partial^{N}+w_{1} \partial^{N-1}+\cdots+w_{N} .
$$

For $\mathfrak{g}=\mathfrak{g l}_{N}$, the image of the column-determinant
$\operatorname{cdet}\left[\begin{array}{cccccc}\partial+E_{11} & 1 & 0 & 0 & \ldots & 0 \\ E_{21} & \partial+E_{22} & 1 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ E_{N-11} & E_{N-12} & E_{N-13} & \ldots & \ldots & 1 \\ E_{N 1} & E_{N 2} & E_{N 3} & \ldots & \ldots & \partial+E_{N N}\end{array}\right]$
equals

$$
\left(\partial+E_{11}\right) \ldots\left(\partial+E_{N N}\right)=\partial^{N}+w_{1} \partial^{N-1}+\cdots+w_{N} .
$$

Therefore, we recover the Adler-Gelfand-Dickey generators:

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[w_{1}^{(r)}, \ldots, w_{N}^{(r)} \mid r \geqslant 0\right] .
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n+1}$:

$$
\begin{aligned}
\left(\partial+F_{11}\right) \ldots(\partial & \left.+F_{n n}\right) \partial\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
& =\partial^{2 n+1}+w_{2} \partial^{2 n-1}+w_{3} \partial^{2 n-2}+\cdots+w_{2 n+1}
\end{aligned}
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n+1}$:

$$
\begin{gathered}
\left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) \partial\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
=\partial^{2 n+1}+w_{2} \partial^{2 n-1}+w_{3} \partial^{2 n-2}+\cdots+w_{2 n+1} \\
\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right]
\end{gathered}
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n+1}$:

$$
\begin{gathered}
\left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) \partial\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
=\partial^{2 n+1}+w_{2} \partial^{2 n-1}+w_{3} \partial^{2 n-2}+\cdots+w_{2 n+1} \\
\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right]
\end{gathered}
$$

Drinfeld-Sokolov generators for $\mathfrak{s p}_{2 n}$:

$$
\begin{aligned}
& \left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right)\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
& \quad=\partial^{2 n}+w_{2} \partial^{2 n-2}+w_{3} \partial^{2 n-3}+\cdots+w_{2 n}
\end{aligned}
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n+1}$:

$$
\begin{gathered}
\left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) \partial\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
=\partial^{2 n+1}+w_{2} \partial^{2 n-1}+w_{3} \partial^{2 n-2}+\cdots+w_{2 n+1} \\
\mathcal{W}\left(\mathfrak{o}_{2 n+1}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right]
\end{gathered}
$$

Drinfeld-Sokolov generators for $\mathfrak{s p}_{2 n}$:

$$
\begin{gathered}
\left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right)\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
\quad=\partial^{2 n}+w_{2} \partial^{2 n-2}+w_{3} \partial^{2 n-3}+\cdots+w_{2 n}, \\
\mathcal{W}\left(\mathfrak{s p}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n}^{(r)} \mid r \geqslant 0\right] .
\end{gathered}
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n}$:

$$
\begin{aligned}
& \left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) \partial^{-1}\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
= & \partial^{2 n-1}+w_{2} \partial^{2 n-3}+w_{3} \partial^{2 n-4}+\cdots+w_{2 n-1}+(-1)^{n} y_{n} \partial^{-1} y_{n} .
\end{aligned}
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n}$:

$$
\begin{aligned}
& \left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) \partial^{-1}\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
= & \partial^{2 n-1}+w_{2} \partial^{2 n-3}+w_{3} \partial^{2 n-4}+\cdots+w_{2 n-1}+(-1)^{n} y_{n} \partial^{-1} y_{n} .
\end{aligned}
$$

In particular,

$$
y_{n}=\left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) 1 .
$$

Drinfeld-Sokolov generators for $\mathfrak{o}_{2 n}$:

$$
\begin{aligned}
& \left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) \partial^{-1}\left(\partial-F_{n n}\right) \ldots\left(\partial-F_{11}\right) \\
= & \partial^{2 n-1}+w_{2} \partial^{2 n-3}+w_{3} \partial^{2 n-4}+\cdots+w_{2 n-1}+(-1)^{n} y_{n} \partial^{-1} y_{n} .
\end{aligned}
$$

In particular,

$$
y_{n}=\left(\partial+F_{11}\right) \ldots\left(\partial+F_{n n}\right) 1 .
$$

Then

$$
\mathcal{W}\left(\mathfrak{o}_{2 n}\right)=\mathbb{C}\left[w_{2}^{(r)}, w_{4}^{(r)}, \ldots, w_{2 n-2}^{(r)}, y_{n}^{(r)} \mid r \geqslant 0\right] .
$$

