Classical Lie algebras and Yangians

Alexander Molev

University of Sydney

Advanced Summer School Integrable Systems and Quantum Symmetries Prague 2007 Recall that the Yangian $Y(\mathfrak{gl}_N)$ is an associative algebra with generators $t_{ij}^{(r)}$ and the defining relations

$$(u-v)[t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u),$$

where

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots \in \mathcal{Y}(\mathfrak{gl}_N)[[u^{-1}]].$$

Definition. A representation L of the Yangian $Y(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ and the following relations hold

$$egin{aligned} t_{ij}(u)\,\zeta &= 0 & ext{for} \quad 1 \leqslant i < j \leqslant N, & ext{and} \ t_{ii}(u)\,\zeta &= \lambda_i(u)\,\zeta & ext{for} \quad 1 \leqslant i \leqslant N \end{aligned}$$

Definition. A representation L of the Yangian $Y(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ and the following relations hold

$$t_{ij}(u) \zeta = 0$$
 for $1 \leq i < j \leq N$, and
 $t_{ii}(u) \zeta = \lambda_i(u) \zeta$ for $1 \leq i \leq N$

for some formal series

$$\lambda_i(u) = 1 + \lambda_i^{(1)} u^{-1} + \lambda_i^{(2)} u^{-2} + \dots, \qquad \lambda_i^{(r)} \in \mathbb{C}.$$

The vector ζ is called the highest vector of *L*, and the *N*-tuple of formal series $\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u))$ is the highest weight of *L*.

Verma module

Definition

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u))$ be an arbitrary tuple of formal series. The Verma module $M(\lambda(u))$ is the quotient of $Y(\mathfrak{gl}_N)$ by the left ideal generated by all coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq N$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq N$.

Verma module

Definition

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u))$ be an arbitrary tuple of formal series. The Verma module $M(\lambda(u))$ is the quotient of $Y(\mathfrak{gl}_N)$ by the left ideal generated by all coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq N$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq N$. Proposition. For any given order on the set of generators $t_{ji}^{(r)}$ with $1 \leq i < j \leq N$ and $r \geq 1$, the elements

$$t_{j_1i_1}^{(r_1)}\ldots t_{j_mi_m}^{(r_m)}\mathbf{1}_{\lambda(u)}, \qquad m \ge 0,$$

with ordered products of the generators, form a basis of $M(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of $Y(\mathfrak{gl}_N)$ with the highest weight $\lambda(u)$ is defined as the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule. The irreducible highest weight representation $L(\lambda(u))$ of $Y(\mathfrak{gl}_N)$ with the highest weight $\lambda(u)$ is defined as the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem

Every finite-dimensional irreducible representation of $Y(\mathfrak{gl}_N)$ is isomorphic to $L(\lambda(u))$ for some $\lambda(u)$.

Proof.

Regard the representation of $Y(\mathfrak{gl}_N)$ as a \mathfrak{gl}_N -module using the embedding $E_{ij} \mapsto t_{ij}^{(1)}$.

Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$ denote by $L(\lambda)$ the irreducible representation of the Lie algebra \mathfrak{gl}_N with the highest weight λ . So, $L(\lambda)$ is generated by a nonzero vector ζ such that

 $\begin{aligned} E_{ij}\,\zeta &= 0 \qquad \text{for} \quad 1 \leqslant i < j \leqslant N, \qquad \text{and} \\ E_{ii}\,\zeta &= \lambda_i\,\zeta \qquad \text{for} \quad 1 \leqslant i \leqslant N. \end{aligned}$

Given an *N*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_N)$ denote by $L(\lambda)$ the irreducible representation of the Lie algebra \mathfrak{gl}_N with the highest weight λ . So, $L(\lambda)$ is generated by a nonzero vector ζ such that

$$\begin{aligned} E_{ij}\,\zeta &= 0 \qquad \text{for} \quad 1 \leqslant i < j \leqslant N, \qquad \text{and} \\ E_{ii}\,\zeta &= \lambda_i\,\zeta \qquad \text{for} \quad 1 \leqslant i \leqslant N. \end{aligned}$$

Equip $L(\lambda)$ with a structure of $Y(\mathfrak{gl}_N)$ -module via the evaluation homomorphism

$$t_{ij}(u)\mapsto \delta_{ij}+E_{ij}\ u^{-1}.$$

 $L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ , and the components of the highest weight are given by

$$\lambda_i(u) = 1 + \lambda_i u^{-1}, \qquad i = 1, \dots, N.$$

 $L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ , and the components of the highest weight are given by

$$\lambda_i(u) = 1 + \lambda_i u^{-1}, \qquad i = 1, \dots, N.$$

If *L* and *M* are any two $Y(\mathfrak{gl}_N)$ -modules, then the tensor product space $L \otimes M$ can be equipped with a $Y(\mathfrak{gl}_N)$ -action with the use of the comultiplication Δ on $Y(\mathfrak{gl}_N)$.

 $L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ , and the components of the highest weight are given by

$$\lambda_i(u) = 1 + \lambda_i u^{-1}, \qquad i = 1, \dots, N.$$

If *L* and *M* are any two $Y(\mathfrak{gl}_N)$ -modules, then the tensor product space $L \otimes M$ can be equipped with a $Y(\mathfrak{gl}_N)$ -action with the use of the comultiplication Δ on $Y(\mathfrak{gl}_N)$.

By the coassociativity of Δ , we may unambiguously define multiple tensor product modules of the form

$$L(\lambda^{(1)}) \otimes L(\lambda^{(2)}) \otimes \ldots \otimes L(\lambda^{(k)}).$$

Representations of $Y(\mathfrak{gl}_2)$

Consider the irreducible highest weight representation $L(\lambda(u))$ of $Y(\mathfrak{gl}_2)$ with an arbitrary highest weight $\lambda(u) = (\lambda_1(u), \lambda_2(u))$.

Consider the irreducible highest weight representation $L(\lambda(u))$ of $Y(\mathfrak{gl}_2)$ with an arbitrary highest weight $\lambda(u) = (\lambda_1(u), \lambda_2(u))$.

Proposition

If dim $L(\lambda(u)) < \infty$ then there exists a formal series

$$f(u) = 1 + f_1 u^{-1} + f_2 u^{-2} + \dots, \qquad f_r \in \mathbb{C},$$

such that $f(u)\lambda_1(u)$ and $f(u)\lambda_2(u)$ are polynomials in u^{-1} .

let $\lambda_1(u)$ and $\lambda_2(u)$ be polynomials in u^{-1} of degree not more than k. Write the decompositions

$$\lambda_1(u) = (1 + \alpha_1 u^{-1}) \dots (1 + \alpha_k u^{-1}),$$
$$\lambda_2(u) = (1 + \beta_1 u^{-1}) \dots (1 + \beta_k u^{-1}).$$

let $\lambda_1(u)$ and $\lambda_2(u)$ be polynomials in u^{-1} of degree not more than k. Write the decompositions

$$\lambda_1(u) = (1 + \alpha_1 u^{-1}) \dots (1 + \alpha_k u^{-1}),$$
$$\lambda_2(u) = (1 + \beta_1 u^{-1}) \dots (1 + \beta_k u^{-1}).$$

Proposition

Suppose that for every i = 1, ..., k - 1 the following condition holds: if the multiset $\{\alpha_p - \beta_q \mid i \leq p, q \leq k\}$ contains nonnegative integers, then $\alpha_i - \beta_i$ is minimal amongst them. Then the representation $L(\lambda_1(u), \lambda_2(u))$ of $Y(\mathfrak{gl}_2)$ is isomorphic to the tensor product module

$$L(\alpha_1, \beta_1) \otimes L(\alpha_2, \beta_2) \otimes \ldots \otimes L(\alpha_k, \beta_k).$$

Theorem

The irreducible highest weight representation $L(\lambda_1(u), \lambda_2(u))$ of $Y(\mathfrak{gl}_2)$ is finite-dimensional if and only if there exists a monic polynomial P(u) in u such that

$$\frac{\lambda_1(u)}{\lambda_2(u)} = \frac{P(u+1)}{P(u)}$$

In this case P(u) is unique.

Theorem

The irreducible highest weight representation $L(\lambda_1(u), \lambda_2(u))$ of $Y(\mathfrak{gl}_2)$ is finite-dimensional if and only if there exists a monic polynomial P(u) in u such that

$$\frac{\lambda_1(u)}{\lambda_2(u)} = \frac{P(u+1)}{P(u)}.$$

In this case P(u) is unique.

The polynomial P(u) is called the Drinfeld polynomial of the finite-dimensional representation $L(\lambda_1(u), \lambda_2(u))$.

Proof.

dim $L(\alpha, \beta) < \infty$ if and only if $\alpha - \beta \in \mathbb{Z}_+$.

Proof.

 $\dim L(\alpha,\beta) < \infty \text{ if and only if } \alpha - \beta \in \mathbb{Z}_+.$

The highest weight of the $Y(\mathfrak{gl}_2)$ -evaluation module is

$$\lambda_1(u) = 1 + \alpha u^{-1}, \qquad \lambda_2(u) = 1 + \beta u^{-1}.$$

Hence, if $\alpha-\beta\in\mathbb{Z}_+$ then

$$rac{\lambda_1(u)}{\lambda_2(u)} = rac{u+lpha}{u+eta} = rac{P(u+1)}{P(u)}$$

for

$$P(u) = (u + \beta)(u + \beta + 1) \dots (u + \alpha - 1)$$

Recall that the Yangian $Y(\mathfrak{sl}_2)$ is the subalgebra of $Y(\mathfrak{gl}_2)$ which consists of the elements stable under all automorphisms of the form $T(u) \mapsto f(u) T(u)$. Recall that the Yangian $Y(\mathfrak{sl}_2)$ is the subalgebra of $Y(\mathfrak{gl}_2)$ which consists of the elements stable under all automorphisms of the form $T(u) \mapsto f(u) T(u)$.

Corollary

The isomorphism classes of finite-dimensional irreducible representations of the Yangian $Y(\mathfrak{sl}_2)$ are parameterized by monic polynomials in u. Every such representation is isomorphic to the restriction of a $Y(\mathfrak{gl}_2)$ -module of the form

$$L(\alpha_1,\beta_1)\otimes L(\alpha_2,\beta_2)\otimes\ldots\otimes L(\alpha_k,\beta_k),$$

where each difference $\alpha_i - \beta_i$ is a positive integer.

Irreducibility criterion

Define the string corresponding to a pair of complex numbers (α, β) with $\alpha - \beta \in \mathbb{Z}_+$ as the set

$$S(\alpha,\beta) = \{\beta,\beta+1,\ldots,\alpha-1\}.$$

If $\alpha = \beta$ then the set $S(\alpha, \beta)$ is regarded to be empty.

Irreducibility criterion

Define the string corresponding to a pair of complex numbers (α, β) with $\alpha - \beta \in \mathbb{Z}_+$ as the set

$$S(\alpha,\beta) = \{\beta,\beta+1,\ldots,\alpha-1\}.$$

If $\alpha = \beta$ then the set $S(\alpha, \beta)$ is regarded to be empty.

Definition

Two strings S_1 and S_2 are in general position if either

(i) $S_1 \cup S_2$ is not a string, or

(ii) $S_1 \subset S_2$, or $S_2 \subset S_1$.

Suppose that all differences $\alpha_i - \beta_i$ are nonnegative integers.

Suppose that all differences $\alpha_i - \beta_i$ are nonnegative integers.

Corollary

The representation

$$L(\alpha_1,\beta_1)\otimes L(\alpha_2,\beta_2)\otimes\ldots\otimes L(\alpha_k,\beta_k)$$

of $Y(\mathfrak{gl}_2)$ (or $Y(\mathfrak{sl}_2)$) is irreducible if and only if the strings $S(\alpha_1, \beta_1), \ldots, S(\alpha_k, \beta_k)$ are pairwise in general position.

while $L(6,1) \otimes L(7,4)$ is reducible:

while $L(6,1) \otimes L(7,4)$ is reducible:

Representations of $Y(\mathfrak{gl}_N)$

Let $\lambda(u)$ be an *N*-tuple of formal series in u^{-1} ,

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u)).$$

Representations of $Y(\mathfrak{gl}_N)$

Let $\lambda(u)$ be an *N*-tuple of formal series in u^{-1} ,

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_N(u)).$$

Theorem

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $Y(\mathfrak{gl}_N)$ is finite-dimensional, if and only if there exist monic polynomials $P_1(u), \ldots, P_{N-1}(u)$ in u such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,N-1.$$

Definition

The polynomials $P_i(u)$ with i = 1, ..., N - 1 are called the Drinfeld polynomials of $L(\lambda(u))$.

Definition

The polynomials $P_i(u)$ with i = 1, ..., N - 1 are called the Drinfeld polynomials of $L(\lambda(u))$.

Lemma. Suppose that L and M are finite-dimensional irreducible representations of $Y(\mathfrak{gl}_N)$ with the respective sets of Drinfeld polynomials

$$(P_1(u), \dots, P_{N-1}(u))$$
 and $(Q_1(u), \dots, Q_{N-1}(u)).$

Then the irreducible quotient of the cyclic $Y(\mathfrak{gl}_N)$ -span of the tensor product of the highest vectors of L and M corresponds to

$$(P_1(u)Q_1(u),\ldots,P_{N-1}(u)Q_{N-1}(u)).$$

The evaluation $Y(\mathfrak{gl}_N)$ -module $L(\alpha + 1, \ldots, \alpha + 1, \alpha, \ldots, \alpha)$ with *i* copies of $\alpha + 1$ is a fundamental representation; its Drinfeld polynomials are given by

$$P_i(u) = u + \alpha$$
 and $P_j(u) = 1$ if $j \neq i$.

The evaluation $Y(\mathfrak{gl}_N)$ -module $L(\alpha + 1, \ldots, \alpha + 1, \alpha, \ldots, \alpha)$ with *i* copies of $\alpha + 1$ is a fundamental representation; its Drinfeld polynomials are given by

$${\sf P}_i(u)=u+lpha$$
 and ${\sf P}_j(u)=1$ if $j
eq i.$

Corollary

Every finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$ is isomorphic to a subquotient of a tensor product of fundamental representations.

Remark

Contrary to the case N = 2, it is not true for $N \ge 3$ that every finite-dimensional irreducible representation of $Y(\mathfrak{sl}_N)$ is isomorphic to a tensor product of evaluation modules. For example, the $Y(\mathfrak{sl}_3)$ -module $L(\lambda(u))$ with

$$\lambda_1(u) = (1 + 3u^{-1})(1 + u^{-1}),$$

 $\lambda_2(u) = 1 + 3u^{-1}, \qquad \lambda_3(u) = 1 + 2u^{-1}$

is 8-dimensional. On the other hand, the possible dimensions of the evaluation modules are $1, 3, 6, 8, \ldots$ so that $L(\lambda(u))$ cannot be isomorphic to a tensor product of such modules.

Irreducibility criterion for tensor products

of evaluation modules

Let the $\lambda^{(i)}$ be \mathfrak{gl}_N -highest weights.

Irreducibility criterion for tensor products

of evaluation modules

Let the $\lambda^{(i)}$ be \mathfrak{gl}_N -highest weights.

Theorem (Binary property). The $Y(\mathfrak{gl}_N)$ -module

$$L(\lambda^{(1)}) \otimes L(\lambda^{(2)}) \otimes \ldots \otimes L(\lambda^{(l)})$$

is irreducible if and only if the modules $L(\lambda^{(i)}) \otimes L(\lambda^{(j)})$ are irreducible for all $1 \leq i < j \leq I$.

Let

$$\lambda = (\lambda_1, \ldots, \lambda_N), \qquad \mu = (\mu_1, \ldots, \mu_N)$$

with $\lambda_i, \mu_i \in \mathbb{Z}$ and

$$\lambda_1 \geq \cdots \geq \lambda_N, \qquad \mu_1 \geq \cdots \geq \mu_N.$$

Let

$$\lambda = (\lambda_1, \ldots, \lambda_N), \qquad \mu = (\mu_1, \ldots, \mu_N)$$

with $\lambda_i, \mu_i \in \mathbb{Z}$ and

$$\lambda_1 \geq \cdots \geq \lambda_N, \qquad \mu_1 \geq \cdots \geq \mu_N.$$

We will call two disjoint finite subsets A and B of \mathbb{Z} crossing if there exist elements $a_1, a_2 \in A$ and $b_1, b_2 \in B$ such that

$$a_1 < b_1 < a_2 < b_2$$
 or $b_1 < a_1 < b_2 < a_2$.

Otherwise, A and B are called non-crossing.

For any \mathfrak{gl}_N -highest weight λ with integer components introduce the subset $\mathcal{A}_\lambda\subset\mathbb{Z}$ by

$$\mathcal{A}_{\lambda} = \{\lambda_1, \lambda_2 - 1, \dots, \lambda_N - N + 1\}.$$

For any \mathfrak{gl}_N -highest weight λ with integer components introduce the subset $\mathcal{A}_\lambda \subset \mathbb{Z}$ by

$$\mathcal{A}_{\lambda} = \{\lambda_1, \lambda_2 - 1, \dots, \lambda_N - N + 1\}.$$

Theorem

The $Y(\mathfrak{gl}_N)$ -module $L(\lambda) \otimes L(\mu)$ is irreducible if and only if the sets $\mathcal{A}_{\lambda} \setminus \mathcal{A}_{\mu}$ and $\mathcal{A}_{\mu} \setminus \mathcal{A}_{\lambda}$ are non-crossing.

The $Y(\mathfrak{gl}_4)$ -module $L(7, 6, 6, 4) \otimes L(9, 8, 8, 6)$ is reducible:

The $Y(\mathfrak{gl}_4)$ -module $L(7, 6, 6, 4) \otimes L(9, 8, 8, 6)$ is reducible:

Fusion procedure

The irreducible representations of \mathfrak{S}_k over \mathbb{C} are parameterized by partitions of k. Given a partition λ of k denote the corresponding irreducible representation of \mathfrak{S}_k by V_{λ} . The vector space V_{λ} is equipped with an \mathfrak{S}_k -invariant inner product (,). The orthonormal Young basis $\{v_{\mathcal{U}}\}$ of V_{λ} is parameterized by the set of standard λ -tableaux \mathcal{U} . Set $s_i = (i, i + 1)$ for $i \in \{1, ..., k - 1\}$. We have

$$s_i \cdot v_{\mathcal{U}} = d v_{\mathcal{U}} + \sqrt{1 - d^2} v_{s_i \mathcal{U}},$$

where $d = (c_{i+1} - c_i)^{-1}$ and $c_i = c_i(\mathcal{U})$ the content of the cell occupied by the number *i* in a standard λ -tableau \mathcal{U} . The tableau $s_i\mathcal{U}$ is obtained from \mathcal{U} by swapping the entries *i* and i + 1. The group algebra $\mathbb{C}[\mathfrak{S}_k]$ is isomorphic to the direct sum of matrix algebras

$$\mathbb{C}[\mathfrak{S}_k] \cong \bigoplus_{\lambda \vdash k} \operatorname{Mat}_{f_{\lambda}}(\mathbb{C}),$$

where $f_{\lambda} = \dim V_{\lambda}$. The matrix units $e_{\mathcal{UU}'} \in \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})$ are parameterized by pairs of standard λ -tableaux \mathcal{U} and \mathcal{U}' . The group algebra $\mathbb{C}[\mathfrak{S}_k]$ is isomorphic to the direct sum of matrix algebras

$$\mathbb{C}[\mathfrak{S}_k] \cong \bigoplus_{\lambda \vdash k} \operatorname{Mat}_{f_\lambda}(\mathbb{C}),$$

where $f_{\lambda} = \dim V_{\lambda}$. The matrix units $e_{\mathcal{UU}'} \in \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})$ are parameterized by pairs of standard λ -tableaux \mathcal{U} and \mathcal{U}' . Identify $\mathbb{C}[\mathfrak{S}_k]$ with the direct sum of matrix algebras by

$$\mathbf{e}_{\mathcal{U}\mathcal{U}'} = rac{f_{\lambda}}{k!} \phi_{\mathcal{U}\mathcal{U}'}$$

where $\phi_{UU'}$ is the matrix element corresponding to the basis vectors $v_{\mathcal{U}}$ and $v_{\mathcal{U}'}$ of the representation V_{λ} ,

$$\phi_{\mathcal{U}\mathcal{U}'} = \sum_{s \in \mathfrak{S}_k} (s \cdot v_{\mathcal{U}}, v_{\mathcal{U}'}) \cdot s^{-1} \in \mathbb{C}[\mathfrak{S}_k].$$

For the diagonal elements we will simply write $e_{\mathcal{U}} = e_{\mathcal{U}\mathcal{U}}$ and

 $\phi_{\mathcal{U}} = \phi_{\mathcal{U}\mathcal{U}}.$

For the diagonal elements we will simply write $e_U = e_{UU}$ and $\phi_U = \phi_{UU}$.

The Jucys–Murphy elements of $\mathbb{C}[\mathfrak{S}_k]$ are defined by

$$x_1 = 0,$$
 $x_i = (1 i) + (2 i) + \dots + (i - 1 i),$ $i = 2, \dots, k.$

They generate a commutative subalgebra of $\mathbb{C}[\mathfrak{S}_k]$. Moreover, x_k commutes with all elements of \mathfrak{S}_{k-1} .

For the diagonal elements we will simply write $e_U = e_{UU}$ and $\phi_U = \phi_{UU}$.

The Jucys–Murphy elements of $\mathbb{C}[\mathfrak{S}_k]$ are defined by

$$x_1 = 0,$$
 $x_i = (1 i) + (2 i) + \dots + (i - 1 i),$ $i = 2, \dots, k.$

They generate a commutative subalgebra of $\mathbb{C}[\mathfrak{S}_k]$. Moreover, x_k commutes with all elements of \mathfrak{S}_{k-1} .

The vectors of the Young basis are eigenvectors for the action of x_i on V_{λ} . For any standard λ -tableau \mathcal{U} we have

$$x_i \cdot v_{\mathcal{U}} = c_i(\mathcal{U}) v_{\mathcal{U}}, \qquad i = 1, \ldots, k.$$

Fix a standard λ -tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ .

Fix a standard λ -tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ .

Proposition (Murphy's formula). We have the relation in $\mathbb{C}[\mathfrak{S}_k]$,

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_k - a_1) \dots (x_k - a_l)}{(c - a_1) \dots (c - a_l)},$$

where a_1, \ldots, a_l are the contents of all addable cells of μ except for α , while *c* is the content of the latter. Fix a standard λ -tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ .

Proposition (Murphy's formula). We have the relation in $\mathbb{C}[\mathfrak{S}_k]$,

$$e_{\mathcal{U}} = e_{\mathcal{V}} \frac{(x_k - a_1) \dots (x_k - a_l)}{(c - a_1) \dots (c - a_l)},$$

where a_1, \ldots, a_l are the contents of all addable cells of μ except for α , while *c* is the content of the latter.

Equivalently,

$$e_{\mathcal{U}} = e_{\mathcal{V}} \left. \frac{u-c}{u-x_k} \right|_{u=c}.$$

For any distinct indices $i, j \in \{1, ..., k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}[\mathfrak{S}_k]$ by

$$\rho_{ij}(u,v) = 1 - \frac{(ij)}{u-v}.$$

For any distinct indices $i, j \in \{1, ..., k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}[\mathfrak{S}_k]$ by

$$\rho_{ij}(u,v) = 1 - \frac{(ij)}{u-v}.$$

Proposition

Let r be a fixed index, $r \ge k + 1$. We have the equalities of rational functions in u valued in $\mathbb{C}[\mathfrak{S}_r]$,

$$\begin{split} \phi_{\mathcal{U}} \rho_{k,r}(-c_k, u) \dots \rho_{1r}(-c_1, u) \\ &= \rho_{1r}(-c_1, u) \dots \rho_{k,r}(-c_k, u) \phi_{\mathcal{U}} \\ &= \phi_{\mathcal{U}} \left(1 + \frac{(1r) + (2r) + \dots + (kr)}{u} \right). \end{split}$$

Take k complex variables u_1, \ldots, u_k and set

$$\phi(u_1,\ldots,u_k) = \rho_{12}(u_1,u_2) \rho_{13}(u_1,u_3) \rho_{23}(u_2,u_3)$$
$$\times \ldots \rho_{1k}(u_1,u_k) \rho_{2k}(u_2,u_k) \ldots \rho_{k-1,k}(u_{k-1},u_k).$$

Take k complex variables u_1, \ldots, u_k and set

$$\phi(u_1,\ldots,u_k) = \rho_{12}(u_1,u_2) \rho_{13}(u_1,u_3) \rho_{23}(u_2,u_3)$$

$$\times \ldots \rho_{1k}(u_1,u_k) \rho_{2k}(u_2,u_k) \ldots \rho_{k-1,k}(u_{k-1},u_k).$$

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard λ -tableau. Set $c_i = c_i(\mathcal{U})$ for i = 1, ..., k.

Take k complex variables u_1, \ldots, u_k and set

$$\phi(u_1,\ldots,u_k) = \rho_{12}(u_1,u_2) \rho_{13}(u_1,u_3) \rho_{23}(u_2,u_3)$$

$$\times \ldots \rho_{1k}(u_1,u_k) \rho_{2k}(u_2,u_k) \ldots \rho_{k-1,k}(u_{k-1},u_k).$$

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard λ -tableau. Set $c_i = c_i(\mathcal{U})$ for i = 1, ..., k. Then the consecutive evaluations

$$\phi(u_1,\ldots,u_k)\big|_{u_1=c_1}\big|_{u_2=c_2}\cdots\big|_{u_k=c_k}$$

of the rational function $\phi(u_1, \ldots, u_k)$ are well-defined. The corresponding value coincides with the matrix element $\phi_{\mathcal{U}}$.

Example: $\lambda = (k)$. Then

$$\mathcal{U} = \begin{bmatrix} 1 & 2 & \cdots & k \end{bmatrix} \qquad c_i = i - 1,$$

Example: $\lambda = (k)$. Then

$$\mathcal{U}=$$
 1 2 \cdots k $c_i=i-1,$

 and

$$\phi_{\mathcal{U}} = \sum_{\sigma \in \mathfrak{S}_k} \sigma,$$

is the symmetrizer in $\mathbb{C}[\mathfrak{S}_k]$.

Example: $\lambda = (k)$. Then

$$\mathcal{U} =$$
 1 2 \cdots k $c_i = i - 1,$

and

$$\phi_{\mathcal{U}} = \sum_{\sigma \in \mathfrak{S}_k} \sigma,$$

is the symmetrizer in $\mathbb{C}[\mathfrak{S}_k]$. By the theorem,

$$\phi_{\mathcal{U}} = \left(1 + \frac{(1\,2)}{1}\right) \left(1 + \frac{(1\,3)}{2}\right) \left(1 + \frac{(2\,3)}{1}\right)$$
$$\times \dots \left(1 + \frac{(1\,k)}{k-1}\right) \left(1 + \frac{(2\,k)}{k-2}\right) \dots \left(1 + \frac{(k-1\,k)}{1}\right).$$

Example: $\lambda = (1^k)$. Then

$$\mathcal{U} = \begin{bmatrix} 1 \\ 2 \\ \vdots \\ k \end{bmatrix}$$

$$c_i=-i+1,$$

Example: $\lambda = (1^k)$. Then

and
$$\phi_{\mathcal{U}} = \sum_{\sigma \in \mathfrak{S}_k} \operatorname{sgn} \sigma \cdot \sigma$$
 is the anti-symmetrizer in $\mathbb{C}[\mathfrak{S}_k]$,

Example: $\lambda = (1^k)$. Then

and
$$\phi_{\mathcal{U}} = \sum_{\sigma \in \mathfrak{S}_k} \operatorname{sgn} \sigma \cdot \sigma$$
 is the anti-symmetrizer in $\mathbb{C}[\mathfrak{S}_k]$,
 $\phi_{\mathcal{U}} = \left(1 - \frac{(12)}{1}\right) \left(1 - \frac{(13)}{2}\right) \left(1 - \frac{(23)}{1}\right)$
 $\times \dots \left(1 - \frac{(1k)}{k-1}\right) \left(1 - \frac{(2k)}{k-2}\right) \dots \left(1 - \frac{(k-1k)}{1}\right).$

Example:
$$\lambda = (2, 1),$$

 $\mathcal{U} = \begin{array}{c} 1 & 2 \\ 3 \end{array} \qquad \qquad \mathcal{V} = \begin{array}{c} 1 & 3 \\ 2 \end{array}$

Example: $\lambda = (2, 1),$ $\mathcal{U} = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$ $\mathcal{V} = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$

Then $c_1=0, c_2=1, c_3=-1$ for \mathcal{U} , and

$$\phi_{\mathcal{U}} = (1 + (12))(1 - (13))(1 - \frac{(23)}{2}),$$

Example: $\lambda = (2, 1),$ $\mathcal{U} = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$ $\mathcal{V} = \begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$

Then $c_1=0, c_2=1, c_3=-1$ for \mathcal{U} , and

$$\phi_{\mathcal{U}} = (1 + (12))(1 - (13))(1 - \frac{(23)}{2}),$$

while $c_1=0, \ c_2=-1, \ c_3=1$ for $\mathcal{V},$ and

$$\phi_{\mathcal{V}} = \left(1 - (12)\right) \left(1 + (13)\right) \left(1 + \frac{(23)}{2}\right).$$

Example: $\lambda = (2^2)$,

$\phi(u_1, u_2, u_3, u_4) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3)$ $\times \rho_{14}(u_1, u_4) \rho_{24}(u_2, u_4) \rho_{34}(u_3, u_4).$

Example: $\lambda = (2^2)$,

$$\phi(u_1, u_2, u_3, u_4) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3)$$
$$\times \rho_{14}(u_1, u_4) \rho_{24}(u_2, u_4) \rho_{34}(u_3, u_4).$$

Take the standard $\lambda\text{-tableau}$

$$\mathcal{U} = \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}$$

Example: $\lambda = (2^2)$,

$$\phi(u_1, u_2, u_3, u_4) = \rho_{12}(u_1, u_2) \rho_{13}(u_1, u_3) \rho_{23}(u_2, u_3)$$
$$\times \rho_{14}(u_1, u_4) \rho_{24}(u_2, u_4) \rho_{34}(u_3, u_4).$$

Take the standard λ -tableau

$$\mathcal{U} = \begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}$$

The contents are $c_1 = 0$, $c_2 = 1$, $c_3 = -1$, $c_4 = 0$.

Taking
$$u_1 = 0$$
, $u_2 = 1$, $u_3 = -1$, $u_4 = u$ we get
 $\phi(0, 1, -1, u) = (1 + (12)) (1 - (13)) (1 - \frac{(23)}{2})$
 $\times (1 + \frac{(14)}{u}) (1 + \frac{(24)}{u-1}) (1 + \frac{(34)}{u+1}).$

Taking
$$u_1 = 0$$
, $u_2 = 1$, $u_3 = -1$, $u_4 = u$ we get

$$\phi(0, 1, -1, u) = \left(1 + (12)\right) \left(1 - (13)\right) \left(1 - \frac{(23)}{2}\right)$$
$$\times \left(1 + \frac{(14)}{u}\right) \left(1 + \frac{(24)}{u-1}\right) \left(1 + \frac{(34)}{u+1}\right).$$

By the theorem, this rational function is regular at u = 0 and the corresponding value coincides with $\phi_{\mathcal{U}}$.

We have

$$\phi(0,1,-1,u) = \phi_{\mathcal{V}}\left(1 + \frac{(14)}{u}\right)\left(1 + \frac{(24)}{u-1}\right)\left(1 + \frac{(34)}{u+1}\right),$$

We have

$$\phi(0,1,-1,u) = \phi_{\mathcal{V}}\left(1 + \frac{(14)}{u}\right)\left(1 + \frac{(24)}{u-1}\right)\left(1 + \frac{(34)}{u+1}\right),$$

where

$$\mathcal{V} = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$

Next step:

$$\phi_{\mathcal{V}}\left(1+\frac{(1\,4)}{u}\right)\left(1+\frac{(2\,4)}{u-1}\right)\left(1+\frac{(3\,4)}{u+1}\right)$$
$$=\prod_{i=1}^{3}\left(1-\frac{1}{(u-c_{i})^{2}}\right)\frac{u}{u-c_{4}}\cdot\phi_{\mathcal{V}}\frac{u-c_{4}}{u-x_{4}},$$

Next step:

$$\phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)$$
$$=\prod_{i=1}^{3}\left(1-\frac{1}{(u-c_{i})^{2}}\right)\frac{u}{u-c_{4}}\cdot\phi_{\mathcal{V}}\frac{u-c_{4}}{u-x_{4}},$$

where $c_1 = 0$, $c_2 = 1$, $c_3 = -1$, $c_4 = 0$ and

 $x_4 = (14) + (24) + (34).$

Finally, apply Murphy's formula to get

$$\prod_{i=1}^{3} \left(1 - \frac{1}{(u-c_i)^2} \right) \frac{u}{u-c_4} \cdot \phi_{\mathcal{V}} \frac{u-c_4}{u-x_4} \Big|_{u=c_4} = \phi_{\mathcal{U}}.$$

Finally, apply Murphy's formula to get

$$\prod_{i=1}^{3} \left(1 - \frac{1}{(u-c_i)^2}\right) \frac{u}{u-c_4} \cdot \phi_{\mathcal{V}} \frac{u-c_4}{u-x_4}\Big|_{u=c_4} = \phi_{\mathcal{U}}.$$

Thus,

$$\begin{split} \phi_{\mathcal{U}} &= \phi(0, 1, -1, 0) \\ &= \frac{1}{2} \left(1 + (12) \right) \left(1 - (13) \right) \left(2 - (23) \right) \\ &\times \left(2 - (14) - (24) - (34) \right) \left(2 + (14) + (24) + (34) \right). \end{split}$$

The symmetric group \mathfrak{S}_k acts naturally on the tensor product space

$$\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N$$
, k factors,

by permuting the factors. On the other hand, \mathbb{C}^N carries the vector representation of the Lie algebra \mathfrak{gl}_N so that the tensor product space is a representation of \mathfrak{gl}_N .

The symmetric group \mathfrak{S}_k acts naturally on the tensor product space

$$\mathbb{C}^N \otimes \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N$$
, k factors,

by permuting the factors. On the other hand, \mathbb{C}^N carries the vector representation of the Lie algebra \mathfrak{gl}_N so that the tensor product space is a representation of \mathfrak{gl}_N .

Suppose that $\lambda = (\lambda_1, \dots, \lambda_N)$ is a partition of k with $\ell(\lambda) \leq N$. Consider an arbitrary standard λ -tableau \mathcal{U} and let $\Phi_{\mathcal{U}} \in \operatorname{End} (\mathbb{C}^N)^{\otimes k}$ denote the image of the matrix element $\phi_{\mathcal{U}}$ under the action of \mathfrak{S}_k on the tensor product space. Then the subspace

$$L_{\mathcal{U}} = \Phi_{\mathcal{U}}(\mathbb{C}^N)^{\otimes k}$$

is a \mathfrak{gl}_N -submodule of the tensor product module. This submodule is irreducible and isomorphic to $L(\lambda)$. Then the subspace

$$L_{\mathcal{U}} = \Phi_{\mathcal{U}}(\mathbb{C}^N)^{\otimes k}$$

is a \mathfrak{gl}_N -submodule of the tensor product module. This submodule is irreducible and isomorphic to $L(\lambda)$. If $\mathcal{U} = \mathcal{U}^r$ is the row tableau of shape λ , then the subspace $L_{\mathcal{U}^r}$ coincides with the image of the Young symmetrizer,

$$L_{\mathcal{U}^r} = H_{\mathcal{U}^r} A_{\mathcal{U}^r} (\mathbb{C}^N)^{\otimes k},$$

where $H_{\mathcal{U}^r}$ and $A_{\mathcal{U}^r}$ are the row symmetrizer and column anti-symmetrizer of \mathcal{U}^r . In the vector representation \mathbb{C}^N of \mathfrak{gl}_N we have $E_{ij} \mapsto e_{ij}$ and so the image of the matrix $E = \sum_{i,j=1}^N e_{ij} \otimes E_{ij}$ under the action of \mathfrak{gl}_N can be written as

$$\sum_{a=1}^{k} \sum_{i,j=1}^{N} e_{ij} \otimes 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (k-a)} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} (\mathbb{C}^{N})^{\otimes k}.$$

In the vector representation \mathbb{C}^N of \mathfrak{gl}_N we have $E_{ij} \mapsto e_{ij}$ and so the image of the matrix $E = \sum_{i,j=1}^N e_{ij} \otimes E_{ij}$ under the action of \mathfrak{gl}_N can be written as

$$\sum_{a=1}^{k}\sum_{i,j=1}^{N}e_{ij}\otimes 1^{\otimes (a-1)}\otimes e_{ij}\otimes 1^{\otimes (k-a)}\in \operatorname{End} \mathbb{C}^{N}\otimes \operatorname{End} (\mathbb{C}^{N})^{\otimes k}.$$

Hence, under the evaluation homomorphism

$$T(u)\mapsto 1+E\,u^{-1},$$

the image of $T^{t}(u)$ in the representation $L_{\mathcal{U}}$ is

$$T^{t}(u) \mapsto 1 + (P_{01} + P_{02} + \dots + P_{0k}) u^{-1}$$

In particular, if k = 1 then this takes the form

$$T^t(u)\mapsto R_{01}(-u),$$

where we have used the Yang *R*-matrix.

In particular, if k = 1 then this takes the form

$$T^t(u)\mapsto R_{01}(-u),$$

where we have used the Yang R-matrix.

For any complex number z we can make the vector space \mathbb{C}^N into a representation of $Y(\mathfrak{gl}_N)$ by the assignment

$$T^t(u)\mapsto R_{01}(-u-z).$$

In particular, if k = 1 then this takes the form

$$T^t(u)\mapsto R_{01}(-u),$$

where we have used the Yang R-matrix.

For any complex number z we can make the vector space \mathbb{C}^N into a representation of $Y(\mathfrak{gl}_N)$ by the assignment

$$T^t(u)\mapsto R_{01}(-u-z).$$

More generally, $\mathrm{Y}(\mathfrak{gl}_N)$ acts on $(\mathbb{C}^N)^{\otimes k}$ by

$$T^{t}(u) \mapsto R_{01}(-u-z_1) R_{02}(-u-z_2) \dots R_{0k}(-u-z_k),$$

where z_1, \ldots, z_k are fixed complex numbers.

Consider a standard λ -tableau \mathcal{U} and for any index r = 1, ..., kdenote by $c_r = c_r(\mathcal{U})$ the content of the cell of \mathcal{U} occupied by r. Consider a standard λ -tableau \mathcal{U} and for any index r = 1, ..., kdenote by $c_r = c_r(\mathcal{U})$ the content of the cell of \mathcal{U} occupied by r.

Proposition

The subspace $L_{\mathcal{U}}$ of $(\mathbb{C}^N)^{\otimes k}$ is stable under the action of $Y(\mathfrak{gl}_N)$ defined by

$$T^{t}(u) \mapsto R_{01}(-u-c_1) R_{02}(-u-c_2) \dots R_{0k}(-u-c_k).$$

Moreover, the representation of $Y(\mathfrak{gl}_N)$ on $L_{\mathcal{U}}$ obtained by restriction is isomorphic to the evaluation module $L(\lambda)$.

Proof.

Observe that $R_{ij}(u - v)$ coincides with the image of the element $\rho_{ij}(u, v)$ under the action of the symmetric group \mathfrak{S}_{k+1} on the tensor product of the vector spaces \mathbb{C}^N . Hence, applying the fusion procedure, we get

$$R_{01}(-u-c_1) R_{02}(-u-c_2) \dots R_{0k}(-u-c_k) \Phi_{\mathcal{U}}$$

= $\Phi_{\mathcal{U}} \Big(1 + \frac{P_{01} + P_{02} + \dots + P_{0k}}{u} \Big).$

This implies the first part of the proposition. The second part follows by taking into account that $P_{01} + P_{02} + \cdots + P_{0k}$ commutes with $\Phi_{\mathcal{U}}$.

Gelfand–Tsetlin bases

Given any finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$, there exists an automorphism of $Y(\mathfrak{gl}_N)$ of the form $T(u) \mapsto f(u) T(u)$ such that its composition with the representation is isomorphic to a subquotient of a tensor product module

$$L(\lambda^{(1)})\otimes\ldots\otimes L(\lambda^{(p)}),$$

where $L(\lambda^{(i)})$ is the irreducible representation of \mathfrak{gl}_N with the highest weight $\lambda^{(i)}$.

Gelfand–Tsetlin bases

Given any finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$, there exists an automorphism of $Y(\mathfrak{gl}_N)$ of the form $T(u) \mapsto f(u) T(u)$ such that its composition with the representation is isomorphic to a subquotient of a tensor product module

$$L(\lambda^{(1)})\otimes\ldots\otimes L(\lambda^{(p)}),$$

where $L(\lambda^{(i)})$ is the irreducible representation of \mathfrak{gl}_N with the highest weight $\lambda^{(i)}$.

All generators $t_{ij}^{(r)}$ with $r \ge p + 1$ act as zero operators.

Definition

For any positive integer p, the Yangian of level p is the quotient $Y_p(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$ by the ideal generated by all elements $t_{ii}^{(r)}$ with $r \ge p+1$ and $1 \le i, j \le N$.

Definition

For any positive integer p, the Yangian of level p is the quotient $Y_p(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$ by the ideal generated by all elements $t_{ii}^{(r)}$ with $r \ge p+1$ and $1 \le i, j \le N$.

The composition of any finite-dimensional irreducible representation of $Y(\mathfrak{gl}_N)$ with an appropriate automorphism $T(u) \mapsto f(u) T(u)$ can be regarded as a representation of $Y_p(\mathfrak{gl}_N)$ for some $p \ge 1$. If p = 1 then the algebra $Y_1(\mathfrak{gl}_N)$ is isomorphic to the universal enveloping algebra $U(\mathfrak{gl}_N)$. $Y_p(\mathfrak{gl}_N)$ can be regarded as an algebra with generators $t_{ij}^{(r)}$ for $1 \leq r \leq p$ and $1 \leq i, j \leq N$, subject to the defining relations

$$(u-v)[T_{ij}(u), T_{kl}(v)] = T_{kj}(u) T_{il}(v) - T_{kj}(v) T_{il}(u),$$

where

$$T_{ij}(u) = \delta_{ij} u^p + t_{ij}^{(1)} u^{p-1} + \cdots + t_{ij}^{(p)}$$

The irreducible representation $L(\lambda(u))$ is generated by a nonzero vector ζ such that

$$egin{aligned} T_{ij}(u)\,\zeta &= 0 & ext{for} \quad 1 \leqslant i < j \leqslant N, & ext{and} \ T_{ii}(u)\,\zeta &= \lambda_i(u)\,\zeta & ext{for} \quad 1 \leqslant i \leqslant N, \end{aligned}$$

where $\lambda_i(u)$ is a monic polynomial in *u* of degree *p*. Write

$$\lambda_i(u) = (u + \lambda_i^{(1)})(u + \lambda_i^{(2)})\dots(u + \lambda_i^{(p)}), \qquad i = 1,\dots, N.$$

The irreducible representation $L(\lambda(u))$ is generated by a nonzero vector ζ such that

$$egin{aligned} T_{ij}(u)\,\zeta &= 0 & ext{for} \quad 1 \leqslant i < j \leqslant N, & ext{and} \ T_{ii}(u)\,\zeta &= \lambda_i(u)\,\zeta & ext{for} \quad 1 \leqslant i \leqslant N, \end{aligned}$$

where $\lambda_i(u)$ is a monic polynomial in *u* of degree *p*. Write

$$\lambda_i(u) = (u + \lambda_i^{(1)})(u + \lambda_i^{(2)})\dots(u + \lambda_i^{(p)}), \qquad i = 1,\dots, N.$$

Impose the generality condition

$$\lambda_i^{(k)}-\lambda_j^{(m)}
otin\mathbb{Z},\qquad ext{for all } i,j ext{ and all } k
eq m.$$

The Gelfand–Tsetlin pattern $\Lambda(u)$ (associated with the highest weight $\lambda(u)$) is an array of monic polynomials in u of degree p of the form

$$\begin{array}{ccccc} \lambda_{N1}(u) & \lambda_{N2}(u) & \dots & \lambda_{NN}(u) \\ \\ \lambda_{N-1,1}(u) & \dots & \lambda_{N-1,N-1}(u) \\ \\ & \dots & \dots \\ \\ \lambda_{21}(u) & \lambda_{22}(u) \\ \\ & \lambda_{11}(u) \end{array}$$

Here the top row coincides with $\lambda(u)$, and we have the betweenness conditions

$$\lambda_{r+1,i}(u) \longrightarrow \lambda_{ri}(u) \longrightarrow \lambda_{r+1,i+1}(u)$$

for $r = 1, \dots, N-1$ and $i = 1, \dots, r$.

Here the top row coincides with $\lambda(u)$, and we have the betweenness conditions

$$\lambda_{r+1,i}(u) \longrightarrow \lambda_{ri}(u) \longrightarrow \lambda_{r+1,i+1}(u)$$

for $r = 1, \dots, N-1$ and $i = 1, \dots, r$.

Notation

$$\lambda_i(u) \longrightarrow \mu_i(u)$$

means that there exists a uniquely determined decomposition

$$\mu_i(u) = (u + \mu_i^{(1)})(u + \mu_i^{(2)})\dots(u + \mu_i^{(p)}), \qquad i = 1,\dots, N-1,$$

such that $\lambda_i^{(k)} - \mu_i^{(k)} \in \mathbb{Z}_+$ for all *i* and *k*.

Theorem

The representation $L(\lambda(u))$ of $Y_p(\mathfrak{gl}_N)$ admits a basis $\{\zeta_{\Lambda}\}$ parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$.

Theorem

The representation $L(\lambda(u))$ of $Y_p(\mathfrak{gl}_N)$ admits a basis $\{\zeta_{\Lambda}\}$ parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$.

Corollary (Branching rule).

$$L(\lambda(u))|_{Y_{\rho}(\mathfrak{gl}_{N-1})} \cong \bigoplus_{\mu(u)} L'(\mu(u)),$$

where $\mu(u)$ runs over all tuples of monic polynomials $\mu(u) = (\mu_1(u), \dots, \mu_{N-1}(u))$ of degree *p* satisfying the betweenness conditions. Introduce the polynomials with coefficients in $Y_p(\mathfrak{gl}_N)$ by

$$A_{r}(u) = T_{1...r}^{1...r}(u), \qquad B_{r}(u) = T_{1...r-1,r+1}^{1...r}(u),$$
$$C_{r}(u) = T_{1...r}^{1...r-1,r+1}(u).$$

Introduce the polynomials with coefficients in $Y_p(\mathfrak{gl}_N)$ by

$$A_{r}(u) = T_{1...r}^{1...r}(u), \qquad B_{r}(u) = T_{1...r-1,r+1}^{1...r}(u),$$
$$C_{r}(u) = T_{1...r}^{1...r-1,r+1}(u).$$

The coefficients of the polynomials $A_r(u)$ for r = 1, ..., N and the polynomials $B_r(u)$ and $C_r(u)$ for r = 1, ..., N - 1 generate the algebra $Y_p(\mathfrak{gl}_N)$.

For a pattern $\Lambda(u)$ due to the generality condition there exist uniquely determined decompositions

$$\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \dots (u + \lambda_{ri}^{(p)}), \qquad 1 \leq i \leq r \leq N,$$

such that $\lambda_{Ni}^{(k)} = \lambda_i^{(k)}$,

$$\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}_+$$
 and $\lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}_+$

for $k = 1, \ldots, p$ and $1 \leq i \leq r \leq N - 1$.

For a pattern $\Lambda(u)$ due to the generality condition there exist uniquely determined decompositions

$$\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \dots (u + \lambda_{ri}^{(p)}), \qquad 1 \leq i \leq r \leq N,$$

such that $\lambda_{Ni}^{(k)} = \lambda_i^{(k)}$,

$$\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}_+$$
 and $\lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}_+$

for $k = 1, \ldots, p$ and $1 \leq i \leq r \leq N-1$.

Set

$$I_{ri}^{(k)} = \lambda_{ri}^{(k)} - i + 1, \qquad k = 1, \dots, p \quad \text{and} \quad i = 1, \dots, r.$$

Theorem

We have

$$A_r(u)\zeta_{\Lambda} = \lambda_{r1}(u)\ldots\lambda_{rr}(u-r+1)\zeta_{\Lambda},$$

for $r = 1, \ldots, N$, and

Theorem

We have

$$A_r(u)\zeta_{\Lambda} = \lambda_{r1}(u)\ldots\lambda_{rr}(u-r+1)\zeta_{\Lambda},$$

for $r = 1, \ldots, N$, and

$$B_{r}(-l_{ri}^{(k)})\zeta_{\Lambda} = -\lambda_{r+1,1}(-l_{ri}^{(k)})\dots\lambda_{r+1,r+1}(-l_{ri}^{(k)}-r)\zeta_{\Lambda+\delta_{ri}^{(k)}},$$

$$C_{r}(-l_{ri}^{(k)})\zeta_{\Lambda} = \lambda_{r-1,1}(-l_{ri}^{(k)})\dots\lambda_{r-1,r-1}(-l_{ri}^{(k)}-r+2)\zeta_{\Lambda-\delta_{ri}^{(k)}},$$

for r = 1, ..., N - 1.

Classification theorems, highest weight theory

- Classification theorems, highest weight theory
- Constructions of all representations of Y(o₂) and Y(sp₂)
 via tensor products

- Classification theorems, highest weight theory
- Constructions of all representations of Y(o₂) and Y(sp₂)
 via tensor products
- Open problems:
 - Gelfand–Tsetlin bases

- Classification theorems, highest weight theory
- Constructions of all representations of Y(o₂) and Y(sp₂)
 via tensor products
- Open problems:
 - Gelfand–Tsetlin bases
 - Characters of irreducible representations