Classical Lie algebras and Yangians

Alexander Molev
University of Sydney

Advanced Summer School
Integrable Systems and Quantum Symmetries
Prague 2007

Lecture 3. Yangians: representations

Recall that the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is an associative algebra with generators $t_{i j}^{(r)}$ and the defining relations

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

where

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right] .
$$

Definition. A representation L of the $\operatorname{Yangian~} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ and the following relations hold

$$
\begin{aligned}
& t_{i j}(u) \zeta=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
& t_{i i}(u) \zeta=\lambda_{i}(u) \zeta \quad \text { for } \quad 1 \leqslant i \leqslant N
\end{aligned}
$$

Definition. A representation L of the $\operatorname{Yangian~} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\zeta \in L$ such that L is generated by ζ and the following relations hold

$$
\begin{aligned}
& t_{i j}(u) \zeta=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
& t_{i i}(u) \zeta=\lambda_{i}(u) \zeta \quad \text { for } \quad 1 \leqslant i \leqslant N
\end{aligned}
$$

for some formal series

$$
\lambda_{i}(u)=1+\lambda_{i}^{(1)} u^{-1}+\lambda_{i}^{(2)} u^{-2}+\ldots, \quad \lambda_{i}^{(r)} \in \mathbb{C} .
$$

The vector ζ is called the highest vector of L, and the N-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ is the highest weight of L.

Verma module

Definition

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series. The Verma module $M(\lambda(u))$ is the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the left ideal generated by all coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant N$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant N$.

Verma module

Definition

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series. The Verma module $M(\lambda(u))$ is the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the left ideal generated by all coefficients of the series $t_{i j}(u)$ for
$1 \leqslant i<j \leqslant N$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant N$.
Proposition. For any given order on the set of generators $t_{j i}^{(r)}$ with
$1 \leqslant i<j \leqslant N$ and $r \geqslant 1$, the elements

$$
t_{j_{1} i_{1}}^{\left(r_{1}\right)} \ldots t_{j_{m} i_{m}}^{\left(r_{m}\right)} 1_{\lambda(u)}, \quad m \geqslant 0
$$

with ordered products of the generators, form a basis of $M(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)$ is defined as the quotient of the

Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)$ is defined as the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem
Every finite-dimensional irreducible representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to $L(\lambda(u))$ for some $\lambda(u)$.

Proof.
Regard the representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ as a $\mathfrak{g l}_{N}$-module using the embedding $E_{i j} \mapsto t_{i j}^{(1)}$.

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ denote by $L(\lambda)$ the irreducible representation of the Lie algebra $\mathfrak{g l}_{N}$ with the highest weight λ. So, $L(\lambda)$ is generated by a nonzero vector ζ such that

$$
\begin{array}{ll}
E_{i j} \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } \quad 1 \leqslant i \leqslant N .
\end{array}
$$

Given an N-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ denote by $L(\lambda)$ the irreducible representation of the Lie algebra $\mathfrak{g l}_{N}$ with the highest weight λ. So, $L(\lambda)$ is generated by a nonzero vector ζ such that

$$
\begin{array}{ll}
E_{i j} \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } \quad 1 \leqslant i \leqslant N .
\end{array}
$$

Equip $L(\lambda)$ with a structure of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module via the evaluation homomorphism

$$
t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

$L(\lambda)$ is the evaluation module over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
$L(\lambda)$ is the evaluation module over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
$L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$
\lambda_{i}(u)=1+\lambda_{i} u^{-1}, \quad i=1, \ldots, N .
$$

$L(\lambda)$ is the evaluation module over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
$L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$
\lambda_{i}(u)=1+\lambda_{i} u^{-1}, \quad i=1, \ldots, N .
$$

If L and M are any two $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-modules, then the tensor product space $L \otimes M$ can be equipped with a $Y\left(\mathfrak{g l}_{N}\right)$-action with the use of the comultiplication Δ on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
$L(\lambda)$ is the evaluation module over $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
$L(\lambda)$ is a highest weight representation of the Yangian with the highest vector ζ, and the components of the highest weight are given by

$$
\lambda_{i}(u)=1+\lambda_{i} u^{-1}, \quad i=1, \ldots, N .
$$

If L and M are any two $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-modules, then the tensor product space $L \otimes M$ can be equipped with a $Y\left(\mathfrak{g l}_{N}\right)$-action with the use of the comultiplication Δ on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

By the coassociativity of Δ, we may unambiguously define multiple tensor product modules of the form

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(k)}\right)
$$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$

Consider the irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ with an arbitrary highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$.

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$

Consider the irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ with an arbitrary highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$.

Proposition
If $\operatorname{dim} L(\lambda(u))<\infty$ then there exists a formal series

$$
f(u)=1+f_{1} u^{-1}+f_{2} u^{-2}+\ldots, \quad f_{r} \in \mathbb{C},
$$

such that $f(u) \lambda_{1}(u)$ and $f(u) \lambda_{2}(u)$ are polynomials in u^{-1}.
let $\lambda_{1}(u)$ and $\lambda_{2}(u)$ be polynomials in u^{-1} of degree not more than k. Write the decompositions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right) \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right)
\end{aligned}
$$

let $\lambda_{1}(u)$ and $\lambda_{2}(u)$ be polynomials in u^{-1} of degree not more than k. Write the decompositions

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{k} u^{-1}\right), \\
& \lambda_{2}(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{k} u^{-1}\right) .
\end{aligned}
$$

Proposition

Suppose that for every $i=1, \ldots, k-1$ the following condition holds: if the multiset $\left\{\alpha_{p}-\beta_{q} \mid i \leqslant p, q \leqslant k\right\}$ contains nonnegative integers, then $\alpha_{i}-\beta_{i}$ is minimal amongst them. Then the representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is isomorphic to the tensor product module

$$
L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

Theorem
The irreducible highest weight representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)} .
$$

In this case $P(u)$ is unique.

Theorem
The irreducible highest weight representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is finite-dimensional if and only if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{P(u+1)}{P(u)} .
$$

In this case $P(u)$ is unique.
The polynomial $P(u)$ is called the Drinfeld polynomial of the finite-dimensional representation $L\left(\lambda_{1}(u), \lambda_{2}(u)\right)$.

Proof.

$\operatorname{dim} L(\alpha, \beta)<\infty$ if and only if $\alpha-\beta \in \mathbb{Z}_{+}$.

Proof.

$\operatorname{dim} L(\alpha, \beta)<\infty$ if and only if $\alpha-\beta \in \mathbb{Z}_{+}$.
The highest weight of the $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-evaluation module is

$$
\lambda_{1}(u)=1+\alpha u^{-1}, \quad \lambda_{2}(u)=1+\beta u^{-1}
$$

Hence, if $\alpha-\beta \in \mathbb{Z}_{+}$then

$$
\frac{\lambda_{1}(u)}{\lambda_{2}(u)}=\frac{u+\alpha}{u+\beta}=\frac{P(u+1)}{P(u)}
$$

for

$$
P(u)=(u+\beta)(u+\beta+1) \ldots(u+\alpha-1) .
$$

Recall that the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is the subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ which consists of the elements stable under all automorphisms of the form $T(u) \mapsto f(u) T(u)$.

Recall that the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ is the subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ which consists of the elements stable under all automorphisms of the form $T(u) \mapsto f(u) T(u)$.

Corollary

The isomorphism classes of finite-dimensional irreducible representations of the Yangian $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$ are parameterized by monic polynomials in u. Every such representation is isomorphic to the restriction of a $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$-module of the form

$$
L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

where each difference $\alpha_{i}-\beta_{i}$ is a positive integer.

Irreducibility criterion

Define the string corresponding to a pair of complex numbers (α, β) with $\alpha-\beta \in \mathbb{Z}_{+}$as the set

$$
S(\alpha, \beta)=\{\beta, \beta+1, \ldots, \alpha-1\} .
$$

If $\alpha=\beta$ then the set $S(\alpha, \beta)$ is regarded to be empty.

Irreducibility criterion

Define the string corresponding to a pair of complex numbers (α, β) with $\alpha-\beta \in \mathbb{Z}_{+}$as the set

$$
S(\alpha, \beta)=\{\beta, \beta+1, \ldots, \alpha-1\} .
$$

If $\alpha=\beta$ then the set $S(\alpha, \beta)$ is regarded to be empty.

Definition

Two strings S_{1} and S_{2} are in general position if either
(i) $S_{1} \cup S_{2}$ is not a string, or
(ii) $S_{1} \subset S_{2}$, or $S_{2} \subset S_{1}$.

Suppose that all differences $\alpha_{i}-\beta_{i}$ are nonnegative integers.

Suppose that all differences $\alpha_{i}-\beta_{i}$ are nonnegative integers.
Corollary
The representation

$$
L\left(\alpha_{1}, \beta_{1}\right) \otimes L\left(\alpha_{2}, \beta_{2}\right) \otimes \ldots \otimes L\left(\alpha_{k}, \beta_{k}\right)
$$

of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ (or $\mathrm{Y}\left(\mathfrak{s l}_{2}\right)$) is irreducible if and only if the strings $S\left(\alpha_{1}, \beta_{1}\right), \ldots, S\left(\alpha_{k}, \beta_{k}\right)$ are pairwise in general position.

Example. The representation $L(7,1) \otimes L(6,4)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is irreducible:

Example. The representation $L(7,1) \otimes L(6,4)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is irreducible:

			4	5	
	\bullet	\bullet	0	0	\bullet
1	2	3	4	5	6

Example. The representation $L(7,1) \otimes L(6,4)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is irreducible:

while $L(6,1) \otimes L(7,4)$ is reducible:
$\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$

Example. The representation $L(7,1) \otimes L(6,4)$ of $\mathrm{Y}\left(\mathfrak{g l}_{2}\right)$ is irreducible:

while $L(6,1) \otimes L(7,4)$ is reducible:

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Let $\lambda(u)$ be an N-tuple of formal series in u^{-1},

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right) .
$$

Representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Let $\lambda(u)$ be an N-tuple of formal series in u^{-1},

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)
$$

Theorem
The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional, if and only if there exist monic polynomials $P_{1}(u), \ldots, P_{N-1}(u)$ in u such that

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1 .
$$

Definition

The polynomials $P_{i}(u)$ with $i=1, \ldots, N-1$ are called the Drinfeld polynomials of $L(\lambda(u))$.

Definition

The polynomials $P_{i}(u)$ with $i=1, \ldots, N-1$ are called the Drinfeld polynomials of $L(\lambda(u))$.

Lemma. Suppose that L and M are finite-dimensional irreducible representations of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the respective sets of Drinfeld polynomials

$$
\left(P_{1}(u), \ldots, P_{N-1}(u)\right) \quad \text { and } \quad\left(Q_{1}(u), \ldots, Q_{N-1}(u)\right)
$$

Then the irreducible quotient of the cyclic $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-span of the tensor product of the highest vectors of L and M corresponds to

$$
\left(P_{1}(u) Q_{1}(u), \ldots, P_{N-1}(u) Q_{N-1}(u)\right)
$$

The evaluation $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module $L(\alpha+1, \ldots, \alpha+1, \alpha, \ldots, \alpha)$ with i copies of $\alpha+1$ is a fundamental representation; its Drinfeld polynomials are given by

$$
P_{i}(u)=u+\alpha \quad \text { and } \quad P_{j}(u)=1 \quad \text { if } \quad j \neq i .
$$

The evaluation $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module $L(\alpha+1, \ldots, \alpha+1, \alpha, \ldots, \alpha)$ with i copies of $\alpha+1$ is a fundamental representation; its Drinfeld polynomials are given by

$$
P_{i}(u)=u+\alpha \quad \text { and } \quad P_{j}(u)=1 \quad \text { if } \quad j \neq i .
$$

Corollary

Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a subquotient of a tensor product of fundamental representations.

Remark

Contrary to the case $N=2$, it is not true for $N \geqslant 3$ that every finite-dimensional irreducible representation of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is isomorphic to a tensor product of evaluation modules. For example, the $\mathrm{Y}\left(\mathfrak{s l}_{3}\right)$-module $L(\lambda(u))$ with

$$
\begin{aligned}
& \lambda_{1}(u)=\left(1+3 u^{-1}\right)\left(1+u^{-1}\right), \\
& \lambda_{2}(u)=1+3 u^{-1}, \quad \lambda_{3}(u)=1+2 u^{-1}
\end{aligned}
$$

is 8 -dimensional. On the other hand, the possible dimensions of the evaluation modules are $1,3,6,8, \ldots$ so that $L(\lambda(u))$ cannot be isomorphic to a tensor product of such modules.

Irreducibility criterion for tensor products

of evaluation modules

Let the $\lambda^{(i)}$ be $\mathfrak{g l}_{N^{-}}$-highest weights.

Irreducibility criterion for tensor products

 of evaluation modulesLet the $\lambda^{(i)}$ be $\mathfrak{g l}_{N}$-highest weights.

Theorem (Binary property). The $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module

$$
L\left(\lambda^{(1)}\right) \otimes L\left(\lambda^{(2)}\right) \otimes \ldots \otimes L\left(\lambda^{(I)}\right)
$$

is irreducible if and only if the modules $L\left(\lambda^{(i)}\right) \otimes L\left(\lambda^{(j)}\right)$ are irreducible for all $1 \leqslant i<j \leqslant l$.

Let

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right), \quad \mu=\left(\mu_{1}, \ldots, \mu_{N}\right)
$$

with $\lambda_{i}, \mu_{i} \in \mathbb{Z}$ and

$$
\lambda_{1} \geqslant \cdots \geqslant \lambda_{N}, \quad \mu_{1} \geqslant \cdots \geqslant \mu_{N}
$$

Let

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right), \quad \mu=\left(\mu_{1}, \ldots, \mu_{N}\right)
$$

with $\lambda_{i}, \mu_{i} \in \mathbb{Z}$ and

$$
\lambda_{1} \geqslant \cdots \geqslant \lambda_{N}, \quad \mu_{1} \geqslant \cdots \geqslant \mu_{N}
$$

We will call two disjoint finite subsets A and B of \mathbb{Z} crossing if there exist elements $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$ such that

$$
a_{1}<b_{1}<a_{2}<b_{2} \quad \text { or } \quad b_{1}<a_{1}<b_{2}<a_{2} .
$$

Otherwise, A and B are called non-crossing.

For any $\mathfrak{g l}_{N}$-highest weight λ with integer components introduce the subset $\mathcal{A}_{\lambda} \subset \mathbb{Z}$ by

$$
\mathcal{A}_{\lambda}=\left\{\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{N}-N+1\right\} .
$$

For any $\mathfrak{g l}_{N}$-highest weight λ with integer components introduce the subset $\mathcal{A}_{\lambda} \subset \mathbb{Z}$ by

$$
\mathcal{A}_{\lambda}=\left\{\lambda_{1}, \lambda_{2}-1, \ldots, \lambda_{N}-N+1\right\} .
$$

Theorem
The $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$-module $L(\lambda) \otimes L(\mu)$ is irreducible if and only if the sets $\mathcal{A}_{\lambda} \backslash \mathcal{A}_{\mu}$ and $\mathcal{A}_{\mu} \backslash \mathcal{A}_{\lambda}$ are non-crossing.

Example. The $\mathrm{Y}\left(\mathfrak{g l}_{4}\right)$-module $L(7,5,5,4) \otimes L(9,8,8,6)$ is irreducible:

	\bullet	\bullet	\bullet	\bullet
\mathcal{A}_{λ}	1	3	4	7

Example. The $\mathrm{Y}\left(\mathfrak{g l}_{4}\right)$-module $L(7,5,5,4) \otimes L(9,8,8,6)$ is irreducible:

		3		6	7	9	\mathcal{A}_{μ}
	\bullet	\ddots	\bullet	\bigcirc	0	\bigcirc	
\mathcal{A}_{λ}	1	3	4		7		

Example. The $\mathrm{Y}\left(\mathfrak{g l}_{4}\right)$-module $L(7,5,5,4) \otimes L(9,8,8,6)$ is irreducible:
$\left.\begin{array}{cccccccc} & & 3 & & 6 & 7 & 9 & \mathcal{A}_{\mu} \\ & \bullet & \bullet & \bullet & & 0 & \bullet & 0\end{array}\right]$

The $\mathrm{Y}\left(\mathfrak{g l}_{4}\right)$-module $L(7,6,6,4) \otimes L(9,8,8,6)$ is reducible:

Example. The $\mathrm{Y}\left(\mathfrak{g l}_{4}\right)$-module $L(7,5,5,4) \otimes L(9,8,8,6)$ is irreducible:

		3		6	7	9	\mathcal{A}_{μ}
	\bullet	\bullet	\bullet		0	\bullet	
\mathcal{A}_{λ}	1	3	4		7		

The $\mathrm{Y}\left(\mathfrak{g l}_{4}\right)$-module $L(7,6,6,4) \otimes L(9,8,8,6)$ is reducible:

		3			6	7		9	\mathcal{A}_{μ}
	\bullet	\bigcirc	\bullet	\bullet	0	\bullet		\circ	
\mathcal{A}_{λ}	1		4	5		7			

Fusion procedure

The irreducible representations of \mathfrak{S}_{k} over \mathbb{C} are parameterized by partitions of k. Given a partition λ of k denote the corresponding irreducible representation of \mathfrak{S}_{k} by V_{λ}. The vector space V_{λ} is equipped with an \mathfrak{S}_{k}-invariant inner product (,). The orthonormal Young basis $\left\{v_{\mathcal{U}}\right\}$ of V_{λ} is parameterized by the set of standard λ-tableaux \mathcal{U}.

Set $s_{i}=(i, i+1)$ for $i \in\{1, \ldots, k-1\}$. We have

$$
s_{i} \cdot v_{\mathcal{U}}=d v_{\mathcal{U}}+\sqrt{1-d^{2}} v_{s_{i} \mathcal{U}}
$$

where $d=\left(c_{i+1}-c_{i}\right)^{-1}$ and $c_{i}=c_{i}(\mathcal{U})$ the content of the cell occupied by the number i in a standard λ-tableau \mathcal{U}. The tableau $s_{i} \mathcal{U}$ is obtained from \mathcal{U} by swapping the entries i and $i+1$.

The group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ is isomorphic to the direct sum of matrix algebras

$$
\mathbb{C}\left[\mathfrak{S}_{k}\right] \cong \underset{\lambda \vdash k}{\oplus} \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})
$$

where $f_{\lambda}=\operatorname{dim} V_{\lambda}$. The matrix units $e_{\mathcal{U} \mathcal{U}^{\prime}} \in \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})$ are parameterized by pairs of standard λ-tableaux \mathcal{U} and \mathcal{U}^{\prime}.

The group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ is isomorphic to the direct sum of matrix algebras

$$
\mathbb{C}\left[\mathfrak{S}_{k}\right] \cong \underset{\lambda \vdash k}{\oplus} \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})
$$

where $f_{\lambda}=\operatorname{dim} V_{\lambda}$. The matrix units $e_{\mathcal{U U}^{\prime}} \in \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})$ are parameterized by pairs of standard λ-tableaux \mathcal{U} and \mathcal{U}^{\prime}. Identify $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ with the direct sum of matrix algebras by

$$
e_{\mathcal{U U}^{\prime}}=\frac{f_{\lambda}}{k!} \phi_{\mathcal{U U}^{\prime}},
$$

where $\phi_{\mathcal{U U}^{\prime}}$ is the matrix element corresponding to the basis vectors $v_{\mathcal{U}}$ and $v_{\mathcal{U}^{\prime}}$ of the representation V_{λ},

$$
\phi_{\mathcal{U U}^{\prime}}=\sum_{s \in \mathfrak{S}_{k}}\left(s \cdot v_{\mathcal{U}}, v_{\mathcal{U}^{\prime}}\right) \cdot s^{-1} \in \mathbb{C}\left[\mathfrak{S}_{k}\right]
$$

For the diagonal elements we will simply write $e_{\mathcal{U}}=e_{\mathcal{U} \mathcal{U}}$ and $\phi_{\mathcal{U}}=\phi_{\mathcal{U} \mathcal{U}}$.

For the diagonal elements we will simply write $e_{\mathcal{U}}=e_{\mathcal{U} \mathcal{U}}$ and
$\phi_{\mathcal{U}}=\phi_{\mathcal{U} \mathcal{U}}$.
The Jucys-Murphy elements of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ are defined by

$$
x_{1}=0, \quad x_{i}=(1 i)+(2 i)+\cdots+(i-1 i), \quad i=2, \ldots, k .
$$

They generate a commutative subalgebra of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$. Moreover, x_{k} commutes with all elements of \mathfrak{S}_{k-1}.

For the diagonal elements we will simply write $e_{\mathcal{U}}=e_{\mathcal{U} \mathcal{U}}$ and
$\phi_{\mathcal{U}}=\phi_{\mathcal{U} \mathcal{U}}$.
The Jucys-Murphy elements of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ are defined by

$$
x_{1}=0, \quad x_{i}=(1 i)+(2 i)+\cdots+(i-1 i), \quad i=2, \ldots, k .
$$

They generate a commutative subalgebra of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$. Moreover, x_{k} commutes with all elements of \mathfrak{S}_{k-1}.

The vectors of the Young basis are eigenvectors for the action of x_{i} on V_{λ}. For any standard λ-tableau \mathcal{U} we have

$$
x_{i} \cdot v_{\mathcal{U}}=c_{i}(\mathcal{U}) v_{\mathcal{U}}, \quad i=1, \ldots, k
$$

Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Proposition (Murphy's formula). We have the relation in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{k}-a_{1}\right) \ldots\left(x_{k}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}
$$

where $a_{1}, \ldots, a_{\text {। }}$ are the contents of all addable cells of μ except for α, while c is the content of the latter.

Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Proposition (Murphy's formula). We have the relation in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{k}-a_{1}\right) \ldots\left(x_{k}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}
$$

where $a_{1}, \ldots, a_{\text {। }}$ are the contents of all addable cells of μ except for α, while c is the content of the latter.

Equivalently,

$$
e_{U}=\left.e_{\mathcal{V}} \frac{u-c}{u-x_{k}}\right|_{u=c} .
$$

For any distinct indices $i, j \in\{1, \ldots, k\}$ introduce the rational
function in two variables u, v with values in the group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ by

$$
\rho_{i j}(u, v)=1-\frac{(i j)}{u-v}
$$

For any distinct indices $i, j \in\{1, \ldots, k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ by

$$
\rho_{i j}(u, v)=1-\frac{(i j)}{u-v}
$$

Proposition

Let r be a fixed index, $r \geqslant k+1$. We have the equalities of rational functions in u valued in $\mathbb{C}\left[\mathfrak{S}_{r}\right]$,

$$
\begin{aligned}
& \phi_{\mathcal{U}} \rho_{k, r}\left(-c_{k}, u\right) \ldots \rho_{1 r}\left(-c_{1}, u\right) \\
&= \rho_{1 r}\left(-c_{1}, u\right) \ldots \rho_{k, r}\left(-c_{k}, u\right) \phi_{\mathcal{U}} \\
&=\phi_{\mathcal{U}}\left(1+\frac{(1 r)+(2 r)+\cdots+(k r)}{u}\right) .
\end{aligned}
$$

Take k complex variables u_{1}, \ldots, u_{k} and set

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{k}\right) & =\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \ldots \rho_{1 k}\left(u_{1}, u_{k}\right) \rho_{2 k}\left(u_{2}, u_{k}\right) \ldots \rho_{k-1, k}\left(u_{k-1}, u_{k}\right) .
\end{aligned}
$$

Take k complex variables u_{1}, \ldots, u_{k} and set

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{k}\right) & =\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \ldots \rho_{1 k}\left(u_{1}, u_{k}\right) \rho_{2 k}\left(u_{2}, u_{k}\right) \ldots \rho_{k-1, k}\left(u_{k-1}, u_{k}\right) .
\end{aligned}
$$

Theorem
Suppose that λ is a partition of k and let \mathcal{U} be a standard λ-tableau. Set $c_{i}=c_{i}(\mathcal{U})$ for $i=1, \ldots, k$.

Take k complex variables u_{1}, \ldots, u_{k} and set

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{k}\right) & =\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \ldots \rho_{1 k}\left(u_{1}, u_{k}\right) \rho_{2 k}\left(u_{2}, u_{k}\right) \ldots \rho_{k-1, k}\left(u_{k-1}, u_{k}\right) .
\end{aligned}
$$

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard
λ-tableau. Set $c_{i}=c_{i}(\mathcal{U})$ for $i=1, \ldots, k$.
Then the consecutive evaluations

$$
\left.\left.\left.\phi\left(u_{1}, \ldots, u_{k}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{k}=c_{k}}
$$

of the rational function $\phi\left(u_{1}, \ldots, u_{k}\right)$ are well-defined. The corresponding value coincides with the matrix element $\phi_{\mathcal{U}}$.

Example: $\quad \lambda=(k)$. Then

$$
\mathcal{U}=\quad \begin{array}{l|l|l|l|}
\hline 1 & 2 & \cdots & k \\
\hline
\end{array}
$$

Example: $\quad \lambda=(k)$. Then

$$
\mathcal{U}=\quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & k \\
\hline
\end{array} \quad c_{i}=i-1,
$$

and

$$
\phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \sigma
$$

is the symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$.

Example: $\lambda=(k)$. Then

$$
\mathcal{U}=\quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & k \\
\hline
\end{array} \quad c_{i}=i-1
$$

and

$$
\phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \sigma
$$

is the symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$. By the theorem,

$$
\begin{aligned}
\phi_{\mathcal{U}} & =\left(1+\frac{(12)}{1}\right)\left(1+\frac{(13)}{2}\right)\left(1+\frac{(23)}{1}\right) \\
& \times \ldots\left(1+\frac{(1 k)}{k-1}\right)\left(1+\frac{(2 k)}{k-2}\right) \ldots\left(1+\frac{(k-1 k)}{1}\right) .
\end{aligned}
$$

Example: $\quad \lambda=\left(1^{k}\right)$. Then

$$
\mathcal{U}=\begin{array}{|c|}
\hline \frac{1}{2} \\
\hline \vdots \\
\hline k \\
\hline
\end{array} \quad c_{i}=-i+1
$$

Example: $\quad \lambda=\left(1^{k}\right)$. Then

$$
\mathcal{U}=\begin{array}{|c|}
\hline \frac{1}{2} \\
\hline \vdots \\
\hline k \\
\hline
\end{array} \quad c_{i}=-i+1
$$

and $\quad \phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot \sigma \quad$ is the anti-symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

Example: $\lambda=\left(1^{k}\right)$. Then

$$
\mathcal{U}=\begin{array}{|c|}
\hline 1 \\
\hline 2 \\
\hline \vdots \\
\hline k \\
\hline
\end{array} \quad \quad c_{i}=-i+1
$$

and $\quad \phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot \sigma \quad$ is the anti-symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
\begin{aligned}
\phi_{\mathcal{U}} & =\left(1-\frac{(12)}{1}\right)\left(1-\frac{(13)}{2}\right)\left(1-\frac{(23)}{1}\right) \\
& \times \ldots\left(1-\frac{(1 k)}{k-1}\right)\left(1-\frac{(2 k)}{k-2}\right) \ldots\left(1-\frac{(k-1 k)}{1}\right)
\end{aligned}
$$

Example: $\quad \lambda=(2,1)$,

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

$$
\mathcal{V}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}
$$

Example: $\quad \lambda=(2,1)$,

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

$$
\mathcal{V}=
$$

Then

$$
\begin{gathered}
c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1 \quad \text { for } \quad \mathcal{U}, \quad \text { and } \\
\quad \phi_{\mathcal{U}}=(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right)
\end{gathered}
$$

Example: $\quad \lambda=(2,1)$,

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

$$
\mathcal{V}=
$$

Then

$$
\begin{gathered}
c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1 \quad \text { for } \quad \mathcal{U}, \quad \text { and } \\
\quad \phi_{\mathcal{U}}=(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right)
\end{gathered}
$$

while $\quad c_{1}=0, \quad c_{2}=-1, \quad c_{3}=1$ for \mathcal{V}, \quad and

$$
\phi_{\mathcal{V}}=(1-(12))(1+(13))\left(1+\frac{(23)}{2}\right)
$$

Example: $\lambda=\left(2^{2}\right)$,

$$
\begin{aligned}
\phi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\rho_{12}\left(u_{1},\right. & \left.u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \rho_{14}\left(u_{1}, u_{4}\right) \rho_{24}\left(u_{2}, u_{4}\right) \rho_{34}\left(u_{3}, u_{4}\right) .
\end{aligned}
$$

Example: $\lambda=\left(2^{2}\right)$,

$$
\begin{aligned}
\phi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\rho_{12}\left(u_{1},\right. & \left.u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \rho_{14}\left(u_{1}, u_{4}\right) \rho_{24}\left(u_{2}, u_{4}\right) \rho_{34}\left(u_{3}, u_{4}\right) .
\end{aligned}
$$

Take the standard λ-tableau

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

Example: $\lambda=\left(2^{2}\right)$,

$$
\begin{aligned}
\phi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\rho_{12}\left(u_{1},\right. & \left.u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \rho_{14}\left(u_{1}, u_{4}\right) \rho_{24}\left(u_{2}, u_{4}\right) \rho_{34}\left(u_{3}, u_{4}\right) .
\end{aligned}
$$

Take the standard λ-tableau

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

The contents are

$$
c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1, \quad c_{4}=0 .
$$

Taking $\quad u_{1}=0, \quad u_{2}=1, \quad u_{3}=-1, \quad u_{4}=u \quad$ we get

$$
\begin{aligned}
\phi(0,1,-1, u) & =(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right) \\
& \times\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
\end{aligned}
$$

Taking $\quad u_{1}=0, \quad u_{2}=1, \quad u_{3}=-1, \quad u_{4}=u \quad$ we get

$$
\begin{aligned}
\phi(0,1,-1, u) & =(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right) \\
& \times\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
\end{aligned}
$$

By the theorem, this rational function is regular at $u=0$ and the corresponding value coincides with $\phi_{\mathcal{U}}$.

We have

$$
\phi(0,1,-1, u)=\phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
$$

We have

$$
\phi(0,1,-1, u)=\phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
$$

where

$$
\mathcal{V}=
$$

Next step:

$$
\begin{aligned}
& \phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right) \\
& =\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}
\end{aligned}
$$

Next step:

$$
\begin{aligned}
& \phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right) \\
& =\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}
\end{aligned}
$$

where $\quad c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1, \quad c_{4}=0 \quad$ and

$$
x_{4}=(14)+(24)+(34) .
$$

Finally, apply Murphy's formula to get

$$
\left.\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}\right|_{u=c_{4}}=\phi_{\mathcal{U}}
$$

Finally, apply Murphy's formula to get

$$
\left.\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}\right|_{u=c_{4}}=\phi_{\mathcal{U}}
$$

Thus,

$$
\begin{aligned}
\phi_{\mathcal{U}} & =\phi(0,1,-1,0) \\
& =\frac{1}{2}(1+(12))(1-(13))(2-(23)) \\
& \times(2-(14)-(24)-(34))(2+(14)+(24)+(34)) .
\end{aligned}
$$

The symmetric group \mathfrak{S}_{k} acts naturally on the tensor product space

$$
\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}, \quad k \text { factors }
$$

by permuting the factors. On the other hand, \mathbb{C}^{N} carries the vector representation of the Lie algebra $\mathfrak{g l}_{N}$ so that the tensor product space is a representation of $\mathfrak{g l}_{N}$.

The symmetric group \mathfrak{S}_{k} acts naturally on the tensor product space

$$
\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}, \quad k \text { factors }
$$

by permuting the factors. On the other hand, \mathbb{C}^{N} carries the vector representation of the Lie algebra $\mathfrak{g l}_{N}$ so that the tensor product space is a representation of $\mathfrak{g l}_{N}$.

Suppose that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a partition of k with $\ell(\lambda) \leqslant N$.
Consider an arbitrary standard λ-tableau \mathcal{U} and let $\Phi_{\mathcal{U}} \in \operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes k}$ denote the image of the matrix element $\phi_{\mathcal{U}}$ under the action of \mathfrak{S}_{k} on the tensor product space.

Then the subspace

$$
L_{\mathcal{U}}=\Phi_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

is a $\mathfrak{g l}_{N^{-} \text {-submodule of the tensor product module. This submodule }}$ is irreducible and isomorphic to $L(\lambda)$.

Then the subspace

$$
L_{\mathcal{U}}=\Phi_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

is a $\mathfrak{g l}_{N^{-}}$-submodule of the tensor product module. This submodule is irreducible and isomorphic to $L(\lambda)$.

If $\mathcal{U}=\mathcal{U}^{r}$ is the row tableau of shape λ, then the subspace $L_{\mathcal{U}^{r}}$ coincides with the image of the Young symmetrizer,

$$
L_{\mathcal{U}^{r}}=H_{\mathcal{U}^{r}} A_{\mathcal{U}^{r}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

where $H_{\mathcal{U} r}$ and $A_{\mathcal{U} r}$ are the row symmetrizer and column anti-symmetrizer of \mathcal{U}^{r}.

In the vector representation \mathbb{C}^{N} of $\mathfrak{g l}_{N}$ we have $E_{i j} \mapsto e_{i j}$ and so the image of the matrix $E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}$ under the action of $\mathfrak{g l}_{N}$ can be written as

$$
\sum_{a=1}^{k} \sum_{i, j=1}^{N} e_{i j} \otimes 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(k-a)} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

In the vector representation \mathbb{C}^{N} of $\mathfrak{g l}_{N}$ we have $E_{i j} \mapsto e_{i j}$ and so the image of the matrix $E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}$ under the action of $\mathfrak{g l}_{N}$ can be written as

$$
\sum_{a=1}^{k} \sum_{i, j=1}^{N} e_{i j} \otimes 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(k-a)} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

Hence, under the evaluation homomorphism

$$
T(u) \mapsto 1+E u^{-1}
$$

the image of $T^{t}(u)$ in the representation $L_{\mathcal{U}}$ is

$$
T^{t}(u) \mapsto 1+\left(P_{01}+P_{02}+\cdots+P_{0 k}\right) u^{-1} .
$$

In particular, if $k=1$ then this takes the form

$$
T^{t}(u) \mapsto R_{01}(-u)
$$

where we have used the Yang R-matrix.

In particular, if $k=1$ then this takes the form

$$
T^{t}(u) \mapsto R_{01}(-u),
$$

where we have used the Yang R-matrix.
For any complex number z we can make the vector space \mathbb{C}^{N} into a representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the assignment

$$
T^{t}(u) \mapsto R_{01}(-u-z)
$$

In particular, if $k=1$ then this takes the form

$$
T^{t}(u) \mapsto R_{01}(-u),
$$

where we have used the Yang R-matrix.
For any complex number z we can make the vector space \mathbb{C}^{N} into a representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the assignment

$$
T^{t}(u) \mapsto R_{01}(-u-z)
$$

More generally, $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ acts on $\left(\mathbb{C}^{N}\right)^{\otimes k}$ by

$$
T^{t}(u) \mapsto R_{01}\left(-u-z_{1}\right) R_{02}\left(-u-z_{2}\right) \ldots R_{0 k}\left(-u-z_{k}\right),
$$

where z_{1}, \ldots, z_{k} are fixed complex numbers.

Consider a standard λ-tableau \mathcal{U} and for any index $r=1, \ldots, k$ denote by $c_{r}=c_{r}(\mathcal{U})$ the content of the cell of \mathcal{U} occupied by r.

Consider a standard λ-tableau \mathcal{U} and for any index $r=1, \ldots, k$ denote by $c_{r}=c_{r}(\mathcal{U})$ the content of the cell of \mathcal{U} occupied by r.

Proposition

The subspace $L_{\mathcal{U}}$ of $\left(\mathbb{C}^{N}\right)^{\otimes k}$ is stable under the action of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
T^{t}(u) \mapsto R_{01}\left(-u-c_{1}\right) R_{02}\left(-u-c_{2}\right) \ldots R_{0 k}\left(-u-c_{k}\right) .
$$

Moreover, the representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ on $L_{\mathcal{U}}$ obtained by restriction is isomorphic to the evaluation module $L(\lambda)$.

Proof.

Observe that $R_{i j}(u-v)$ coincides with the image of the element $\rho_{i j}(u, v)$ under the action of the symmetric group \mathfrak{S}_{k+1} on the tensor product of the vector spaces \mathbb{C}^{N}. Hence, applying the fusion procedure, we get

$$
\begin{aligned}
R_{01}\left(-u-c_{1}\right) R_{02}\left(-u-c_{2}\right) & \ldots R_{0 k}\left(-u-c_{k}\right) \Phi_{\mathcal{U}} \\
& =\Phi_{\mathcal{U}}\left(1+\frac{P_{01}+P_{02}+\cdots+P_{0 k}}{u}\right)
\end{aligned}
$$

This implies the first part of the proposition. The second part follows by taking into account that $P_{01}+P_{02}+\cdots+P_{0 k}$ commutes with $\Phi_{\mathcal{U}}$.

Gelfand-Tsetlin bases

Given any finite-dimensional irreducible representation of the
Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, there exists an automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ of the form $T(u) \mapsto f(u) T(u)$ such that its composition with the representation is isomorphic to a subquotient of a tensor product module

$$
L\left(\lambda^{(1)}\right) \otimes \ldots \otimes L\left(\lambda^{(p)}\right)
$$

where $L\left(\lambda^{(i)}\right)$ is the irreducible representation of $\mathfrak{g l}_{N}$ with the highest weight $\lambda^{(i)}$.

Gelfand-Tsetlin bases

Given any finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$, there exists an automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ of the form $T(u) \mapsto f(u) T(u)$ such that its composition with the representation is isomorphic to a subquotient of a tensor product module

$$
L\left(\lambda^{(1)}\right) \otimes \ldots \otimes L\left(\lambda^{(p)}\right)
$$

where $L\left(\lambda^{(i)}\right)$ is the irreducible representation of $\mathfrak{g l}_{N}$ with the highest weight $\lambda^{(i)}$.
All generators $t_{i j}^{(r)}$ with $r \geqslant p+1$ act as zero operators.

Definition

For any positive integer p, the Yangian of level p is the quotient
$\mathrm{Y}_{p}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by all elements $t_{i j}^{(r)}$ with $r \geqslant p+1$ and $1 \leqslant i, j \leqslant N$.

Definition

For any positive integer p, the Yangian of level p is the quotient
$\mathrm{Y}_{p}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by all elements $t_{i j}^{(r)}$ with $r \geqslant p+1$ and $1 \leqslant i, j \leqslant N$.

The composition of any finite-dimensional irreducible representation of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with an appropriate automorphism $T(u) \mapsto f(u) T(u)$ can be regarded as a representation of $\mathrm{Y}_{p}\left(\mathfrak{g l}_{N}\right)$ for some $p \geqslant 1$. If $p=1$ then the algebra $\mathrm{Y}_{1}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.
$\mathrm{Y}_{p}\left(\mathfrak{g l}_{N}\right)$ can be regarded as an algebra with generators $t_{i j}^{(r)}$ for $1 \leqslant r \leqslant p$ and $1 \leqslant i, j \leqslant N$, subject to the defining relations

$$
(u-v)\left[T_{i j}(u), T_{k l}(v)\right]=T_{k j}(u) T_{i l}(v)-T_{k j}(v) T_{i l}(u),
$$

where

$$
T_{i j}(u)=\delta_{i j} u^{p}+t_{i j}^{(1)} u^{p-1}+\cdots+t_{i j}^{(p)}
$$

The irreducible representation $L(\lambda(u))$ is generated by a nonzero vector ζ such that

$$
\begin{array}{ll}
T_{i j}(u) \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
T_{i i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } \quad 1 \leqslant i \leqslant N,
\end{array}
$$

where $\lambda_{i}(u)$ is a monic polynomial in u of degree p. Write

$$
\lambda_{i}(u)=\left(u+\lambda_{i}^{(1)}\right)\left(u+\lambda_{i}^{(2)}\right) \ldots\left(u+\lambda_{i}^{(p)}\right), \quad i=1, \ldots, N .
$$

The irreducible representation $L(\lambda(u))$ is generated by a nonzero vector ζ such that

$$
\begin{array}{ll}
T_{i j}(u) \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
T_{i i}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } \quad 1 \leqslant i \leqslant N,
\end{array}
$$

where $\lambda_{i}(u)$ is a monic polynomial in u of degree p. Write

$$
\lambda_{i}(u)=\left(u+\lambda_{i}^{(1)}\right)\left(u+\lambda_{i}^{(2)}\right) \ldots\left(u+\lambda_{i}^{(p)}\right), \quad i=1, \ldots, N .
$$

Impose the generality condition

$$
\lambda_{i}^{(k)}-\lambda_{j}^{(m)} \notin \mathbb{Z}, \quad \text { for all } i, j \quad \text { and all } k \neq m
$$

The Gelfand-Tsetlin pattern $\Lambda(u)$ (associated with the highest weight $\lambda(u)$) is an array of monic polynomials in u of degree p of the form

$$
\begin{array}{cccc}
\lambda_{N 1}(u) & \lambda_{N 2}(u) & \cdots & \lambda_{N N}(u) \\
\lambda_{N-1,1}(u) & \ldots & \lambda_{N-1, N-1}(u) \\
\cdots & \cdots & \\
\lambda_{21}(u) & & \lambda_{22}(u) \\
& \\
\lambda_{11}(u)
\end{array}
$$

Here the top row coincides with $\lambda(u)$, and we have the betweenness conditions

$$
\lambda_{r+1, i}(u) \longrightarrow \lambda_{r i}(u) \longrightarrow \lambda_{r+1, i+1}(u)
$$

$$
\text { for } \quad r=1, \ldots, N-1 \quad \text { and } \quad i=1, \ldots, r \text {. }
$$

Here the top row coincides with $\lambda(u)$, and we have the

betweenness conditions

$$
\begin{aligned}
\lambda_{r+1, i}(u) \longrightarrow \lambda_{r i}(u) & \longrightarrow \lambda_{r+1, i+1}(u) \\
& \text { for } \quad r=1, \ldots, N-1 \quad \text { and } \quad i=1, \ldots, r .
\end{aligned}
$$

Notation

$$
\lambda_{i}(u) \longrightarrow \mu_{i}(u)
$$

means that there exists a uniquely determined decomposition
$\mu_{i}(u)=\left(u+\mu_{i}^{(1)}\right)\left(u+\mu_{i}^{(2)}\right) \ldots\left(u+\mu_{i}^{(p)}\right), \quad i=1, \ldots, N-1$,
such that $\lambda_{i}^{(k)}-\mu_{i}^{(k)} \in \mathbb{Z}_{+}$for all i and k.

Theorem
The representation $L(\lambda(u))$ of $Y_{p}\left(\mathfrak{g l}_{N}\right)$ admits a basis $\left\{\zeta_{\Lambda}\right\}$ parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$.

Theorem

The representation $L(\lambda(u))$ of $Y_{p}\left(\mathfrak{g l}_{N}\right)$ admits a basis $\left\{\zeta_{\Lambda}\right\}$ parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$.

Corollary (Branching rule).

$$
\left.L(\lambda(u))\right|_{\mathrm{Y}_{p}\left(\mathfrak{g l}_{N-1}\right)} \cong \underset{\mu(u)}{\oplus} L^{\prime}(\mu(u))
$$

where $\mu(u)$ runs over all tuples of monic polynomials $\mu(u)=\left(\mu_{1}(u), \ldots, \mu_{N-1}(u)\right)$ of degree p satisfying the betweenness conditions.

Introduce the polynomials with coefficients in $\mathrm{Y}_{p}\left(\mathfrak{g l}_{N}\right)$ by

$$
A_{r}(u)=T_{1 \ldots r}^{1 \ldots r}(u), \quad B_{r}(u)=T_{1 \ldots r-1, r+1}^{1 \ldots r}(u),
$$

$$
C_{r}(u)=T_{1 \ldots r}^{1 \ldots r-1, r+1}(u) .
$$

Introduce the polynomials with coefficients in $\mathrm{Y}_{p}\left(\mathfrak{g l}_{N}\right)$ by

$$
A_{r}(u)=T_{1 \ldots r}^{1 \ldots r}(u), \quad B_{r}(u)=T_{1 \ldots r-1, r+1}^{1 \ldots r}(u),
$$

$$
C_{r}(u)=T_{1 \ldots r}^{1 \ldots r-1, r+1}(u) .
$$

The coefficients of the polynomials $A_{r}(u)$ for $r=1, \ldots, N$ and the polynomials $B_{r}(u)$ and $C_{r}(u)$ for $r=1, \ldots, N-1$ generate the algebra $Y_{p}\left(\mathfrak{g l}_{N}\right)$.

For a pattern $\Lambda(u)$ due to the generality condition there exist uniquely determined decompositions

$$
\lambda_{r i}(u)=\left(u+\lambda_{r i}^{(1)}\right) \ldots\left(u+\lambda_{r i}^{(p)}\right), \quad 1 \leqslant i \leqslant r \leqslant N,
$$

such that $\lambda_{N i}^{(k)}=\lambda_{i}^{(k)}$,

$$
\lambda_{r+1, i}^{(k)}-\lambda_{r i}^{(k)} \in \mathbb{Z}_{+} \quad \text { and } \quad \lambda_{r i}^{(k)}-\lambda_{r+1, i+1}^{(k)} \in \mathbb{Z}_{+}
$$

for $k=1, \ldots, p$ and $1 \leqslant i \leqslant r \leqslant N-1$.

For a pattern $\Lambda(u)$ due to the generality condition there exist uniquely determined decompositions

$$
\lambda_{r i}(u)=\left(u+\lambda_{r i}^{(1)}\right) \ldots\left(u+\lambda_{r i}^{(p)}\right), \quad 1 \leqslant i \leqslant r \leqslant N,
$$

such that $\lambda_{N i}^{(k)}=\lambda_{i}^{(k)}$,

$$
\lambda_{r+1, i}^{(k)}-\lambda_{r i}^{(k)} \in \mathbb{Z}_{+} \quad \text { and } \quad \lambda_{r i}^{(k)}-\lambda_{r+1, i+1}^{(k)} \in \mathbb{Z}_{+}
$$

for $k=1, \ldots, p$ and $1 \leqslant i \leqslant r \leqslant N-1$.

Set

$$
I_{r i}^{(k)}=\lambda_{r i}^{(k)}-i+1, \quad k=1, \ldots, p \quad \text { and } \quad i=1, \ldots, r .
$$

Theorem
We have

$$
A_{r}(u) \zeta_{\Lambda}=\lambda_{r 1}(u) \ldots \lambda_{r r}(u-r+1) \zeta_{\Lambda}
$$

for $r=1, \ldots, N$, and

Theorem
We have

$$
A_{r}(u) \zeta_{\Lambda}=\lambda_{r 1}(u) \ldots \lambda_{r r}(u-r+1) \zeta_{\Lambda},
$$

for $r=1, \ldots, N$, and

$$
\begin{aligned}
& B_{r}\left(-I_{r i}^{(k)}\right) \zeta_{\Lambda}=-\lambda_{r+1,1}\left(-I_{r i}^{(k)}\right) \ldots \lambda_{r+1, r+1}\left(-l_{r i}^{(k)}-r\right) \zeta_{\Lambda+\delta_{r i}^{(k)}}, \\
& C_{r}\left(-I_{r i}^{(k)}\right) \zeta_{\Lambda}=\lambda_{r-1,1}\left(-I_{r i}^{(k)}\right) \ldots \lambda_{r-1, r-1}\left(-I_{r i}^{(k)}-r+2\right) \zeta_{\Lambda-\delta_{r i}^{(k)}},
\end{aligned}
$$

for $r=1, \ldots, N-1$.

Representations of twisted Yangians

- Classification theorems, highest weight theory

Representations of twisted Yangians

- Classification theorems, highest weight theory
- Constructions of all representations of $\mathrm{Y}\left(\mathfrak{o}_{2}\right)$ and $\mathrm{Y}\left(\mathfrak{s p}_{2}\right)$ via tensor products

Representations of twisted Yangians

- Classification theorems, highest weight theory
- Constructions of all representations of $\mathrm{Y}\left(\mathfrak{o}_{2}\right)$ and $\mathrm{Y}\left(\mathfrak{s p}_{2}\right)$ via tensor products
- Open problems:
- Gelfand-Tsetlin bases

Representations of twisted Yangians

- Classification theorems, highest weight theory
- Constructions of all representations of $\mathrm{Y}\left(\mathfrak{o}_{2}\right)$ and $\mathrm{Y}\left(\mathfrak{s p}_{2}\right)$ via tensor products
- Open problems:
- Gelfand-Tsetlin bases
- Characters of irreducible representations

