Classical Lie algebras and Yangians

Alexander Molev
University of Sydney

Advanced Summer School
Integrable Systems and Quantum Symmetries
Prague 2007

Lecture 2. Yangians: algebraic structure

Recall $E=\left[E_{i j}\right]$ with $i, j \in\{1, \ldots, N\}$. We have

$$
\left[E_{i j},\left(E^{s}\right)_{k l}\right]=\delta_{k j}\left(E^{s}\right)_{i l}-\delta_{i l}\left(E^{s}\right)_{k j}
$$

This implies that $\operatorname{tr} E^{s}$ are Casimir elements for $\mathfrak{g l}_{N}$ (the Gelfand invariants).

Lecture 2. Yangians: algebraic structure

Recall $E=\left[E_{i j}\right]$ with $i, j \in\{1, \ldots, N\}$. We have

$$
\left[E_{i j},\left(E^{s}\right)_{k l}\right]=\delta_{k j}\left(E^{s}\right)_{i l}-\delta_{i l}\left(E^{s}\right)_{k j}
$$

This implies that $\operatorname{tr} E^{s}$ are Casimir elements for $\mathfrak{g l}_{N}$ (the Gelfand invariants).

More generally, we have
$\left[\left(E^{r+1}\right)_{i j},\left(E^{s}\right)_{k l}\right]-\left[\left(E^{r}\right)_{i j},\left(E^{s+1}\right)_{k l}\right]=\left(E^{r}\right)_{k j}\left(E^{s}\right)_{i l}-\left(E^{s}\right)_{k j}\left(E^{r}\right)_{i l}$,
where $r, s \geqslant 0$ and $E^{0}=1$ is the identity matrix.

Yangian for $\mathfrak{g l}_{N}$

Definition

The Yangian for $\mathfrak{g l}_{N}$ is the associative algebra over \mathbb{C} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)}
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

Yangian for $\mathfrak{g l}_{N}$

Definition

The Yangian for $\mathfrak{g l}_{N}$ is the associative algebra over \mathbb{C} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)}
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

This algebra is denoted by $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations take the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations take the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

The defining relations are equivalent to

$$
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min \{r, s\}}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right)
$$

Proposition

The assignment

$$
\pi_{N}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

defines a surjective homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)$. Moreover, the assignment

$$
E_{i j} \mapsto t_{i j}^{(1)}
$$

defines an embedding $\mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proposition

The assignment

$$
\pi_{N}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

defines a surjective homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)$. Moreover, the assignment

$$
E_{i j} \mapsto t_{i j}^{(1)}
$$

defines an embedding $\mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

We may regard $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ as a subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Matrix form of the defining relations

Introduce the $N \times N$ matrix $T(u)$ whose $i j$-th entry is the series
$t_{i j}(u)$. We regard $T(u)$ as an element of the algebra
$\operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]$. Then

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u)
$$

where $e_{i j} \in \operatorname{End} \mathbb{C}^{N}$ are the standard matrix units.

For any positive integer m consider the algebra

$$
\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

For any $a \in\{1, \ldots, m\}$ denote by $T_{a}(u)$ the matrix $T(u)$ which corresponds to the a-th copy of the algebra End \mathbb{C}^{N} in the tensor product algebra.

For any positive integer m consider the algebra

$$
\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

For any $a \in\{1, \ldots, m\}$ denote by $T_{a}(u)$ the matrix $T(u)$ which corresponds to the a-th copy of the algebra End \mathbb{C}^{N} in the tensor product algebra. That is, $T_{a}(u)$ is a formal power series in u^{-1} given by

$$
T_{a}(u)=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes t_{i j}(u)
$$

where 1 is the identity matrix.

If

$$
C=\sum_{i, j, k, l=1}^{N} c_{i j k l} e_{i j} \otimes e_{k l} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

then for any two indices $a, b \in\{1, \ldots, m\}$ such that $a<b$, define the element $C_{a b}$ of the algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
C_{a b}=\sum_{i, j, k, l=1}^{N} c_{i j k l} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{k l} \otimes 1^{\otimes(m-b)}
$$

The tensor factors $e_{i j}$ and $e_{k l}$ belong to the a-th and b-th copies of End \mathbb{C}^{N}, respectively.

Consider now the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

Consider now the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

The rational function

$$
R(u)=1-P u^{-1}
$$

with values in End $\mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ is called the Yang R-matrix.

Proposition

 In the algebra $\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes 3}(u, v)$ we have the identity$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

Proposition

In the algebra $\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes 3}(u, v)$ we have the identity

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

This relation is known as the Yang-Baxter equation. The Yang R-matrix is its simplest nontrivial solution.

Proposition

The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Proposition

The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Here $T_{1}(u)$ and $T_{2}(v)$ as formal power series with the coefficients in the algebra

$$
\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

Proposition

The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Here $T_{1}(u)$ and $T_{2}(v)$ as formal power series with the coefficients in the algebra

$$
\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

The matrix relation is called the $R T T$ relation (or ternary relation).

Symmetries of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Let $f(u)$ be a formal power series in u^{-1} of the form

$$
f(u)=1+f_{1} u^{-1}+f_{2} u^{-2}+\cdots \in \mathbb{C}\left[\left[u^{-1}\right]\right] .
$$

Let $c \in \mathbb{C}$ and let B be any nonsingular complex $N \times N$ matrix.

Symmetries of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Let $f(u)$ be a formal power series in u^{-1} of the form

$$
f(u)=1+f_{1} u^{-1}+f_{2} u^{-2}+\cdots \in \mathbb{C}\left[\left[u^{-1}\right]\right] .
$$

Let $c \in \mathbb{C}$ and let B be any nonsingular complex $N \times N$ matrix.
Proposition. Each of the mappings

$$
\begin{align*}
& T(u) \mapsto f(u) T(u), \tag{1}\\
& T(u) \mapsto T(u-c), \tag{2}\\
& T(u) \mapsto B T(u) B^{-1} \tag{3}
\end{align*}
$$

defines an automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proposition. Each of the mappings

$$
\begin{aligned}
\sigma_{N}: T(u) & \mapsto T(-u), \\
t: T(u) & \mapsto T^{t}(u), \\
S & : T(u)
\end{aligned}>T^{-1}(u), ~ f
$$

defines an anti-automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Proposition. Each of the mappings

$$
\begin{aligned}
\sigma_{N}: T(u) & \mapsto T(-u), \\
t: T(u) & \mapsto T^{t}(u), \\
S & : T(u)
\end{aligned}>T^{-1}(u), ~ \$
$$

defines an anti-automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
Corollary. The mapping

$$
\omega_{N}: T(u) \mapsto T^{-1}(-u)
$$

defines an involutive automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Poincaré-Birkhoff-Witt theorem

Theorem
Given an arbitrary linear order on the set of generators $t_{i j}^{(r)}$, any element of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of ordered monomials in these generators.

Poincaré-Birkhoff-Witt theorem

Theorem

Given an arbitrary linear order on the set of generators $t_{i j}^{(r)}$, any element of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of ordered monomials in these generators.

Corollary. Consider the ascending filtration on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\operatorname{deg} t_{i j}^{(r)}=r
$$

The graded algebra $\operatorname{gr} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is an algebra of polynomials.

Hopf algebra structure

A coalgebra (over the field \mathbb{C}) is a vector space A equipped with linear maps $\Delta: A \rightarrow A \otimes A$, the comultiplication, and $\varepsilon: A \rightarrow \mathbb{C}$, the counit, satisfying some axioms; e.g.,

the coassociativity of Δ.

A bialgebra is an associative unital algebra A equipped with a coalgebra structure, such that Δ and ε are algebra
homomorphisms. In particular, then we have $\Delta(1)=1 \otimes 1$ and $\varepsilon(1)=1$.

A bialgebra is an associative unital algebra A equipped with a coalgebra structure, such that Δ and ε are algebra
homomorphisms. In particular, then we have $\Delta(1)=1 \otimes 1$ and $\varepsilon(1)=1$.

A bialgebra A is called a Hopf algebra, if it is also equipped with an anti-automorphism $\mathrm{S}: A \rightarrow A$, the antipode, such that the following two diagrams commute:

Theorem

The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra with comultiplication

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

the antipode

$$
\mathrm{S}: T(u) \mapsto T^{-1}(u)
$$

and the counit $\varepsilon: T(u) \mapsto 1$.

Quantum determinant

For any $m \geqslant 2$ introduce the rational function $R\left(u_{1}, \ldots, u_{m}\right)$ with values in the tensor product algebra $\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\left(R_{m-1, m}\right)\left(R_{m-2, m} R_{m-2, m-1}\right) \ldots\left(R_{1 m} \ldots R_{12}\right)
$$

where u_{1}, \ldots, u_{m} are independent complex variables and we abbreviate $R_{i j}=R_{i j}\left(u_{i}-u_{j}\right)=1-P_{i j}\left(u_{i}-u_{j}\right)^{-1}$.

Quantum determinant

For any $m \geqslant 2$ introduce the rational function $R\left(u_{1}, \ldots, u_{m}\right)$ with values in the tensor product algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\left(R_{m-1, m}\right)\left(R_{m-2, m} R_{m-2, m-1}\right) \ldots\left(R_{1 m} \ldots R_{12}\right)
$$

where u_{1}, \ldots, u_{m} are independent complex variables and we abbreviate $R_{i j}=R_{i j}\left(u_{i}-u_{j}\right)=1-P_{i j}\left(u_{i}-u_{j}\right)^{-1}$.

Using the Yang-Baxter equation, we get

$$
R\left(u_{1}, \ldots, u_{m}\right)=\left(R_{12} \ldots R_{1 m}\right) \ldots\left(R_{m-2, m-1} R_{m-2, m}\right)\left(R_{m-1, m}\right)
$$

Applying the RTT relation repeatedly, we come to the fundamental relation

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

Applying the RTT relation repeatedly, we come to the fundamental relation
$R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)$.

Lemma
If $u_{i}-u_{i+1}=1$ for all $i=1, \ldots, m-1$ then

$$
R\left(u_{1}, \ldots, u_{m}\right)=A_{m},
$$

the image of the anti-symmetrizer $\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot p \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ in the algebra $\operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes m}$.

Hence, we have

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)=T_{m}(u-m+1) \ldots T_{1}(u) A_{m} .
$$

Hence, we have

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)=T_{m}(u-m+1) \ldots T_{1}(u) A_{m} .
$$

If $m=N$ then the operator A_{N} on $\left(\mathbb{C}^{N}\right)^{\otimes N}$ is one-dimensional.

Definition

The quantum determinant of the matrix $T(u)$ with the coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is the formal series

$$
q \operatorname{det} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

such that both sides of the above relation with $m=N$, are equal to $A_{N} q \operatorname{det} T(u)$.

Proposition

For any permutation $q \in \mathfrak{S}_{N}$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1), q(1)}(u) \ldots t_{p(N), q(N)}(u-N+1) \\
& =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{q(1), p(1)}(u-N+1) \ldots t_{q(N), p(N)}(u) .
\end{aligned}
$$

Proposition

For any permutation $q \in \mathfrak{S}_{N}$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1), q(1)}(u) \ldots t_{p(N), q(N)}(u-N+1) \\
& =\operatorname{sgn} q \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{q(1), p(1)}(u-N+1) \ldots t_{q(N), p(N)}(u) .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1), 1}(u) \ldots t_{p(N), N}(u-N+1) \\
& =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{1, p(1)}(u-N+1) \ldots t_{N, p(N)}(u) .
\end{aligned}
$$

Example

For $N=2$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =t_{11}(u) t_{22}(u-1)-t_{21}(u) t_{12}(u-1) \\
& =t_{22}(u) t_{11}(u-1)-t_{12}(u) t_{21}(u-1) \\
& =t_{11}(u-1) t_{22}(u)-t_{12}(u-1) t_{21}(u) \\
& =t_{22}(u-1) t_{11}(u)-t_{21}(u-1) t_{12}(u)
\end{aligned}
$$

Assuming that $m \leqslant N$ is arbitrary, define the $m \times m$ quantum minors $t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)$ so that each side of

$$
A_{m} T_{1}(u) \ldots T_{m}(u-m+1)=T_{m}(u-m+1) \ldots T_{1}(u) A_{m}
$$

equals

$$
\sum e_{a_{1} b_{1}} \otimes \ldots \otimes e_{a_{m} b_{m}} \otimes t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)
$$

summed over the indices $a_{i}, b_{i} \in\{1, \ldots, N\}$.

Proposition

The images of quantum minors under the comultiplication are given by

$$
\Delta\left(t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)\right)=\sum_{c_{1}<\cdots<c_{m}} t_{c_{1} \ldots c_{m}}^{a_{1} \ldots a_{m}}(u) \otimes t_{b_{1} \ldots b_{m}}^{c_{1} \ldots c_{m}}(u)
$$

summed over all subsets of indices $\left\{c_{1}, \ldots, c_{m}\right\}$ from $\{1, \ldots, N\}$.

Proposition

The images of quantum minors under the comultiplication are given by

$$
\Delta\left(t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(u)\right)=\sum_{c_{1}<\cdots<c_{m}} t_{c_{1} \ldots c_{m}}^{a_{1} \ldots a_{m}}(u) \otimes t_{b_{1} \ldots b_{m}}^{c_{1} \ldots c_{m}}(u)
$$

summed over all subsets of indices $\left\{c_{1}, \ldots, c_{m}\right\}$ from $\{1, \ldots, N\}$.

In particular, as $\quad q \operatorname{det} T(u)=t_{1 \ldots N}^{1 \ldots N}(u)$,
$\Delta: q \operatorname{det} T(u) \mapsto q \operatorname{det} T(u) \otimes \operatorname{qdet} T(u)$.

Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Proposition

We have the relations

$$
\begin{aligned}
& (u-v)\left[t_{k l}(u), t_{b_{1} \ldots b_{m}}^{a_{1} \ldots a_{m}}(v)\right] \\
& \quad=\sum_{i=1}^{m} t_{a_{i} l}(u) t_{b_{1} \ldots \ldots b_{m}}^{a_{1} \ldots \ldots a_{m}}(v)-\sum_{i=1}^{m} t_{b_{1} \ldots l \ldots b_{m}}^{a_{1} \ldots}(v) t_{k b_{i}}(u)
\end{aligned}
$$

where the indices k and l in the quantum minors replace a_{i} and b_{i}, respectively.

Theorem

The coefficients d_{1}, d_{2}, \ldots of the series qdet $T(u)$ belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. Moreover, these elements are algebraically independent and generate $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Proof.

The first part follows from the Proposition. For the second part introduce another filtration on $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by setting

$$
\operatorname{deg}^{\prime} t_{i j}^{(r)}=r-1
$$

for every $r \geqslant 1$. Then the corresponding graded algebra $\mathrm{gr}^{\prime} \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}[z]\right)$.

Yangian for $\mathfrak{s l}_{N}$

For any series $f(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right]$ consider the automorphism $\mu_{f}: T(u) \mapsto f(u) T(u)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Yangian for $\mathfrak{s l}_{N}$

For any series $f(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right]$ consider the automorphism $\mu_{f}: T(u) \mapsto f(u) T(u)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

The Yangian for $\mathfrak{s l}_{N}$ is the subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ which consists of the elements stable under all automorphisms μ_{f}.

Yangian for $\mathfrak{s l}_{N}$

For any series $f(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right]$ consider the automorphism $\mu_{f}: T(u) \mapsto f(u) T(u)$ of $Y\left(\mathfrak{g l}_{N}\right)$.

The Yangian for $\mathfrak{s l}_{N}$ is the subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ which consists of the elements stable under all automorphisms μ_{f}.

Theorem
We have the isomorphism

$$
\mathrm{Y}\left(\mathfrak{g l}_{N}\right)=\mathrm{ZY}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{s l}_{N}\right)
$$

In particular, the center of $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is trivial.

Corollary

The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is isomorphic to the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by the elements d_{1}, d_{2}, \ldots, i.e.,

$$
\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \cong \mathrm{Y}\left(\mathfrak{g l}_{N}\right) /(\operatorname{qdet} T(u)=1)
$$

Corollary

The algebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ is isomorphic to the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the ideal generated by the elements d_{1}, d_{2}, \ldots, i.e.,

$$
\mathrm{Y}\left(\mathfrak{s l}_{N}\right) \cong \mathrm{Y}\left(\mathfrak{g l}_{N}\right) /(\operatorname{qdet} T(u)=1)
$$

Proposition

The subalgebra $\mathrm{Y}\left(\mathfrak{s l}_{N}\right)$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is a Hopf algebra whose comultiplication, antipode and counit are obtained by restricting those from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Quantum Liouville formula

The quantum comatrix $\widehat{T}(u)$ is defined by

$$
\widehat{T}(u) T(u-N+1)=q \operatorname{det} T(u)
$$

Quantum Liouville formula

The quantum comatrix $\widehat{T}(u)$ is defined by

$$
\widehat{T}(u) T(u-N+1)=q \operatorname{det} T(u) .
$$

Proposition
The entries $\widehat{t}_{i j}(u)$ of the matrix $\widehat{T}(u)$ are given by

$$
\widehat{t}_{i j}(u)=(-1)^{i+j} t_{1 \ldots \hat{i} \ldots N}^{1 \ldots \hat{j} \ldots N}(u),
$$

where the hats on the right hand side indicate the indices to be omitted. Moreover, we have the relation

$$
\widehat{T}^{t}(u-1) T^{t}(u)=q \operatorname{det} T(u) .
$$

Consider the series $z(u)$ with coefficients from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ given by the formula

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr}\left(T(u) T^{-1}(u-N)\right)
$$

so that

$$
z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\ldots \quad \text { where } \quad z_{i} \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

Consider the series $z(u)$ with coefficients from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ given by the formula

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr}\left(T(u) T^{-1}(u-N)\right)
$$

so that

$$
z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\ldots \quad \text { where } \quad z_{i} \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right) .
$$

Theorem
We have the relation

$$
z(u)=\frac{q \operatorname{det} T(u-1)}{q \operatorname{det} T(u)}
$$

Proof.

We have

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr}\left(T(u) \widehat{T}(u-1)(\operatorname{qdet} T(u-1))^{-1}\right)
$$

Using the centrality of qdet $T(u)$ we get

$$
T^{t}(u) \widehat{T}^{t}(u-1)=\operatorname{qdet} T(u)
$$

and so

$$
\operatorname{tr}(T(u) \widehat{T}(u-1))=N \operatorname{qdet} T(u)
$$

implying the formula.

Theorem
The square of the antipode S is the automorphism of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ given by

$$
\mathrm{S}^{2}: T(u) \mapsto z(u+N) T(u+N) .
$$

In particular, qdet $T(u)$ is stable under S^{2}.

Application to $\mathfrak{g l}_{N}$

Recall the evaluation homomorphism $\pi_{N}: T(u) \mapsto 1+E u^{-1}$:

$$
\begin{aligned}
\pi_{N}: z(-u+N)^{-1} & \mapsto \frac{1}{N} \operatorname{tr}\left(\left(1-E(u-N)^{-1}\right)\left(1-E u^{-1}\right)^{-1}\right) \\
& =1-\frac{1}{u-N} \sum_{k=1}^{\infty} \operatorname{tr} E^{k} u^{-k}
\end{aligned}
$$

Application to $\mathfrak{g l}_{N}$

Recall the evaluation homomorphism $\pi_{N}: T(u) \mapsto 1+E u^{-1}$:

$$
\begin{aligned}
\pi_{N}: z(-u+N)^{-1} & \mapsto \frac{1}{N} \operatorname{tr}\left(\left(1-E(u-N)^{-1}\right)\left(1-E u^{-1}\right)^{-1}\right) \\
& =1-\frac{1}{u-N} \sum_{k=1}^{\infty} \operatorname{tr} E^{k} u^{-k}
\end{aligned}
$$

The quantum Liouville formula gives

$$
z(u+1)^{-1}=\frac{q \operatorname{det} T(u+1)}{\operatorname{qdet} T(u)}
$$

Applying the evaluation homomorphism to both sides of this relation, we get Newton's formulas (see Lecture 1).

Factorization of the quantum determinant

Let $A=\left[a_{i j}\right]$ be an $N \times N$ matrix over a ring with 1 .
The $i j$-th quasideterminant of A is defined by

$$
|A|_{i j}=\left(\left(A^{-1}\right)_{j i}\right)^{-1}
$$

Example
For a 2×2 matrix A the four quasideterminants are

$$
\begin{array}{ll}
|A|_{11}=a_{11}-a_{12} a_{22}^{-1} a_{21}, & |A|_{12}=a_{12}-a_{11} a_{21}^{-1} a_{22}, \\
|A|_{21}=a_{21}-a_{22} a_{12}^{-1} a_{11}, & |A|_{22}=a_{22}-a_{21} a_{11}^{-1} a_{12} .
\end{array}
$$

For $m=1, \ldots, N$ denote by $T^{(m)}(u)$ the submatrix of $T(u)$ corresponding to the first m rows and columns.

For $m=1, \ldots, N$ denote by $T^{(m)}(u)$ the submatrix of $T(u)$ corresponding to the first m rows and columns.

Theorem
The quantum determinant qdet $T(u)$ admits the factorization in the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]$

$$
\operatorname{qdet} T(u)=t_{11}(u)\left|T^{(2)}(u-1)\right|_{22} \ldots\left|T^{(N)}(u-N+1)\right|_{N N} .
$$

Moreover, the N factors on the right hand side of this equality pairwise commute.

Set

$$
\widetilde{\mathcal{C}}(q)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot(1+q E)_{p(1), 1} \ldots(1+q(E-N+1))_{p(N), N}
$$

Then $\widetilde{\mathcal{C}}(q)=q^{N} \mathcal{C}\left(q^{-1}\right), \quad$ where $\mathcal{C}(u)$ is the Capelli determinant.

Set
$\widetilde{\mathcal{C}}(q)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot(1+q E)_{p(1), 1} \ldots(1+q(E-N+1))_{p(N), N}$.
Then $\widetilde{\mathcal{C}}(q)=q^{N} \mathcal{C}\left(q^{-1}\right), \quad$ where $\mathcal{C}(u)$ is the Capelli determinant.

Apply the evaluation homomorphism to the decomposition of the Theorem to get

$$
\widetilde{\mathcal{C}}(q)=\left|1+q E^{(1)}\right|_{11} \ldots\left|1+q\left(E^{(N)}-N+1\right)\right|_{N N},
$$

where $E^{(m)}$ is the submatrix of E corresponding to the first m rows and columns.

For the Harish-Chandra image of $\widetilde{\mathcal{C}}(q)$ we have

$$
\chi(\widetilde{\mathcal{C}}(q))=\left(1+q I_{1}\right) \ldots\left(1+q I_{N}\right), \quad I_{i}=\lambda_{i}-i+1 .
$$

For the Harish-Chandra image of $\widetilde{\mathcal{C}}(q)$ we have

$$
\chi(\widetilde{\mathcal{C}}(q))=\left(1+q I_{1}\right) \ldots\left(1+q I_{N}\right), \quad I_{i}=\lambda_{i}-i+1 .
$$

Hence, if we define the Casimir elements Φ_{k} by

$$
\sum_{k=1}^{\infty} \Phi_{k} q^{k-1}=-\frac{d}{d q} \log \widetilde{\mathcal{C}}(-q)
$$

then

$$
\chi\left(\Phi_{k}\right)=I_{1}^{k}+\cdots+I_{N}^{k}
$$

On the other hand, by the quasideterminant decomposition,

$$
\sum_{k=1}^{\infty} \Phi_{k} q^{k-1}=-\sum_{m=1}^{N} \frac{d}{d q} \log \left|1-q\left(E^{(m)}-m+1\right)\right|_{m m}
$$

On the other hand, by the quasideterminant decomposition,

$$
\sum_{k=1}^{\infty} \Phi_{k} q^{k-1}=-\sum_{m=1}^{N} \frac{d}{d q} \log \left|1-q\left(E^{(m)}-m+1\right)\right|_{m m}
$$

Therefore,

$$
\Phi_{k}=\Phi_{k}^{(1)}+\cdots+\Phi_{k}^{(N)},
$$

where

$$
\sum_{k=1}^{\infty} \Phi_{k}^{(m)} q^{k-1}=-\frac{d}{d q} \log \left|1-q\left(E^{(m)}-m+1\right)\right|_{m m}
$$

Quantum Sylvester theorem

Suppose that $A=\left[a_{i j}\right]$ is a numerical $(M+N) \times(M+N)$ matrix.
For any indices $i, j=1, \ldots, N$ introduce the minors $c_{i j}$ of A corresponding to the rows $1, \ldots, M, M+i$ and columns $1, \ldots, M, M+j$ so that

$$
c_{i j}=a^{1 \ldots M, M+i} \begin{aligned}
& 1 \ldots M, M+j
\end{aligned}
$$

Let $A^{(M)}$ be the submatrix of A determined by the first M rows and columns. The classical Sylvester theorem provides a formula for the determinant of the matrix $C=\left[c_{i j}\right]$:

$$
\operatorname{det} C=\operatorname{det} A \cdot\left(\operatorname{det} A^{(M)}\right)^{N-1} .
$$

Introduce the series with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{M+N}\right)$ by

$$
t_{i j}^{\sharp}(u)=t_{1 \ldots M, M+j}^{1 \ldots M, M+i}(u)
$$

and set $T^{\sharp}(u)=\left[t_{i j}^{\sharp}(u)\right]$.

Introduce the series with coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{M+N}\right)$ by

$$
t_{i j}^{\sharp}(u)=t_{1 \ldots M, M+j}^{1 \ldots M, M+i}(u)
$$

and set $T^{\sharp}(u)=\left[t_{i j}^{\sharp}(u)\right]$.

Theorem

The mapping

$$
t_{i j}(u) \mapsto t_{i j}^{\sharp}(u), \quad 1 \leqslant i, j \leqslant N,
$$

defines a homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{Y}\left(\mathfrak{g l}_{M+N}\right)$. Moreover,
$q \operatorname{det} T^{\sharp}(u)=q \operatorname{det} T(u) \cdot q \operatorname{det} T^{(M)}(u-1) \ldots \operatorname{qdet} T^{(M)}(u-N+1)$.

Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_{N} as the subalgebra of $\mathfrak{g l} l_{N}$ spanned by the skew-symmetric matrices. The elements
$F_{i j}=E_{i j}-E_{j i}$ with $i<j$ form a basis of \mathfrak{o}_{N}. Introduce the $N \times N$ matrix F whose $i j$-th entry is $F_{i j}$.

Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_{N} as the subalgebra of $\mathfrak{g l}_{N}$ spanned by the skew-symmetric matrices. The elements
$F_{i j}=E_{i j}-E_{j i}$ with $i<j$ form a basis of \mathfrak{o}_{N}. Introduce the $N \times N$ matrix F whose $i j$-th entry is $F_{i j}$.

The matrix elements of the powers of the matrix F are known to satisfy the relations

$$
\left[F_{i j},\left(F^{s}\right)_{k l}\right]=\delta_{k j}\left(F^{s}\right)_{i l}-\delta_{i l}\left(F^{s}\right)_{k j}-\delta_{i k}\left(F^{s}\right)_{j l}+\delta_{l j}\left(F^{s}\right)_{k i}
$$

Introduce the generating series

$$
f_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty}\left(F^{r}\right)_{i j}\left(u+\frac{N-1}{2}\right)^{-r} .
$$

Introduce the generating series

$$
f_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty}\left(F^{r}\right)_{i j}\left(u+\frac{N-1}{2}\right)^{-r} .
$$

Then we have the relations

$$
\begin{array}{r}
\left(u^{2}-v^{2}\right)\left[f_{i j}(u), f_{k l}(v)\right]=(u+v)\left(f_{k j}(u) f_{i l}(v)-f_{k j}(v) f_{i l}(u)\right) \\
-(u-v)\left(f_{i k}(u) f_{j l}(v)-f_{k i}(v) f_{l j}(u)\right) \\
+f_{k i}(u) f_{j l}(v)-f_{k i}(v) f_{j l}(u) .
\end{array}
$$

More generally, equip \mathbb{C}^{N} with a nonsingular bilinear form which may be either symmetric or alternating. The alternating case can only occur if N is even. Let $G=\left[g_{i j}\right]$ be the corresponding matrix so that G is nonsingular with $G^{t}= \pm G$.

More generally, equip \mathbb{C}^{N} with a nonsingular bilinear form which may be either symmetric or alternating. The alternating case can only occur if N is even. Let $G=\left[g_{i j}\right]$ be the corresponding matrix so that G is nonsingular with $G^{t}= \pm G$.

Whenever the double sign \pm or \mp occurs, the upper sign corresponds to the symmetric case and the lower sign to the alternating case. Introduce the elements $F_{i j}$ of the Lie algebra $\mathfrak{g l}_{N}$ by the formulas

$$
F_{i j}=\sum_{k=1}^{N}\left(E_{i k} g_{k j} \mp E_{j k} g_{k i}\right) .
$$

Obviously,

$$
F_{j i}=\mp F_{i j}
$$

and the elements $F_{i j}$ satisfy the commutation relations

$$
\left[F_{i j}, F_{k l}\right]=g_{k j} F_{i l}-g_{i l} F_{k j}-g_{i k} F_{j l}+g_{l j} F_{k i} .
$$

Obviously,

$$
F_{j i}=\mp F_{i j}
$$

and the elements $F_{i j}$ satisfy the commutation relations

$$
\left[F_{i j}, F_{k l}\right]=g_{k j} F_{i l}-g_{i l} F_{k j}-g_{i k} F_{j l}+g_{l j} F_{k i} .
$$

The Lie subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$ is isomorphic to the orthogonal Lie algebra \mathfrak{o}_{N} in the symmetric case and to the symplectic Lie algebra $\mathfrak{s p}_{N}$ in the alternating case. This Lie algebra will be denoted by \mathfrak{g}_{N}.

The twisted Yangian $\mathrm{Y}_{G}\left(\mathfrak{g}_{N}\right)$ is an associative algebra with generators $s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots$ where $1 \leqslant i, j \leqslant N$, and the defining relations written in terms of the generating series

$$
s_{i j}(u)=g_{i j}+s_{i j}^{(1)} u^{-1}+s_{i j}^{(2)} u^{-2}+\ldots
$$

The twisted Yangian $\mathrm{Y}_{G}\left(\mathfrak{g}_{N}\right)$ is an associative algebra with generators $s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots$ where $1 \leqslant i, j \leqslant N$, and the defining relations written in terms of the generating series

$$
s_{i j}(u)=g_{i j}+s_{i j}^{(1)} u^{-1}+s_{i j}^{(2)} u^{-2}+\ldots
$$

as follows

$$
\begin{array}{r}
\left(u^{2}-v^{2}\right)\left[s_{i j}(u), s_{k l}(v)\right]=(u+v)\left(s_{k j}(u) s_{i l}(v)-s_{k j}(v) s_{i l}(u)\right) \\
-(u-v)\left(s_{i k}(u) s_{j l}(v)-s_{k i}(v) s_{l j}(u)\right) \\
+s_{k i}(u) s_{j l}(v)-s_{k i}(v) s_{j l}(u)
\end{array}
$$

and

$$
s_{j i}(-u)= \pm s_{i j}(u)+\frac{s_{i j}(u)-s_{i j}(-u)}{2 u}
$$

If G and G^{\prime} are two nonsingular symmetric (respectively, skew-symmetric) $N \times N$-matrices then the algebras $\mathrm{Y}_{G}\left(\mathfrak{g}_{N}\right)$ and $\mathrm{Y}_{G^{\prime}}\left(\mathfrak{g}_{N}\right)$ are isomorphic to each other.

If G and G^{\prime} are two nonsingular symmetric (respectively, skew-symmetric) $N \times N$-matrices then the algebras $\mathrm{Y}_{G}\left(\mathfrak{g}_{N}\right)$ and $\mathrm{Y}_{G^{\prime}}\left(\mathfrak{g}_{N}\right)$ are isomorphic to each other.

Proposition

The assignment

$$
s_{i j}(u) \mapsto g_{i j}+F_{i j}\left(u \pm \frac{1}{2}\right)^{-1}
$$

defines an algebra epimorphism $\varrho_{N}: \mathrm{Y}\left(\mathfrak{g}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g}_{N}\right)$. Moreover, the assignment

$$
F_{i j} \mapsto s_{i j}^{(1)}
$$

defines an embedding $\mathrm{U}\left(\mathfrak{g}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g}_{N}\right)$.

Matrix form of the defining relations
Introduce the $N \times N$ matrix $S(u)$ by

$$
S(u)=\sum_{i, j=1}^{N} e_{i j} \otimes s_{i j}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

Matrix form of the defining relations
Introduce the $N \times N$ matrix $S(u)$ by

$$
S(u)=\sum_{i, j=1}^{N} e_{i j} \otimes s_{i j}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

Proposition

The defining relations of $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ have the form

$$
R(u-v) S_{1}(u) R^{t}(-u-v) S_{2}(v)=S_{2}(v) R^{t}(-u-v) S_{1}(u) R(u-v)
$$

and

$$
S^{t}(-u)= \pm S(u)+\frac{S(u)-S(-u)}{2 u}
$$

Here

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix, while

$$
R^{t}(u)=1-Q u^{-1}, \quad Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i j}
$$

Here

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix, while

$$
R^{t}(u)=1-Q u^{-1}, \quad Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i j}
$$

Theorem
The mapping

$$
S(u) \mapsto T(u) G T^{t}(-u)
$$

defines an embedding $\mathrm{Y}\left(\mathfrak{g}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

$$
\operatorname{sdet} S(u)=\gamma_{n, G}(u) \operatorname{qdet} T(u) \operatorname{qdet} T(-u+N-1)
$$

where

$$
\gamma_{n, G}(u)= \begin{cases}\operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ \frac{2 u+1}{2 u-2 n+1} \operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

$$
\operatorname{sdet} S(u)=\gamma_{n, G}(u) \operatorname{qdet} T(u) \operatorname{qdet} T(-u+N-1)
$$

where

$$
\gamma_{n, G}(u)= \begin{cases}\operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ \frac{2 u+1}{2 u-2 n+1} \operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

All coefficients of $\operatorname{sdet} S(u)$ are contained in $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ and belong to the center of $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$.

Introduce the scalar $\gamma_{n}(u)$ by

$$
\gamma_{n}(u)= \begin{cases}1 & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ (-1)^{n} \frac{2 u+1}{2 u-2 n+1} & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

Theorem

We have
$\operatorname{sdet} S(u)$

$$
\begin{aligned}
=\gamma_{n}(u) \sum_{p \in \mathfrak{S}_{N}} & \operatorname{sgn} p p^{\prime} \cdot s_{p(1), p^{\prime}(1)}^{t}(-u) \ldots s_{p(n), p^{\prime}(n)}^{t}(-u+n-1) \\
& \times s_{p(n+1), p^{\prime}(n+1)}(u-n) \ldots s_{p(N), p^{\prime}(N)}(u-N+1)
\end{aligned}
$$

Here we denote the matrix elements of the transposed matrix $S^{t}(u)$ by $s_{i j}^{t}(u)$, and for any permutation $p \in \mathfrak{S}_{N}$ we denote by p^{\prime} its image under the map $\varphi_{N}: \mathfrak{S}_{N} \rightarrow \mathfrak{S}_{N}$ (Lecture 1).

Here we denote the matrix elements of the transposed matrix $S^{t}(u)$ by $s_{i j}^{t}(u)$, and for any permutation $p \in \mathfrak{S}_{N}$ we denote by p^{\prime} its image under the map $\varphi_{N}: \mathfrak{S}_{N} \rightarrow \mathfrak{S}_{N}$ (Lecture 1).

Example

For $N=2$ we have

$$
\operatorname{sdet} S(u)=\frac{1 \mp 2 u}{1-2 u}\left(s_{11}^{t}(-u) s_{22}(u-1)-s_{21}^{t}(-u) s_{12}(u-1)\right) .
$$

Here we denote the matrix elements of the transposed matrix $S^{t}(u)$ by $s_{i j}^{t}(u)$, and for any permutation $p \in \mathfrak{S}_{N}$ we denote by p^{\prime} its image under the map $\varphi_{N}: \mathfrak{S}_{N} \rightarrow \mathfrak{S}_{N}$ (Lecture 1).

Example

For $N=2$ we have

$$
\operatorname{sdet} S(u)=\frac{1 \mp 2 u}{1-2 u}\left(s_{11}^{t}(-u) s_{22}(u-1)-s_{21}^{t}(-u) s_{12}(u-1)\right) .
$$

If $N=3$ then $\operatorname{sdet} S(u)=$

$$
\begin{aligned}
& s_{22}^{t}(-u) s_{11}(u-1) s_{33}(u-2)+s_{12}^{t}(-u) s_{31}(u-1) s_{23}(u-2) \\
& +s_{21}^{t}(-u) s_{32}(u-1) s_{13}(u-2)-s_{12}^{t}(-u) s_{21}(u-1) s_{33}(u-2) \\
& -s_{32}^{t}(-u) s_{11}(u-1) s_{23}(u-2)-s_{31}^{t}(-u) s_{22}(u-1) s_{13}(u-2) .
\end{aligned}
$$

The center of the twisted Yangian

Theorem
All coefficients of the series

$$
\operatorname{sdet} S(u)=c_{0}+c_{1} u^{-1}+c_{2} u^{-2}+\ldots
$$

belong to the center of the algebra $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$. Moreover, the even coefficients c_{2}, c_{4}, \ldots are algebraically independent and generate the center of $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$.

Coideal property

Theorem

The subalgebra $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ is a left coideal of the Hopf algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$,
i.e.,

$$
\Delta\left(\mathrm{Y}\left(\mathfrak{g}_{N}\right)\right) \subset \mathrm{Y}\left(\mathfrak{g l}_{N}\right) \otimes \mathrm{Y}\left(\mathfrak{g}_{N}\right)
$$

Moreover,

$$
\Delta: s_{i j}(u) \mapsto \sum_{a, b=1}^{N} t_{i a}(u) t_{j b}(-u) \otimes s_{a b}(u) .
$$

Twisted analogues of some Yangian theorems

- Quantum Liouville formula

Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\operatorname{sdet} S(u)$

Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\operatorname{sdet} S(u)$
- Quantum Sylvester theorem

Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\operatorname{sdet} S(u)$
- Quantum Sylvester theorem

Applications to classical Lie algebras \mathfrak{g}_{N}

- Constructions of Casimir elements

Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\operatorname{sdet} S(u)$
- Quantum Sylvester theorem

Applications to classical Lie algebras \mathfrak{g}_{N}

- Constructions of Casimir elements
- Cayley-Hamilton theorem

Twisted analogues of some Yangian theorems

- Quantum Liouville formula
- Quasideterminant factorization of $\operatorname{sdet} S(u)$
- Quantum Sylvester theorem

Applications to classical Lie algebras \mathfrak{g}_{N}

- Constructions of Casimir elements
- Cayley-Hamilton theorem
- Characteristic identities

