Feigin–Frenkel center and Yangian characters

Alexander Molev

University of Sydney

Invariants in vacuum modules

Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

For the classical types, $\langle X, Y \rangle = \text{const} \cdot \text{tr} XY$,

$$h^{\vee} = \begin{cases} n & \text{for } \mathfrak{g} = \mathfrak{sl}_n, \quad \text{const} = 1 \\ N - 2 & \text{for } \mathfrak{g} = \mathfrak{o}_N, \quad \text{const} = \frac{1}{2} \\ n + 1 & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}, \quad \text{const} = 1. \end{cases}$$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K$

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r, -s} \langle X, Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r, -s} \langle X, Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\hat{\mathfrak{g}})$ the quotient of $U(\hat{\mathfrak{g}})$ by the ideal generated by $K - \kappa$.

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r, -s} \langle X, Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\hat{\mathfrak{g}})$ the quotient of $U(\hat{\mathfrak{g}})$ by the ideal generated by $K - \kappa$.

The value $\kappa = -h^{\vee}$ corresponds to the critical level.

Consider the left ideal $I = U_{-h^{\vee}}(\widehat{\mathfrak{g}})\mathfrak{g}[t]$ and let

Norm I = { $v \in U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid Iv \subseteq I$ }

be its normalizer.

Consider the left ideal $I = U_{-h^{\vee}}(\hat{\mathfrak{g}})\mathfrak{g}[t]$ and let

Norm I = {
$$v \in U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid Iv \subseteq I$$
}

be its normalizer. This is a subalgebra of $U_{-h^{\vee}}(\hat{\mathfrak{g}})$, and

I is a two-sided ideal of Norm I.

Consider the left ideal $I = U_{-h^{\vee}}(\hat{\mathfrak{g}})\mathfrak{g}[t]$ and let

Norm I = {
$$v \in U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid Iv \subseteq I$$
}

be its normalizer. This is a subalgebra of $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$, and

I is a two-sided ideal of Norm I.

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the associative algebra defined as the quotient

 $\mathfrak{z}(\widehat{\mathfrak{g}}) = \operatorname{Norm} I/I.$

 $V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$

 $V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$

Then

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t]v = 0 \}.$$

 $V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$

Then

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t]v = 0 \}.$$

Note $V(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$ as a vector space.

 $V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$

Then

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t]v = 0 \}.$$

Note $V(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Properties:

• The algebra $\mathfrak{z}(\hat{\mathfrak{g}})$ is commutative.

Properties:

• The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

► The subalgebra 3(g) of U(t⁻¹g[t⁻¹]) is invariant with respect to the translation operator *T* defined as the derivation T = -d/dt.

Properties:

• The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

► The subalgebra 3(g) of U(t⁻¹g[t⁻¹]) is invariant with respect to the translation operator *T* defined as the derivation T = -d/dt.

Any element of $\mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types *A*, *B*, *C*; V. Kac and D. Kazhdan, 1979. Detailed exposition: E. Frenkel, 2007.

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.

- ▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent and generate 𝔅(𝔅).

- ▶ Produce Segal–Sugawara vectors *S*₁,..., *S*_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent and generate 𝔅(𝔅).

Use the classical limit:

$$\operatorname{gr} \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \cong \operatorname{S}(t^{-1}\mathfrak{g}[t^{-1}])$$

- ▶ Produce Segal–Sugawara vectors *S*₁,..., *S_n* explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent and generate *z*(*g*).

Use the classical limit:

$$\operatorname{gr} \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \cong \operatorname{S}(t^{-1}\mathfrak{g}[t^{-1}])$$

which yields a $\mathfrak{g}[t]$ -module structure on the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$: adjoint action then taking quotient modulo $\mathfrak{g}[t]$.

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$.

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \ge 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \ge 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Theorem (Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \ge 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{+}[t^{-1}]$.

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{+}[t^{-1}]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

 $\mathfrak{z}(\widehat{\mathfrak{g}}) \to \mathcal{W}({}^{L}\mathfrak{g}),$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_+[t^{-1}]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

 $\mathfrak{z}(\widehat{\mathfrak{g}}) \to \mathcal{W}({}^{L}\mathfrak{g}),$

where $\mathcal{W}({}^{L}\mathfrak{g})$ is the classical \mathcal{W} -algebra associated with the Langlands dual Lie algebra ${}^{L}\mathfrak{g}$ [Feigin and Frenkel, 1992].
Let $\mu_1, \ldots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} .

Let $\mu_1, \dots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

 $\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$

Classical W-algebras

Let $\mu_1, \dots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \dots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

The classical $\mathcal{W}\text{-algebra}\ \mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \{ P \in \mathcal{P}_n \mid V_i P = 0, \quad i = 1, \dots, n \},\$$

Let $\mu_1, \dots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

The classical \mathcal{W} -algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \{ P \in \mathcal{P}_n \mid V_i P = 0, \quad i = 1, \dots, n \},\$$

the V_i are the screening operators.

Example. For $\mathcal{W}(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

Example. For $\mathcal{W}(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

$$V_{i} = \sum_{r=0}^{\infty} V_{i(r)} \left(\frac{\partial}{\partial \mu_{i}[-r-1]} - \frac{\partial}{\partial \mu_{i+1}[-r-1]} \right),$$

Example. For $\mathcal{W}(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

$$V_{i} = \sum_{r=0}^{\infty} V_{i(r)} \left(\frac{\partial}{\partial \mu_{i}[-r-1]} - \frac{\partial}{\partial \mu_{i+1}[-r-1]} \right),$$

$$\sum_{r=0}^{\infty} V_{i(r)} z^{r} = \exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m] - \mu_{i+1}[-m]}{m} z^{m}.$$

Set $\tau = -d/dt$ and define the elements $\mathcal{E}_1, \dots, \mathcal{E}_N$ by the Miura transformation

 $(\tau + \mu_N[-1]) \dots (\tau + \mu_1[-1]) = \tau^N + \mathcal{E}_1 \tau^{N-1} + \dots + \mathcal{E}_N.$

Set $\tau = -d/dt$ and define the elements $\mathcal{E}_1, \ldots, \mathcal{E}_N$ by the Miura transformation

$$(\tau + \mu_N[-1]) \dots (\tau + \mu_1[-1]) = \tau^N + \mathcal{E}_1 \tau^{N-1} + \dots + \mathcal{E}_N.$$

Explicitly,

$$\mathcal{E}_m = e_m \big(T + \mu_1 [-1], \dots, T + \mu_N [-1] \big) \, 1$$

is the noncommutative elementary symmetric function,

$$e_m(x_1,\ldots,x_p)=\sum_{i_1>\cdots>i_m}x_{i_1}\ldots x_{i_m},$$

where $T = \operatorname{ad} \tau$ so that T = 0.

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \dots, T^k \mathcal{E}_N \mid k \ge 0].$$

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \ldots, T^k \mathcal{E}_N \mid k \ge 0].$$

Also,

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{H}_1, \dots, T^k \mathcal{H}_N \mid k \ge 0],$$

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \ldots, T^k \mathcal{E}_N \mid k \ge 0].$$

Also,

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{H}_1, \ldots, T^k \mathcal{H}_N \mid k \ge 0],$$

where

$$\mathcal{H}_m = h_m \big(T + \mu_1 [-1], \ldots, T + \mu_N [-1] \big) \, 1$$

is the noncommutative complete symmetric function,

$$h_m(x_1,\ldots,x_p)=\sum_{i_1\leqslant\cdots\leqslant i_m}x_{i_1}\ldots x_{i_m}.$$

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \ldots, T^k \mathcal{E}_N \mid k \ge 0].$$

Also,

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{H}_1, \ldots, T^k \mathcal{H}_N \mid k \ge 0],$$

where

$$\mathcal{H}_m = h_m \big(T + \mu_1 [-1], \ldots, T + \mu_N [-1] \big) \, 1$$

is the noncommutative complete symmetric function,

$$h_m(x_1,\ldots,x_p)=\sum_{i_1\leqslant\cdots\leqslant i_m}x_{i_1}\ldots x_{i_m}.$$

Note $\mathcal{W}(\mathfrak{sl}_N)$ is the quotient of $\mathcal{W}(\mathfrak{gl}_N)$ by $\mathcal{E}_1 = \mathcal{H}_1 = 0$.

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N[t,t^{-1}])$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N[t, t^{-1}])$$

and let $H^{(m)}$ and $A^{(m)}$ denote the symmetrizer and

anti-symmetrizer in

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_{}.$$

tr $A^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$ = $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$,

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm}$,

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm}$,

tr $(\tau + E[-1])^m = \pi_{m0} \tau^m + \pi_{m1} \tau^{m-1} + \dots + \pi_{mm}$

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm},$

tr $(\tau + E[-1])^m = \pi_{m0} \tau^m + \pi_{m1} \tau^{m-1} + \dots + \pi_{mm}$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

$$\operatorname{tr} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm},$$

tr
$$H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm},$

tr $(\tau + E[-1])^m = \pi_{m0} \tau^m + \pi_{m1} \tau^{m-1} + \dots + \pi_{mm}$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

[Chervov–Talalaev, 2006, Chervov–M., 2009].

Under the Harish-Chandra isomorphism,

 $\operatorname{tr} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$

 $\mapsto e_m(\tau+\mu_1[-1],\ldots,\tau+\mu_N[-1])$

Under the Harish-Chandra isomorphism,

 $\operatorname{tr} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$

 $\mapsto e_m(\tau + \mu_1[-1], \ldots, \tau + \mu_N[-1])$

and

tr $H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$

 $\mapsto h_m(\tau+\mu_1[-1],\ldots,\tau+\mu_N[-1]).$

Under the Harish-Chandra isomorphism,

$$\operatorname{tr} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

 $\mapsto e_m(\tau+\mu_1[-1],\ldots,\tau+\mu_N[-1])$

and

$$\operatorname{tr} H^{(m)}(\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$
$$\mapsto h_m(\tau + \mu_1[-1], \dots, \tau + \mu_N[-1]).$$

The image of tr $(\tau + E[-1])^m$ is found from the Newton formula.

For $1 \leq a < b \leq m$ denote by s_{ab} and ϵ_{ab} the diagrams

For $1 \leq a < b \leq m$ denote by s_{ab} and ϵ_{ab} the diagrams

The symmetrizer in the Brauer algebra $\mathcal{B}_m(\omega)$

is the idempotent $s^{(m)}$ such that

 $s_{ab} s^{(m)} = s^{(m)} s_{ab} = s^{(m)}$ and $\epsilon_{ab} s^{(m)} = s^{(m)} \epsilon_{ab} = 0.$

Action in tensors
Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act

in the tensor space

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m$$

by the rule

 $s_{ab} \mapsto P_{ab}, \qquad \epsilon_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act

in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

 $s_{ab} \mapsto P_{ab}, \qquad \epsilon_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

where i' = N - i + 1 and

$$Q_{ab} = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

 $s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

with $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$ and

$$Q_{ab} = \sum_{i,j=1}^{N} \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

with $\varepsilon_i = -\varepsilon_{n+i} = 1$ for i = 1, ..., n and $Q_{ab} = \sum_{i,j=1}^N \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$

under the action in tensors,

$$S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m.$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{n-b+a+1} \right).$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{n-b+a+1} \right).$$

Set

$$\gamma_m(\omega) = \frac{\omega + m - 2}{\omega + 2m - 2}, \qquad \omega = \begin{cases} N & \text{for } \mathfrak{g} = \mathfrak{o}_N \\ -2n & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}. \end{cases}$$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1. Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1. Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$

and

 $F_{ij}[r] = F_{ij} t^r \in \mathfrak{g}[t, t^{-1}].$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1. Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$

and

$$F_{ij}[r] = F_{ij} t^r \in \mathfrak{g}[t, t^{-1}].$$

Combine into a matrix

$$F[r] = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{g}[t,t^{-1}]).$$

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

 $\gamma_m(\omega) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$

 $=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm}$

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

$$=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$.

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$
$$= \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$.

Moreover, in the case $\mathfrak{g} = \mathfrak{o}_{2n}$, the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

belongs to $\mathfrak{z}(\widehat{\mathfrak{o}}_{2n})$ [M. 2013].

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_n[-1], \ldots \tau - \mu_1[-1]),$$

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_n[-1], \ldots, \tau - \mu_1[-1]),$$

for the Lie algebra $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1;

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$

equals:

$$h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_n[-1], \ldots, \tau - \mu_1[-1]),$$

for the Lie algebra $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1; and

$$\frac{1}{2}h_m(\tau+\mu_1[-1],\ldots,\tau+\mu_{n-1}[-1],\tau-\mu_n[-1],\ldots,\tau-\mu_1[-1])$$

+ $\frac{1}{2}h_m(\tau + \mu_1[-1], \ldots, \tau + \mu_n[-1], \tau - \mu_{n-1}[-1], \ldots, \tau - \mu_1[-1]),$

for the Lie algebra $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n.

$$\gamma_m(-2n) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

with $1 \leq m \leq 2n + 1$ equals:

$$\gamma_m(-2n) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

with $1 \leq m \leq 2n + 1$ equals:

$$e_m(\tau + \mu_1[-1], \dots, \tau + \mu_n[-1], \tau, \tau - \mu_n[-1], \dots, \tau - \mu_1[-1])$$

for the Lie algebra $\mathfrak{g} = \mathfrak{sp}_{2n}$.

In the case $g = o_{2n}$, the Harish-Chandra image of the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is found by

In the case $g = o_{2n}$, the Harish-Chandra image of the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

is found by

$$\operatorname{Pf} F[-1] \mapsto \left(\mu_1[-1] - T \right) \dots \left(\mu_n[-1] - T \right) 1.$$

[M.-Mukhin, 2012].

Corollary. The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n 2n}$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} .

Corollary. The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n 2n}$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} .

The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n-22n-2}, \Pr[F[-1]]$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n} .

Calculation of Harish-Chandra images

The Yangian Y(g) is an associative algebra with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where $i, j = 1, \ldots, N$.

The Yangian Y(\mathfrak{g}) is an associative algebra with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \dots$ where $i, j = 1, \dots, N$. Set $t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots \in Y(\mathfrak{g})[[u^{-1}]].$ The Yangian $Y(\mathfrak{g})$ is an associative algebra with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \dots$ where $i, j = 1, \dots, N$. Set $t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots \in Y(\mathfrak{g})[[u^{-1}]].$

The defining relations of Y(g) are

 $R_{12}(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R_{12}(u-v)$

The Yangian $Y(\mathfrak{g})$ is an associative algebra with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \dots$ where $i, j = 1, \dots, N$. Set $t_{ii}(u) = \delta_{ii} + t_{ii}^{(1)}u^{-1} + t_{ii}^{(2)}u^{-2} + \dots \in Y(\mathfrak{g})[[u^{-1}]].$

The defining relations of Y(g) are

$$R_{12}(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R_{12}(u-v)$$

with quotient taken by the ideal generated by the center, where

$$T_1(u) = \sum_{i,j=1}^N e_{ij} \otimes 1 \otimes t_{ij}(u) \quad \text{and} \quad T_2(u) = \sum_{i,j=1}^N 1 \otimes e_{ij} \otimes t_{ij}(u)$$
in

End $\mathbb{C}^N \otimes$ End $\mathbb{C}^N \otimes$ Y(\mathfrak{g})[[u^{-1}]].

For any $a \in \mathbb{C}$ the mapping

 $t_{ij}(u) \mapsto t_{ij}(u-a)$

defines the shift automorphism of Y(g).

For any $a \in \mathbb{C}$ the mapping

 $t_{ij}(u) \mapsto t_{ij}(u-a)$

defines the shift automorphism of $Y(\mathfrak{g})$.

The Yangian Y(g) is a Hopf algebra with the coproduct

$$\Delta: t_{ij}(u) \mapsto \sum_{k=1}^N t_{ik}(u) \otimes t_{kj}(u).$$

For any $a \in \mathbb{C}$ the mapping

 $t_{ij}(u) \mapsto t_{ij}(u-a)$

defines the shift automorphism of Y(g).

The Yangian Y(g) is a Hopf algebra with the coproduct

$$\Delta: t_{ij}(u) \mapsto \sum_{k=1}^N t_{ik}(u) \otimes t_{kj}(u).$$

It is equipped with the universal *R*-matrix

 $\mathcal{R}(u) \in \mathrm{Y}(\mathfrak{g}) \otimes \mathrm{Y}(\mathfrak{g})[[u^{-1}]]$

(a "universal solution" of the Yang-Baxter equation).

Bethe subalgebra

Let *V* be a finite-dimensional representation of Y(g),

 $\pi_V: \mathbf{Y}(\mathfrak{g}) \to \operatorname{End} V$

Bethe subalgebra

Let *V* be a finite-dimensional representation of Y(g),

 $\pi_V: \mathbf{Y}(\mathfrak{g}) \to \operatorname{End} V$

The corresponding transfer matrix $t_V(u)$ is

 $\mathfrak{t}_V(u) = \mathfrak{tr}_V(\pi_V \otimes \mathrm{id}) \big(\mathcal{R}(u) \big) \in \mathbf{Y}(\mathfrak{g})[[u^{-1}]].$
Bethe subalgebra

Let *V* be a finite-dimensional representation of Y(g),

 $\pi_V: \mathbf{Y}(\mathfrak{g}) \to \operatorname{End} V$

The corresponding transfer matrix $t_V(u)$ is

$$\mathsf{t}_V(u) = \mathsf{tr}_V(\pi_V \otimes \mathrm{id}) \big(\mathcal{R}(u) \big) \in \mathrm{Y}(\mathfrak{g})[[u^{-1}]].$$

Key property:

• $t_V(u) t_W(v) = t_W(v) t_V(u)$ for all V and W.

• If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

 $\mathbf{t}_W(u) = \mathbf{t}_V(u) + \mathbf{t}_U(u);$

• If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

 $\mathbf{t}_W(u) = \mathbf{t}_V(u) + \mathbf{t}_U(u);$

► $\mathbf{t}_{V \otimes W}(u) = \mathbf{t}_V(u) \mathbf{t}_W(u).$

• If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

 $\mathbf{t}_W(u) = \mathbf{t}_V(u) + \mathbf{t}_U(u);$

 $\blacktriangleright t_{V\otimes W}(u) = t_V(u) t_W(u).$

The Bethe subalgebra $\mathcal{B}(\mathfrak{g})$ of $Y(\mathfrak{g})$ is generated by all coefficients of the series $t_V(u)$ for all representations *V*.

• If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

 $\mathbf{t}_W(u) = \mathbf{t}_V(u) + \mathbf{t}_U(u);$

► $\mathbf{t}_{V\otimes W}(u) = \mathbf{t}_V(u) \mathbf{t}_W(u).$

The Bethe subalgebra $\mathcal{B}(\mathfrak{g})$ of $Y(\mathfrak{g})$ is generated by all coefficients of the series $t_V(u)$ for all representations *V*.

The map $V \rightarrow t_V(u)$ is a homomorphism

 $\operatorname{Rep} \mathrm{Y}(\mathfrak{g}) \to \mathcal{B}(\mathfrak{g})[[u^{-1}]].$

The elements $t_{ij}^{(1)}$ with $1 \le i, j \le N$

generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

The elements $t_{ij}^{(1)}$ with $1 \leq i, j \leq N$

generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

Take a standard triangular decomposition

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ with $\mathfrak{h} =$ span of $\{t_{ii}^{(1)}\}$.

The elements $t_{ij}^{(1)}$ with $1 \leq i, j \leq N$

generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

Take a standard triangular decomposition

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ with $\mathfrak{h} =$ span of $\{t_{ii}^{(1)}\}$.

Let J be the left ideal of Y(g) generated by all elements $t_{ij}^{(r)}$ with $1 \le i < j \le N$ and $r \ge 1$. The elements $t_{ij}^{(1)}$ with $1 \le i, j \le N$

generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

Take a standard triangular decomposition

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ with $\mathfrak{h} =$ span of $\{t_{ii}^{(1)}\}$.

Let J be the left ideal of $Y(\mathfrak{g})$ generated by all elements $t_{ij}^{(r)}$ with $1 \leq i < j \leq N$ and $r \geq 1$.

The Harish-Chandra homomorphism is the projection

 $\operatorname{pr}: \mathrm{Y}(\mathfrak{g})^{\mathfrak{h}} \to \mathrm{Y}(\mathfrak{g})^{\mathfrak{h}} / (\mathrm{J} \cap \mathrm{Y}(\mathfrak{g})^{\mathfrak{h}}).$

Set $\lambda_i(u) = \operatorname{pr}(t_{ii}(u))$ for $i = 1, \dots, N$.

The character $\chi_V(u)$ of the Yangian module V is

 $\chi_V(u) = \operatorname{pr} \circ \operatorname{t}_V(u).$

The character $\chi_V(u)$ of the Yangian module *V* is

 $\chi_V(u) = \operatorname{pr} \circ \operatorname{t}_V(u).$

Properties:

The character $\chi_V(u)$ of the Yangian module V is

 $\chi_V(u) = \operatorname{pr} \circ \operatorname{t}_V(u).$

Properties:

The homomorphism

 $\chi : \operatorname{Rep} \operatorname{Y}(\mathfrak{g}) \to \left\langle \lambda_i(u-a) \mid i=1,\ldots,N, \ a \in \mathbb{C} \right\rangle$

is injective.

The character $\chi_V(u)$ of the Yangian module V is

 $\chi_V(u) = \operatorname{pr} \circ \operatorname{t}_V(u).$

Properties:

The homomorphism

 $\chi : \operatorname{Rep} \operatorname{Y}(\mathfrak{g}) \to \left\langle \lambda_i(u-a) \mid i=1,\ldots,N, \ a \in \mathbb{C} \right\rangle$

is injective.

The image of χ is described as the intersection of the kernels of the screening operators.

Types *B* and *D*: $\mathfrak{g} = \mathfrak{o}_N$

Types *B* and *D*: $\mathfrak{g} = \mathfrak{o}_N$

The *R*-matrix is

$$R(u) = 1 - P u^{-1} + Q (u - N/2 + 1)^{-1}$$

[A. and Al. Zamolodchikov, 1979],

$$Q = \sum_{i,j=1}^{N} e_{ij} \otimes e_{i'j'} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

where i' = N - i + 1.

Types *B* and *D*: $\mathfrak{g} = \mathfrak{o}_N$

The *R*-matrix is

$$R(u) = 1 - P u^{-1} + Q (u - N/2 + 1)^{-1}$$

[A. and Al. Zamolodchikov, 1979],

$$Q = \sum_{i,j=1}^{N} e_{ij} \otimes e_{i'j'} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}.$$

where i' = N - i + 1.

Example. The representation of \mathfrak{o}_N with the highest weight $(m, 0, \dots, 0)$ extends to the Yangian $Y(\mathfrak{o}_N)$.

This is one of the Kirillov–Reshetikhin modules.

where $S^{(m)}$ is the Brauer algebra symmetrizer,

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(a-b).$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(a-b).$$

Proposition.

$$\chi_V(u) = \sum_{1 \leq i_1 \leq \cdots \leq i_m \leq N} \lambda_{i_1}(u) \lambda_{i_2}(u+1) \dots \lambda_{i_m}(u+m-1),$$

with different conditions for B_n and D_n :

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(a-b).$$

Proposition.

$$\chi_V(u) = \sum_{1 \leq i_1 \leq \cdots \leq i_m \leq N} \lambda_{i_1}(u) \lambda_{i_2}(u+1) \dots \lambda_{i_m}(u+m-1),$$

with different conditions for B_n and D_n :

• o_{2n+1} : index n + 1 occurs at most once;

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(a-b).$$

Proposition.

$$\chi_V(u) = \sum_{1 \leq i_1 \leq \cdots \leq i_m \leq N} \lambda_{i_1}(u) \,\lambda_{i_2}(u+1) \dots \lambda_{i_m}(u+m-1),$$

with different conditions for B_n and D_n :

• o_{2n+1} : index n + 1 occurs at most once;

• \mathfrak{o}_{2n} : indices *n* and *n* + 1 do not occur simultaneously.

The *R*-matrix is

$$R(u) = 1 - P u^{-1} + Q (u - n - 1)^{-1}$$

The *R*-matrix is

$$R(u) = 1 - P u^{-1} + Q (u - n - 1)^{-1}$$

with $Q = \sum_{i,j=1}^{2n} \varepsilon_i \, \varepsilon_j \, e_{ij} \otimes e_{i'j'} \in \operatorname{End} \mathbb{C}^{2n} \otimes \operatorname{End} \mathbb{C}^{2n},$

where i' = 2n - i + 1 and $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$.

The *R*-matrix is

$$R(u) = 1 - P u^{-1} + Q (u - n - 1)^{-1}$$

with
$$Q = \sum_{i,j=1}^{2n} \varepsilon_i \varepsilon_j e_{ij} \otimes e_{i'j'} \in \operatorname{End} \mathbb{C}^{2n} \otimes \operatorname{End} \mathbb{C}^{2n},$$

where i' = 2n - i + 1 and $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \dots, n$.

Example. The representation of \mathfrak{sp}_{2n} with the highest weight $(\underbrace{1,\ldots,1}_{m},0,\ldots,0)$ with $m \leq n$ extends to a fundamental module of the Yangian $Y(\mathfrak{sp}_{2n})$.

$$V = S^{(m)} \Big(\underbrace{\mathbb{C}^{2n} \otimes \ldots \otimes \mathbb{C}^{2n}}_{m} \Big),$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$V = S^{(m)} \Big(\underbrace{\mathbb{C}^{2n} \otimes \ldots \otimes \mathbb{C}^{2n}}_{m} \Big),$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(b-a).$$

$$V = S^{(m)} \Big(\underbrace{\mathbb{C}^{2n} \otimes \ldots \otimes \mathbb{C}^{2n}}_{m} \Big),$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(b-a).$$

Proposition.

$$\chi_V(u) = \sum_{1 \leq i_1 < \cdots < i_m \leq 2n} \lambda_{i_1}(u) \lambda_{i_2}(u-1) \dots \lambda_{i_m}(u-m+1),$$

$$V = S^{(m)} \Big(\underbrace{\mathbb{C}^{2n} \otimes \ldots \otimes \mathbb{C}^{2n}}_{m} \Big),$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(b-a).$$

Proposition.

$$\chi_V(u) = \sum_{1 \leq i_1 < \cdots < i_m \leq 2n} \lambda_{i_1}(u) \lambda_{i_2}(u-1) \dots \lambda_{i_m}(u-m+1),$$

with the condition that if both i and i' occur among the

summation indices as $i = i_r$ and $i' = i_s$ for some $1 \le r < s \le m$,

then $s - r \leq n - i$;

$$V = S^{(m)} \Big(\underbrace{\mathbb{C}^{2n} \otimes \ldots \otimes \mathbb{C}^{2n}}_{m} \Big),$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} R_{ab}(b-a).$$

Proposition.

$$\chi_V(u) = \sum_{1 \leq i_1 < \cdots < i_m \leq 2n} \lambda_{i_1}(u) \lambda_{i_2}(u-1) \dots \lambda_{i_m}(u-m+1),$$

with the condition that if both i and i' occur among the

summation indices as $i = i_r$ and $i' = i_s$ for some $1 \le r < s \le m$,

then $s - r \leq n - i$; also [Kuniba–Okado–Suzuki–Yamada, 2002].

Introduce a filtration on the algebra

of formal series $\mathbf{Y}(\mathbf{g})[[u^{-1}, \partial_u]]$ by setting

$$\deg t_{ij}^{(r)} = r - 1, \qquad \deg u^{-1} = \deg \partial_u = -1.$$

Introduce a filtration on the algebra

of formal series $\mathbf{Y}(\mathfrak{g})[[u^{-1}, \partial_u]]$ by setting

$$\deg t_{ij}^{(r)} = r - 1, \qquad \deg u^{-1} = \deg \partial_u = -1.$$

The associated graded algebra is $U(\mathfrak{g}[t])[[u^{-1}, \partial_u]]$ with

$$F_{ij}[r] \mapsto \overline{t}_{ij}^{(r+1)}, \qquad r \ge 0.$$

Introduce a filtration on the algebra

of formal series $\mathbf{Y}(\mathbf{g})[[u^{-1}, \partial_u]]$ by setting

$$\deg t_{ij}^{(r)} = r - 1, \qquad \deg u^{-1} = \deg \partial_u = -1.$$

The associated graded algebra is $U(\mathfrak{g}[t])[[u^{-1}, \partial_u]]$ with

$$F_{ij}[r] \mapsto \overline{t}_{ij}^{(r+1)}, \qquad r \ge 0.$$

The component of degree -1 of the matrix $T(u)e^{\partial u} - 1$

equals $\partial_u + F(u)$, where

$$F(u) = \sum_{r=0}^{\infty} F[r] u^{-r-1}, \qquad F[r] = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij}[r].$$

Hence (taking $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1), the series

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\partial_u + F_1(u) \right) \dots \left(\partial_u + F_m(u) \right)$$

Hence (taking $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1), the series

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\partial_u + F_1(u) \right) \dots \left(\partial_u + F_m(u) \right)$$

coincides with the component of degree -m of the series

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(T_1(u) e^{\partial_u} - 1 \right) \dots \left(T_m(u) e^{\partial_u} - 1 \right).$$
Hence (taking $\mathfrak{g} = \mathfrak{o}_N$ with N = 2n + 1), the series

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(\partial_u + F_1(u) \right) \dots \left(\partial_u + F_m(u) \right)$$

coincides with the component of degree -m of the series

$$\gamma_m(N) \operatorname{tr} S^{(m)} \left(T_1(u) e^{\partial_u} - 1 \right) \dots \left(T_m(u) e^{\partial_u} - 1 \right).$$

By the character formula, the Harish-Chandra image equals

$$\sum_{k=0}^{m} (-1)^{m-k} \gamma_k(N) \binom{N+m-2}{m-k} \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq N} \lambda_{i_1}(u) e^{\partial_u} \dots \lambda_{i_k}(u) e^{\partial_u}$$

with the condition that n + 1 occurs among the summation indices i_1, \ldots, i_k at most once.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$. Its image under the evaluation homomorphism

 $\operatorname{ev}_{z}: \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \operatorname{U}(\mathfrak{g}), \qquad X[r] \mapsto Xz^{r}, \quad X \in \mathfrak{g}$

is a commutative subalgebra of $U(\mathfrak{g})$.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$. Its image under the evaluation homomorphism

 $\operatorname{ev}_{z}: \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \operatorname{U}(\mathfrak{g}), \qquad X[r] \mapsto Xz^{r}, \quad X \in \mathfrak{g}$

is a commutative subalgebra of $U(\mathfrak{g})$.

It can be made into a maximal commutative subalgebra by a quantum version of the shift of argument method.

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$. Its image under the evaluation homomorphism

 $\operatorname{ev}_{z}: \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \to \operatorname{U}(\mathfrak{g}), \qquad X[r] \mapsto Xz^{r}, \quad X \in \mathfrak{g}$

is a commutative subalgebra of $U(\mathfrak{g})$.

It can be made into a maximal commutative subalgebra by a quantum version of the shift of argument method.

This subalgebra is a quantization of the Mishchenko–Fomenko subalgebra of the Poisson algebra S(g).

Type A

Suppose that a matrix $B = \text{diag}[b_1, \dots, b_N]$ is a regular element

of the Cartan subalgebra of \mathfrak{gl}_N so that the b_i are all distinct.

Type A

Suppose that a matrix $B = diag[b_1, \ldots, b_N]$ is a regular element

of the Cartan subalgebra of \mathfrak{gl}_N so that the b_i are all distinct.

Expand the column determinant

 $\operatorname{cdet}(\partial_z - B - Ez^{-1}) = \partial_z^N + L_1(z)\,\partial_z^{N-1} + \dots + L_{N-1}(z)\,\partial_z + L_N(z)$

and let $L_k(z) = L_{k0} + L_{k1}z^{-1} + \dots + L_{kk}z^{-k}$.

Type A

Suppose that a matrix $B = diag[b_1, \ldots, b_N]$ is a regular element

of the Cartan subalgebra of \mathfrak{gl}_N so that the b_i are all distinct.

Expand the column determinant

 $\operatorname{cdet}(\partial_z - B - Ez^{-1}) = \partial_z^N + L_1(z)\,\partial_z^{N-1} + \dots + L_{N-1}(z)\,\partial_z + L_N(z)$

and let $L_k(z) = L_{k0} + L_{k1}z^{-1} + \dots + L_{kk}z^{-k}$.

Corollary. The elements L_{ki} with $1 \le i \le k \le N$ are free generators of a maximal commutative subalgebra of $U(\mathfrak{gl}_N)$.

Let *B* be a regular element of the Cartan subalgebra of g.

Let *B* be a regular element of the Cartan subalgebra of \mathfrak{g} . Expand the trace

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(\partial_z - B_1 - F_1 z^{-1}) \dots (\partial_z - B_m - F_m z^{-1})$$
$$= l_{m0}(z) \partial_z^m + l_{m1}(z) \partial_z^{m-1} + \dots + l_{mm}(z)$$

Let *B* be a regular element of the Cartan subalgebra of \mathfrak{g} . Expand the trace

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(\partial_z - B_1 - F_1 z^{-1}) \dots (\partial_z - B_m - F_m z^{-1})$$
$$= l_{m0}(z) \partial_z^m + l_{m1}(z) \partial_z^{m-1} + \dots + l_{mm}(z)$$

and let

$$l_{mm}(z) = l_{mm}^{(0)} + l_{mm}^{(1)} z^{-1} + \dots + l_{mm}^{(m)} z^{-m}.$$

Let *B* be a regular element of the Cartan subalgebra of \mathfrak{g} . Expand the trace

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(\partial_z - B_1 - F_1 z^{-1}) \dots (\partial_z - B_m - F_m z^{-1}) = l_{m0}(z) \, \partial_z^m + l_{m1}(z) \, \partial_z^{m-1} + \dots + l_{mm}(z)$$

and let

$$l_{mm}(z) = l_{mm}^{(0)} + l_{mm}^{(1)} z^{-1} + \dots + l_{mm}^{(m)} z^{-m}.$$

In the case of o_{2n} expand the Pfaffian

$$Pf(B + Fz^{-1}) = p^{(0)} + p^{(1)}z^{-1} + \dots + p^{(n)}z^{-n}.$$

Corollary. In types *B* and *C* the elements $I_{mm}^{(1)}, \ldots, I_{mm}^{(m)}$ with $m = 2, 4, \ldots, 2n$ are algebraically independent generators of a maximal commutative subalgebra of $U(\mathfrak{o}_{2n+1})$ and $U(\mathfrak{sp}_{2n})$.

Corollary. In types *B* and *C* the elements $I_{mm}^{(1)}, \ldots, I_{mm}^{(m)}$ with $m = 2, 4, \ldots, 2n$ are algebraically independent generators of a maximal commutative subalgebra of $U(\mathfrak{o}_{2n+1})$ and $U(\mathfrak{sp}_{2n})$.

In type *D* the elements $l_{mm}^{(1)}, \ldots, l_{mm}^{(m)}$ with $m = 2, 4, \ldots, 2n - 2$ and $p^{(1)}, \ldots, p^{(n)}$ are algebraically independent generators of a maximal commutative subalgebra of $U(\mathfrak{o}_{2n})$.