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Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra g,

〈X,Y〉 =
1

2h∨
tr(ad X ad Y),

where h∨ is the dual Coxeter number.

For the classical types, 〈X,Y〉 = const · tr X Y,

h∨ =



n for g = sln, const = 1

N − 2 for g = oN , const = 1
2

n + 1 for g = sp2n, const = 1.
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The affine Kac–Moody algebra ĝ is the central extension

ĝ = g[t, t−1]⊕ CK

with the commutation relations

[
X[r],Y[s]

]
= [X,Y][r + s] + r δr,−s〈X,Y〉K,

where X[r] = X t r for any X ∈ g and r ∈ Z .

For any κ ∈ C denote by Uκ(ĝ) the quotient of U(ĝ) by the ideal

generated by K − κ.

The value κ = −h∨ corresponds to the critical level.
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generated by K − κ.

The value κ = −h∨ corresponds to the critical level.



The affine Kac–Moody algebra ĝ is the central extension
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Consider the left ideal I = U−h∨(ĝ)g[t] and let

Norm I = {v ∈ U−h∨(ĝ) | Iv ⊆ I}

be its normalizer.

This is a subalgebra of U−h∨(ĝ), and

I is a two-sided ideal of Norm I.

The Feigin–Frenkel center z(ĝ) is the associative algebra

defined as the quotient

z(ĝ) = Norm I/I.
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Equivalently, consider the vacuum module at the critical level

V(g) = U−h∨(ĝ)/I.

Then

z(ĝ) = {v ∈ V(g) | g[t]v = 0}.

Note V(g) ∼= U
(
t−1g[t−1]

)
as a vector space.

Hence, z(ĝ) is a subalgebra of U
(
t−1g[t−1]

)
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Properties:

I The algebra z(ĝ) is commutative.

I The subalgebra z(ĝ) of U
(
t−1g[t−1]

)
is invariant with

respect to the translation operator T defined as the

derivation T = −d/dt.

Any element of z(ĝ) is called a Segal–Sugawara vector.
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I The algebra z(ĝ) is commutative.

I The subalgebra z(ĝ) of U
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Theorem (Feigin–Frenkel, 1992).

There exist Segal–Sugawara vectors S1, . . . , Sn ∈ U
(
t−1g[t−1]

)
,

n = rank g, such that

z(ĝ) = C [T kSl | l = 1, . . . , n, k > 0].

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call S1, . . . , Sn a complete set of Segal–Sugawara vectors.
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Proof for the classical types.

I Produce Segal–Sugawara vectors S1, . . . , Sn explicitly.

I Show that all elements T kSl with l = 1, . . . , n and k > 0 are

algebraically independent and generate z(ĝ).

Use the classical limit:

gr U
(
t−1g[t−1]

) ∼= S
(
t−1g[t−1]

)
which yields a g[t]-module structure on the symmetric algebra

S
(
t−1g[t−1]

)
: adjoint action then taking quotient modulo g[t].



Proof for the classical types.

I Produce Segal–Sugawara vectors S1, . . . , Sn explicitly.

I Show that all elements T kSl with l = 1, . . . , n and k > 0 are

algebraically independent and generate z(ĝ).
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Let X1, . . . ,Xd be a basis of g and let P = P(X1, . . . ,Xd) be a

g-invariant in the symmetric algebra S(g).

Then each element

P(r) = T r P
(
X1[−1], . . . ,Xd[−1]

)
, r > 0,

is a g[t]-invariant in the symmetric algebra S
(
t−1g[t−1]

)
.

Theorem (Beilinson–Drinfeld, 1997). If P1, . . . ,Pn are

algebraically independent generators of S(g)g, then the

elements P1,(r), . . . ,Pn,(r) with r > 0 are algebraically

independent generators of S
(
t−1g[t−1]

)g[t].
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Take a triangular decomposition g = n− ⊕ h⊕ n+

and consider the (affine) Harish-Chandra homomorphism

U
(
t−1g[t−1]

)h → U
(
t−1h[t−1]

)
,

the projection modulo the left ideal generated by t−1n+[t−1].

The restriction to z(ĝ) yields the Harish-Chandra isomorphism

z(ĝ)→W(Lg),

whereW(Lg) is the classicalW-algebra associated with the

Langlands dual Lie algebra Lg [Feigin and Frenkel, 1992].
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ClassicalW-algebras

Let µ1, . . . µn be a basis of the Cartan subalgebra h of g.

Set µi[r] = µi tr and identify

U
(
t−1h[t−1]

)
= C

[
µ1[r], . . . , µn[r] | r < 0

]
=: Pn.

The classicalW-algebraW(g) is defined by

W(g) = {P ∈ Pn | Vi P = 0, i = 1, . . . , n},

the Vi are the screening operators.
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Example. ForW(glN) the operators V1, . . . ,VN−1 are

Vi =
∞∑

r=0

Vi (r)

( ∂

∂µi[−r − 1]
− ∂

∂µi+1[−r − 1]

)
,

∞∑
r=0

Vi (r) zr = exp
∞∑

m=1

µi[−m]− µi+1[−m]

m
zm.
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Set τ = −d/dt and define the elements E1, . . . , EN by

the Miura transformation

(
τ + µN [−1]

)
. . .
(
τ + µ1[−1]

)
= τN + E1 τ

N−1 + · · ·+ EN .

Explicitly,

Em = em
(
T + µ1[−1], . . . ,T + µN [−1]

)
1

is the noncommutative elementary symmetric function,

em(x1, . . . , xp) =
∑

i1>···>im

xi1 . . . xim ,

where T = ad τ so that T 1 = 0.
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Then

W(glN) = C [TkE1, . . . ,TkEN | k > 0].

Also,

W(glN) = C [TkH1, . . . ,TkHN | k > 0],

where

Hm = hm
(
T + µ1[−1], . . . ,T + µN [−1]

)
1

is the noncommutative complete symmetric function,

hm(x1, . . . , xp) =
∑

i16···6im

xi1 . . . xim .

Note W(slN) is the quotient of W(glN) by E1 = H1 = 0.
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Explicit generators of z(ĝ). Type A

Set
Eij[r] = Eij tr ∈ glN [t, t−1]

and

E[r] =

N∑
i,j=1

eij ⊗ Eij[r] ∈ EndCN ⊗ U
(
glN [t, t−1]

)
.

Consider the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U
(
glN [t, t−1]

)
and let H(m) and A(m) denote the symmetrizer and

anti-symmetrizer in CN ⊗ . . .⊗ CN︸ ︷︷ ︸
m

.
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Under the Harish-Chandra isomorphism,
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. . .
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. . .
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τ + E[−1]m
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)
.

The image of tr (τ + E[−1])m is found from the Newton formula.
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Brauer algebra Bm(ω)

Multiplication of m-diagrams (m = 8):
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For 1 6 a < b 6 m denote by sab and εab the diagrams

q q q q q qq q q q q q
��
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�PPPPP· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

1 a b m

and q q q q q qq q q q q q� �� �· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1 a b m

The symmetrizer in the Brauer algebra Bm(ω)

is the idempotent s(m) such that

sab s(m) = s(m) sab = s(m) and εab s(m) = s(m) εab = 0.
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Action in tensors

In the case g = oN set ω = N. The generators of Bm(N) act

in the tensor space
CN ⊗ . . .⊗ CN︸ ︷︷ ︸

m

by the rule

sab 7→ Pab, εab 7→ Qab, 1 6 a < b 6 m,

where i ′ = N − i + 1 and

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ ei j ⊗ 1⊗(b−a−1) ⊗ ei ′j ′ ⊗ 1⊗(m−b).
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In the case g = spN with N = 2n set ω = −N. The

generators of Bm(−N) act in the tensor space (CN)⊗m by

sab 7→ −Pab, εab 7→ −Qab, 1 6 a < b 6 m,

with εi = −εn+i = 1 for i = 1, . . . , n and
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i,j=1

εiεj 1⊗(a−1) ⊗ ei j ⊗ 1⊗(b−a−1) ⊗ ei ′j ′ ⊗ 1⊗(m−b).

In both cases denote by S(m) the image of the symmetrizer s(m)

under the action in tensors,

S(m) ∈ EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

.
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Explicitly,

S(m) =
1
m!

∏
16a<b6m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
,

and

S(m) =
1
m!

∏
16a<b6m

(
1− Pab

b− a
− Qab

n− b + a + 1

)
.

Set

γm(ω) =
ω + m− 2
ω + 2m− 2

, ω =


N for g = oN

−2n for g = sp2n.
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Types B, C and D

Let g = oN , spN with N = 2n or N = 2n + 1.

Set

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′

and

Fi j[r] = Fi j tr ∈ g[t, t−1].

Combine into a matrix

F[r] =

N∑
i,j=1

eij ⊗ Fi j[r] ∈ EndCN ⊗ U
(
g[t, t−1]

)
.
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Theorem. All coefficients of the polynomial in τ = −d/d t

γm(ω) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
= φm 0 τ

m + φm 1 τ
m−1 + · · ·+ φmm

belong to the Feigin–Frenkel center z(ĝ).

Moreover, in the case g = o2n, the Pfaffian

Pf F[−1] =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ [−1] . . .Fσ(2n−1)σ(2n)′ [−1]

belongs to z(ô2n) [M. 2013].
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The Harish-Chandra image of the polynomial

γm(N) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
equals:

hm
(
τ + µ1[−1], . . . , τ + µn[−1], τ − µn[−1], . . . τ − µ1[−1]

)
,

for the Lie algebra g = oN with N = 2n + 1; and

1
2 hm
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)
+ 1
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The Harish-Chandra image of the polynomial

γm(−2n) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
with 1 6 m 6 2n + 1 equals:
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)
for the Lie algebra g = sp2n.
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In the case g = o2n, the Harish-Chandra image of the Pfaffian
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2nn!

∑
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is found by

Pf F[−1] 7→
(
µ1[−1]− T
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. . .
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µn[−1]− T

)
1.

[M.–Mukhin, 2012].
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(
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)
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)
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[M.–Mukhin, 2012].



Corollary. The elements φ22, φ44, . . . , φ2n 2n form a complete

set of Segal–Sugawara vectors for o2n+1 and sp2n.

The elements φ22, φ44, . . . , φ2n−2 2n−2,Pf F[−1] form a

complete set of Segal–Sugawara vectors for o2n.
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Calculation of Harish-Chandra images
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The Yangian Y(g) is an associative algebra with countably

many generators t(1)ij , t(2)ij , . . . where i, j = 1, . . . ,N.

Set
tij(u) = δij + t(1)ij u−1 + t(2)ij u−2 + · · · ∈ Y(g)[[u−1]].

The defining relations of Y(g) are

R12(u− v) T1(u) T2(v) = T2(v) T1(u) R12(u− v)

with quotient taken by the ideal generated by the center, where

T1(u) =
N∑

i,j=1

eij ⊗ 1⊗ tij(u) and T2(u) =
N∑

i,j=1

1⊗ eij ⊗ tij(u)

in

EndCN ⊗ EndCN ⊗ Y(g)[[u−1]].
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For any a ∈ C the mapping

ti j(u) 7→ ti j(u− a)

defines the shift automorphism of Y(g).

The Yangian Y(g) is a Hopf algebra with the coproduct

∆ : ti j(u) 7→
N∑

k=1

ti k(u)⊗ tk j(u).

It is equipped with the universal R-matrix

R(u) ∈ Y(g)⊗ Y(g)[[u−1]]

(a “universal solution" of the Yang–Baxter equation).
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Bethe subalgebra

Let V be a finite-dimensional representation of Y(g),

πV : Y(g)→ End V

The corresponding transfer matrix tV(u) is

tV(u) = trV(πV ⊗ id)
(
R(u)

)
∈ Y(g)[[u−1]].

Key property:

I tV(u) tW(v) = tW(v) tV(u) for all V and W.
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More properties:

I If 0→ V → W → U → 0 is an exact sequence, then

tW(u) = tV(u) + tU(u);

I tV⊗W(u) = tV(u) tW(u).

The Bethe subalgebra B(g) of Y(g) is generated by all

coefficients of the series tV(u) for all representations V.

The map V → tV(u) is a homomorphism

Rep Y(g)→ B(g)[[u−1]].
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The elements t(1)ij with 1 6 i, j 6 N

generate a subalgebra of Y(g) isomorphic to U(g).

Take a standard triangular decomposition

g = n− ⊕ h⊕ n+ with h = span of {t(1)ii }.

Let J be the left ideal of Y(g) generated by

all elements t(r)ij with 1 6 i < j 6 N and r > 1.

The Harish-Chandra homomorphism is the projection

pr : Y(g)h → Y(g)h/
(
J ∩ Y(g)h

)
.

Set λi(u) = pr
(
tii(u)

)
for i = 1, . . . ,N.



The elements t(1)ij with 1 6 i, j 6 N

generate a subalgebra of Y(g) isomorphic to U(g).

Take a standard triangular decomposition

g = n− ⊕ h⊕ n+ with h = span of {t(1)ii }.

Let J be the left ideal of Y(g) generated by

all elements t(r)ij with 1 6 i < j 6 N and r > 1.

The Harish-Chandra homomorphism is the projection

pr : Y(g)h → Y(g)h/
(
J ∩ Y(g)h

)
.

Set λi(u) = pr
(
tii(u)

)
for i = 1, . . . ,N.



The elements t(1)ij with 1 6 i, j 6 N

generate a subalgebra of Y(g) isomorphic to U(g).

Take a standard triangular decomposition

g = n− ⊕ h⊕ n+ with h = span of {t(1)ii }.

Let J be the left ideal of Y(g) generated by

all elements t(r)ij with 1 6 i < j 6 N and r > 1.

The Harish-Chandra homomorphism is the projection

pr : Y(g)h → Y(g)h/
(
J ∩ Y(g)h

)
.

Set λi(u) = pr
(
tii(u)

)
for i = 1, . . . ,N.



The elements t(1)ij with 1 6 i, j 6 N

generate a subalgebra of Y(g) isomorphic to U(g).

Take a standard triangular decomposition

g = n− ⊕ h⊕ n+ with h = span of {t(1)ii }.

Let J be the left ideal of Y(g) generated by

all elements t(r)ij with 1 6 i < j 6 N and r > 1.

The Harish-Chandra homomorphism is the projection

pr : Y(g)h → Y(g)h/
(
J ∩ Y(g)h

)
.

Set λi(u) = pr
(
tii(u)

)
for i = 1, . . . ,N.



Characters

The character χV(u) of the Yangian module V is

χV(u) = pr ◦ tV(u).

Properties:
I The homomorphism

χ : Rep Y(g)→
〈
λi(u− a) | i = 1, . . . ,N, a ∈ C

〉
is injective.

I The image of χ is described as the intersection of the

kernels of the screening operators.



Characters

The character χV(u) of the Yangian module V is

χV(u) = pr ◦ tV(u).

Properties:

I The homomorphism

χ : Rep Y(g)→
〈
λi(u− a) | i = 1, . . . ,N, a ∈ C

〉
is injective.

I The image of χ is described as the intersection of the

kernels of the screening operators.



Characters

The character χV(u) of the Yangian module V is

χV(u) = pr ◦ tV(u).

Properties:
I The homomorphism

χ : Rep Y(g)→
〈
λi(u− a) | i = 1, . . . ,N, a ∈ C

〉
is injective.

I The image of χ is described as the intersection of the

kernels of the screening operators.



Characters

The character χV(u) of the Yangian module V is

χV(u) = pr ◦ tV(u).

Properties:
I The homomorphism

χ : Rep Y(g)→
〈
λi(u− a) | i = 1, . . . ,N, a ∈ C

〉
is injective.

I The image of χ is described as the intersection of the

kernels of the screening operators.



Types B and D: g = oN

The R-matrix is

R(u) = 1− P u−1 + Q
(
u− N/2 + 1

)−1

[A. and Al. Zamolodchikov, 1979],

Q =
N∑

i,j=1

ei j ⊗ ei ′j ′ ∈ EndCN ⊗ EndCN ,

where i ′ = N − i + 1.

Example. The representation of oN with the highest weight

(m, 0, . . . , 0) extends to the Yangian Y(oN).

This is one of the Kirillov–Reshetikhin modules.
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We have
V = S(m)

(
CN ⊗ . . .⊗ CN︸ ︷︷ ︸

m

)
,

where S(m) is the Brauer algebra symmetrizer,

S(m) =
1
m!

∏
16a<b6m

Rab(a− b).

Proposition.

χV(u) =
∑

16i16···6im6N

λi1(u)λi2(u + 1) . . . λim(u + m− 1),

with different conditions for Bn and Dn:

I o2n+1: index n + 1 occurs at most once;

I o2n: indices n and n + 1 do not occur simultaneously.
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Type C: g = sp2n

The R-matrix is

R(u) = 1− P u−1 + Q
(
u− n− 1

)−1

with
Q =

2n∑
i,j=1

εi εj ei j ⊗ ei ′j ′ ∈ EndC2n ⊗ EndC2n,

where i ′ = 2n− i + 1 and εi = −εn+i = 1 for i = 1, . . . , n.

Example. The representation of sp2n with the highest weight

(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0) with m 6 n extends to a fundamental module

of the Yangian Y(sp2n).
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∑

16i1<···<im62n

λi1(u)λi2(u− 1) . . . λim(u− m + 1),

with the condition that if both i and i ′ occur among the

summation indices as i = ir and i ′ = is for some 1 6 r < s 6 m,

then s− r 6 n− i; also [Kuniba–Okado–Suzuki–Yamada, 2002].
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Introduce a filtration on the algebra

of formal series Y(g)[[u−1, ∂u]] by setting

deg t(r)ij = r − 1, deg u−1 = deg ∂u = −1.

The associated graded algebra is U
(
g[t]
)
[[u−1, ∂u]] with

Fij[r] 7→ t̄ (r+1)
ij , r > 0.

The component of degree −1 of the matrix T(u)e∂u − 1

equals ∂u + F(u), where

F(u) =

∞∑
r=0

F[r] u−r−1, F[r] =

N∑
i,j=1

eij ⊗ Fij[r].
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ij , r > 0.

The component of degree −1 of the matrix T(u)e∂u − 1

equals ∂u + F(u), where

F(u) =

∞∑
r=0

F[r] u−r−1, F[r] =

N∑
i,j=1

eij ⊗ Fij[r].



Hence
(
taking g = oN with N = 2n + 1

)
, the series

γm(N) tr S(m)
(
∂u + F1(u)

)
. . .
(
∂u + Fm(u)

)

coincides with the component of degree −m of the series

γm(N) tr S(m)
(
T1(u)e∂u − 1

)
. . .
(
Tm(u)e∂u − 1

)
.

By the character formula, the Harish-Chandra image equals

m∑
k=0

(−1)m−k γk(N)

(
N + m− 2

m− k

) ∑
16i16···6ik6N

λi1(u)e∂u . . . λik(u)e∂u

with the condition that n + 1 occurs among the summation

indices i1, . . . , ik at most once.
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Commutative subalgebras

The Feigin–Frenkel center z(ĝ) is a commutative subalgebra of

U
(
t−1g[t−1]

)
. Its image under the evaluation homomorphism

evz : U(t−1g[t−1])→ U(g), X[r] 7→ X zr, X ∈ g

is a commutative subalgebra of U(g).

It can be made into a maximal commutative subalgebra by a

quantum version of the shift of argument method.

This subalgebra is a quantization of the Mishchenko–Fomenko

subalgebra of the Poisson algebra S(g).
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Type A

Suppose that a matrix B = diag[b1, . . . , bN ] is a regular element

of the Cartan subalgebra of glN so that the bi are all distinct.

Expand the column determinant

cdet
(
∂z − B− Ez−1) = ∂ N

z + L1(z) ∂ N−1
z + · · ·+ LN−1(z) ∂z + LN(z)

and let Lk(z) = Lk 0 + Lk 1 z−1 + · · ·+ Lk k z−k.

Corollary. The elements Lk i with 1 6 i 6 k 6 N are free

generators of a maximal commutative subalgebra of U(glN).
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Types B, C and D

Let B be a regular element of the Cartan subalgebra of g.

Expand the trace

γm(ω) tr S(m)(∂z − B1 − F1 z−1) . . . (∂z − Bm − Fm z−1)

= lm 0(z) ∂ m
z + lm 1(z) ∂ m−1

z + · · ·+ lm m(z)

and let

lm m(z) = l (0)m m + l (1)m m z−1 + · · ·+ l (m)
m m z−m.

In the case of o2n expand the Pfaffian

Pf(B + F z−1) = p(0) + p(1)z−1 + · · ·+ p(n)z−n.
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Corollary. In types B and C the elements l (1)m m, . . . , l
(m)
m m with

m = 2, 4, . . . , 2n are algebraically independent generators of a

maximal commutative subalgebra of U(o2n+1) and U(sp2n).

In type D the elements l (1)m m, . . . , l
(m)
m m with m = 2, 4, . . . , 2n− 2

and p(1), . . . , p(n) are algebraically independent generators of a

maximal commutative subalgebra of U(o2n).
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