Feigin-Frenkel center and Yangian characters

Alexander Molev

University of Sydney

Invariants in vacuum modules

Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra \mathfrak{g},

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

Invariants in vacuum modules

Define the invariant bilinear form on a simple Lie algebra \mathfrak{g},

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.
For the classical types, $\quad\langle X, Y\rangle=$ const $\cdot \operatorname{tr} X Y$,

$$
h^{\vee}=\left\{\begin{array}{lll}
n & \text { for } \mathfrak{g}=\mathfrak{s l}_{n}, & \text { const }=1 \\
N-2 & \text { for } \mathfrak{g}=\mathfrak{o}_{N}, & \text { const }=\frac{1}{2} \\
n+1 & \text { for } \mathfrak{g}=\mathfrak{s p}_{2 n}, & \text { const }=1
\end{array}\right.
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\widehat{\mathfrak{g}})$ the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\widehat{\mathfrak{g}})$ the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

The value $\kappa=-h^{\vee}$ corresponds to the critical level.

Consider the left ideal $\mathrm{I}=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

$$
\text { Norm } \mathrm{I}=\left\{v \in \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid \mathrm{I} v \subseteq \mathrm{I}\right\}
$$

be its normalizer.

Consider the left ideal $\mathrm{I}=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

$$
\text { Norm } \mathrm{I}=\left\{v \in \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid \mathrm{I} v \subseteq \mathrm{I}\right\}
$$

be its normalizer. This is a subalgebra of $U_{-h \vee}(\widehat{\mathfrak{g}})$, and
I is a two-sided ideal of Norm I.

Consider the left ideal $\mathrm{I}=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

$$
\text { Norm } \mathrm{I}=\left\{v \in \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid \mathrm{I} v \subseteq \mathrm{I}\right\}
$$

be its normalizer. This is a subalgebra of $U_{-h \vee}(\widehat{\mathfrak{g}})$, and
I is a two-sided ideal of Norm I.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the associative algebra defined as the quotient

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\operatorname{Norm} \mathrm{I} / \mathrm{I} .
$$

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Then

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Then

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Then

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Any element of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types $A, B, C ;$ V. Kac and D. Kazhdan, 1979.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types $A, B, C ;$ V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types $A, B, C ;$ V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Proof for the classical types.

Proof for the classical types.

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.

Proof for the classical types.

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Proof for the classical types.

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

Proof for the classical types.

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

which yields a $\mathfrak{g}[t]$-module structure on the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$: adjoint action then taking quotient modulo $\mathfrak{g}[t]$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is a $\mathfrak{g}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is a $\mathfrak{g}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Theorem (Beilinson-Drinfeld, 1997). If P_{1}, \ldots, P_{n} are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \geqslant 0$ are algebraically independent generators of $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathbf{~}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{+}\left[t^{-1}\right]$.

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{+}\left[t^{-1}\right]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \rightarrow \mathcal{W}\left({ }^{L} \mathfrak{g}\right)
$$

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{+}\left[t^{-1}\right]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \rightarrow \mathcal{W}\left({ }^{L} \mathfrak{g}\right)
$$

where $\mathcal{W}\left({ }^{L} \mathfrak{g}\right)$ is the classical \mathcal{W}-algebra associated with the
Langlands dual Lie algebra ${ }^{L} \mathfrak{g} \quad$ [Feigin and Frenkel, 1992].

Classical \mathcal{W}-algebras

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

the V_{i} are the screening operators.

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right)
$$

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
\begin{aligned}
& V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right) \\
& \sum_{r=0}^{\infty} V_{i(r)} z^{r}=\exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m]-\mu_{i+1}[-m]}{m} z^{m}
\end{aligned}
$$

Set $\tau=-d / d t$ and define the elements $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}$ by the Miura transformation

$$
\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=\tau^{N}+\mathcal{E}_{1} \tau^{N-1}+\cdots+\mathcal{E}_{N} .
$$

Set $\tau=-d / d t$ and define the elements $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}$ by the Miura transformation

$$
\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=\tau^{N}+\mathcal{E}_{1} \tau^{N-1}+\cdots+\mathcal{E}_{N} .
$$

Explicitly,

$$
\mathcal{E}_{m}=e_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

is the noncommutative elementary symmetric function,

$$
e_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1}>\cdots>i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

where $T=\operatorname{ad} \tau$ so that $T 1=0$.

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

where

$$
\mathcal{H}_{m}=h_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

is the noncommutative complete symmetric function,

$$
h_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

where

$$
\mathcal{H}_{m}=h_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right) 1
$$

is the noncommutative complete symmetric function,

$$
h_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}} .
$$

Note $\mathcal{W}\left(\mathfrak{s l}_{N}\right)$ is the quotient of $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ by $\mathcal{E}_{1}=\mathcal{H}_{1}=0$.

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

and

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right)
$$

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

and

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right) .
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right)
$$

Explicit generators of $\mathfrak{z}(\widehat{\mathfrak{g}})$. Type A

Set

$$
E_{i j}[r]=E_{i j} t^{r} \in \mathfrak{g l}_{N}\left[t, t^{-1}\right]
$$

and

$$
E[r]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right)
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\left[t, t^{-1}\right]\right)
$$

and let $H^{(m)}$ and $A^{(m)}$ denote the symmetrizer and anti-symmetrizer in

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
\operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
& \quad=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \begin{aligned}
\operatorname{tr} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m}
\end{aligned}
\end{aligned}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \operatorname{tr} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m} \\
& \operatorname{tr}(\tau+E[-1])^{m}=\pi_{m 0} \tau^{m}+\pi_{m 1} \tau^{m-1}+\cdots+\pi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
& \quad=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \begin{aligned}
& \operatorname{tr} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m} \\
& \operatorname{tr}(\tau+E[-1])^{m}=\pi_{m 0} \tau^{m}+\pi_{m 1} \tau^{m-1}+\cdots+\pi_{m m}
\end{aligned}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
& \quad=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \begin{aligned}
& \operatorname{tr} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m} \\
& \operatorname{tr}(\tau+E[-1])^{m}=\pi_{m 0} \tau^{m}+\pi_{m 1} \tau^{m-1}+\cdots+\pi_{m m}
\end{aligned}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.
[Chervov-Talalaev, 2006, Chervov-M., 2009].

Under the Harish-Chandra isomorphism,

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
& \\
& \qquad e_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{N}[-1]\right)
\end{aligned}
$$

Under the Harish-Chandra isomorphism,

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
& \\
& \qquad e_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{N}[-1]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{tr} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots(\tau & \left.+E[-1]_{m}\right) \\
& \mapsto h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{N}[-1]\right)
\end{aligned}
$$

Under the Harish-Chandra isomorphism,

$$
\begin{aligned}
& \operatorname{tr} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
& \\
& \qquad e_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{N}[-1]\right)
\end{aligned}
$$

and

$$
\operatorname{tr} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right)
$$

$$
\mapsto h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{N}[-1]\right)
$$

The image of $\operatorname{tr}(\tau+E[-1])^{m}$ is found from the Newton formula.

Brauer algebra $\mathcal{B}_{m}(\omega)$

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

For $1 \leqslant a<b \leqslant m$ denote by $s_{a b}$ and $\epsilon_{a b}$ the diagrams

For $1 \leqslant a<b \leqslant m$ denote by $s_{a b}$ and $\epsilon_{a b}$ the diagrams

The symmetrizer in the Brauer algebra $\mathcal{B}_{m}(\omega)$
is the idempotent $s^{(m)}$ such that

$$
s_{a b} s^{(m)}=s^{(m)} s_{a b}=s^{(m)} \quad \text { and } \quad \epsilon_{a b} s^{(m)}=s^{(m)} \epsilon_{a b}=0
$$

Action in tensors

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_{N}$ set $\omega=N$. The generators of $\mathcal{B}_{m}(N)$ act
in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad \epsilon_{a b} \mapsto Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_{N}$ set $\omega=N$. The generators of $\mathcal{B}_{m}(N)$ act in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad \epsilon_{a b} \mapsto Q_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

where $i^{\prime}=N-i+1$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad \epsilon_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad \epsilon_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

with $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad \epsilon_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

with $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$ under the action in tensors,

$$
S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m}
$$

Explicitly,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

Explicitly,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Explicitly,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Set

$$
\gamma_{m}(\omega)=\frac{\omega+m-2}{\omega+2 m-2}
$$

$$
\omega=\left\{\begin{array}{rll}
N & \text { for } & \mathfrak{g}=\mathfrak{o}_{N} \\
-2 n & \text { for } & \mathfrak{g}=\mathfrak{s p}_{2 n}
\end{array}\right.
$$

Types B, C and D

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

and

$$
F_{i j}[r]=F_{i j} t^{r} \in \mathfrak{g}\left[t, t^{-1}\right] .
$$

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

and

$$
F_{i j}[r]=F_{i j} t^{r} \in \mathfrak{g}\left[t, t^{-1}\right] .
$$

Combine into a matrix

$$
F[r]=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g}\left[t, t^{-1}\right]\right)
$$

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots & \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots & \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots & \left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Moreover, in the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

belongs to $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{2 n}\right)$ [M. 2013].

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals:

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals:

$$
h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n}[-1], \ldots \tau-\mu_{1}[-1]\right),
$$

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals:

$$
h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n}[-1], \ldots \tau-\mu_{1}[-1]\right),
$$

for the Lie algebra $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n+1$;

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

equals:

$$
h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n}[-1], \ldots \tau-\mu_{1}[-1]\right)
$$

for the Lie algebra $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n+1$; and

$$
\begin{aligned}
& \frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n-1}[-1], \tau-\mu_{n}[-1], \ldots \tau-\mu_{1}[-1]\right) \\
& \quad+\frac{1}{2} h_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau-\mu_{n-1}[-1], \ldots \tau-\mu_{1}[-1]\right)
\end{aligned}
$$

for the Lie algebra $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n$.

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(-2 n) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

with $1 \leqslant m \leqslant 2 n+1$ equals:

The Harish-Chandra image of the polynomial

$$
\gamma_{m}(-2 n) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots\left(\tau+F[-1]_{m}\right)
$$

with $1 \leqslant m \leqslant 2 n+1$ equals:

$$
e_{m}\left(\tau+\mu_{1}[-1], \ldots, \tau+\mu_{n}[-1], \tau, \tau-\mu_{n}[-1], \ldots \tau-\mu_{1}[-1]\right)
$$

for the Lie algebra $\mathfrak{g}=\mathfrak{s p}_{2 n}$.

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Harish-Chandra image of the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is found by

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Harish-Chandra image of the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

is found by

$$
\operatorname{Pf} F[-1] \mapsto\left(\mu_{1}[-1]-T\right) \ldots\left(\mu_{n}[-1]-T\right) 1
$$

[M.-Mukhin, 2012].

Corollary. The elements $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$ and $\mathfrak{s p}_{2 n}$.

Corollary. The elements $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$ and $\mathfrak{s p}_{2 n}$.

The elements $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n-22 n-2}, \operatorname{Pf} F[-1]$ form a complete set of Segal-Sugawara vectors for $\mathfrak{o}_{2 n}$.

Calculation of Harish-Chandra images

Bethe subalgebra
[transfer matrices]

Yangian characters
[Grothendieck ring]

Feigin-Frenkel center
classical \mathcal{W}-algebra
[Segal-Sugawara vectors]

The Yangian $\mathrm{Y}(\mathfrak{g})$ is an associative algebra with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$.

The Yangian $\mathrm{Y}(\mathfrak{g})$ is an associative algebra with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$.

Set

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right]
$$

The Yangian $\mathrm{Y}(\mathfrak{g})$ is an associative algebra with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$.

Set

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right]
$$

The defining relations of $\mathrm{Y}(\mathfrak{g})$ are

$$
R_{12}(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u-v)
$$

The Yangian $\mathrm{Y}(\mathfrak{g})$ is an associative algebra with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$.

Set

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right] .
$$

The defining relations of $\mathrm{Y}(\mathfrak{g})$ are

$$
R_{12}(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u-v)
$$

with quotient taken by the ideal generated by the center, where
$T_{1}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes 1 \otimes t_{i j}(u) \quad$ and $\quad T_{2}(u)=\sum_{i, j=1}^{N} 1 \otimes e_{i j} \otimes t_{i j}(u)$
in

$$
\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right] .
$$

For any $a \in \mathbb{C}$ the mapping

$$
t_{i j}(u) \mapsto t_{i j}(u-a)
$$

defines the shift automorphism of $\mathrm{Y}(\mathfrak{g})$.

For any $a \in \mathbb{C}$ the mapping

$$
t_{i j}(u) \mapsto t_{i j}(u-a)
$$

defines the shift automorphism of $\mathrm{Y}(\mathfrak{g})$.

The Yangian $\mathrm{Y}(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

For any $a \in \mathbb{C}$ the mapping

$$
t_{i j}(u) \mapsto t_{i j}(u-a)
$$

defines the shift automorphism of $\mathrm{Y}(\mathfrak{g})$.

The Yangian $\mathrm{Y}(\mathfrak{g})$ is a Hopf algebra with the coproduct

$$
\Delta: t_{i j}(u) \mapsto \sum_{k=1}^{N} t_{i k}(u) \otimes t_{k j}(u)
$$

It is equipped with the universal R-matrix

$$
\mathcal{R}(u) \in \mathrm{Y}(\mathfrak{g}) \otimes \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right]
$$

(a "universal solution" of the Yang-Baxter equation).

Bethe subalgebra

Let V be a finite-dimensional representation of $\mathrm{Y}(\mathfrak{g})$,

$$
\pi_{V}: \mathrm{Y}(\mathfrak{g}) \rightarrow \text { End } V
$$

Bethe subalgebra

Let V be a finite-dimensional representation of $\mathrm{Y}(\mathfrak{g})$,

$$
\pi_{V}: \mathrm{Y}(\mathfrak{g}) \rightarrow \text { End } V
$$

The corresponding transfer matrix $\mathrm{t}_{V}(u)$ is

$$
\mathrm{t}_{V}(u)=\operatorname{tr}_{V}\left(\pi_{V} \otimes \mathrm{id}\right)(\mathcal{R}(u)) \in \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right] .
$$

Bethe subalgebra

Let V be a finite-dimensional representation of $\mathrm{Y}(\mathfrak{g})$,

$$
\pi_{V}: \mathrm{Y}(\mathfrak{g}) \rightarrow \text { End } V
$$

The corresponding transfer matrix $\mathrm{t}_{V}(u)$ is

$$
\mathrm{t}_{V}(u)=\operatorname{tr}_{V}\left(\pi_{V} \otimes \mathrm{id}\right)(\mathcal{R}(u)) \in \mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}\right]\right] .
$$

Key property:

- $\mathrm{t}_{V}(u) \mathrm{t}_{W}(v)=\mathrm{t}_{W}(v) \mathrm{t}_{V}(u)$ for all V and W.

More properties:

More properties:

- If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

$$
\mathrm{t}_{W}(u)=\mathrm{t}_{V}(u)+\mathrm{t}_{U}(u) ;
$$

More properties:

- If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

$$
\mathrm{t}_{W}(u)=\mathrm{t}_{V}(u)+\mathrm{t}_{U}(u) ;
$$

- $\mathrm{t}_{V \otimes W}(u)=\mathrm{t}_{V}(u) \mathrm{t}_{W}(u)$.

More properties:

- If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

$$
\mathrm{t}_{W}(u)=\mathrm{t}_{V}(u)+\mathrm{t}_{U}(u) ;
$$

- $\mathrm{t}_{V \otimes W}(u)=\mathrm{t}_{V}(u) \mathrm{t}_{W}(u)$.

The Bethe subalgebra $\mathcal{B}(\mathfrak{g})$ of $Y(\mathfrak{g})$ is generated by all coefficients of the series $\mathrm{t}_{V}(u)$ for all representations V.

More properties:

- If $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$ is an exact sequence, then

$$
\mathrm{t}_{W}(u)=\mathrm{t}_{V}(u)+\mathrm{t}_{U}(u)
$$

$-\mathrm{t}_{V \otimes W}(u)=\mathrm{t}_{V}(u) \mathrm{t}_{W}(u)$.

The Bethe subalgebra $\mathcal{B}(\mathfrak{g})$ of $Y(\mathfrak{g})$ is generated by all coefficients of the series $\mathrm{t}_{V}(u)$ for all representations V.

The map $V \rightarrow \mathrm{t}_{V}(u)$ is a homomorphism

$$
\operatorname{Rep} \mathrm{Y}(\mathfrak{g}) \rightarrow \mathcal{B}(\mathfrak{g})\left[\left[u^{-1}\right]\right] .
$$

The elements $t_{i j}^{(1)}$ with $1 \leqslant i, j \leqslant N$
generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

The elements $t_{i j}^{(1)}$ with $1 \leqslant i, j \leqslant N$ generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

Take a standard triangular decomposition

$$
\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+} \text {with } \mathfrak{h}=\text { span of }\left\{t_{i i}^{(1)}\right\}
$$

The elements $t_{i j}^{(1)}$ with $1 \leqslant i, j \leqslant N$ generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

Take a standard triangular decomposition
$\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$with $\mathfrak{h}=$ span of $\left\{t_{i i}^{(1)}\right\}$.
Let J be the left ideal of $\mathrm{Y}(\mathfrak{g})$ generated by all elements $t_{i j}^{(r)}$ with $1 \leqslant i<j \leqslant N$ and $r \geqslant 1$.

The elements $t_{i j}^{(1)}$ with $1 \leqslant i, j \leqslant N$ generate a subalgebra of $Y(\mathfrak{g})$ isomorphic to $U(\mathfrak{g})$.

Take a standard triangular decomposition
$\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$with $\mathfrak{h}=$ span of $\left\{t_{i i}^{(1)}\right\}$.
Let J be the left ideal of $\mathrm{Y}(\mathfrak{g})$ generated by all elements $t_{i j}^{(r)}$ with $1 \leqslant i<j \leqslant N$ and $r \geqslant 1$.

The Harish-Chandra homomorphism is the projection

$$
\operatorname{pr}: \mathrm{Y}(\mathfrak{g})^{\mathfrak{h}} \rightarrow \mathrm{Y}(\mathfrak{g})^{\mathfrak{h}} /\left(\mathrm{J} \cap \mathrm{Y}(\mathfrak{g})^{\mathfrak{h}}\right)
$$

Set $\lambda_{i}(u)=\operatorname{pr}\left(t_{i i}(u)\right)$ for $i=1, \ldots, N$.

Characters

The character $\chi_{V}(u)$ of the Yangian module V is

$$
\chi_{V}(u)=\operatorname{pr}^{\circ} \circ \mathrm{t}_{V}(u)
$$

Characters

The character $\chi_{V}(u)$ of the Yangian module V is

$$
\chi_{V}(u)=\operatorname{pr}^{\circ} \circ \mathrm{t}_{V}(u)
$$

Properties:

Characters

The character $\chi_{V}(u)$ of the Yangian module V is

$$
\chi_{V}(u)=\operatorname{pr} \circ \mathrm{t}_{V}(u) .
$$

Properties:

- The homomorphism

$$
\chi: \operatorname{Rep} \mathrm{Y}(\mathfrak{g}) \rightarrow\left\langle\lambda_{i}(u-a) \mid i=1, \ldots, N, \quad a \in \mathbb{C}\right\rangle
$$

is injective.

Characters

The character $\chi_{V}(u)$ of the Yangian module V is

$$
\chi_{V}(u)=\operatorname{pr} \circ \mathrm{t}_{V}(u) .
$$

Properties:

- The homomorphism

$$
\chi: \operatorname{Rep} \mathrm{Y}(\mathfrak{g}) \rightarrow\left\langle\lambda_{i}(u-a) \mid i=1, \ldots, N, \quad a \in \mathbb{C}\right\rangle
$$

is injective.

- The image of χ is described as the intersection of the kernels of the screening operators.

Types B and $D: \quad \mathfrak{g}=\mathfrak{o}_{N}$

Types B and $D: \quad \mathfrak{g}=\mathfrak{o}_{N}$

The R-matrix is

$$
R(u)=1-P u^{-1}+Q(u-N / 2+1)^{-1}
$$

[A. and AI. Zamolodchikov, 1979],

$$
Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

where $i^{\prime}=N-i+1$.

Types B and $D: \quad \mathfrak{g}=\mathfrak{o}_{N}$

The R-matrix is

$$
R(u)=1-P u^{-1}+Q(u-N / 2+1)^{-1}
$$

[A. and Al. Zamolodchikov, 1979],

$$
Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

where $i^{\prime}=N-i+1$.
Example. The representation of \mathfrak{o}_{N} with the highest weight $(m, 0, \ldots, 0)$ extends to the Yangian $\mathrm{Y}\left(\mathfrak{o}_{N}\right)$.

This is one of the Kirillov-Reshetikhin modules.

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(a-b) .
$$

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(a-b)
$$

Proposition.

$$
\chi_{V}(u)=\sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{m} \leqslant N} \lambda_{i_{1}}(u) \lambda_{i_{2}}(u+1) \ldots \lambda_{i_{m}}(u+m-1),
$$

with different conditions for B_{n} and D_{n} :

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(a-b)
$$

Proposition.

$$
\chi_{V}(u)=\sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{m} \leqslant N} \lambda_{i_{1}}(u) \lambda_{i_{2}}(u+1) \ldots \lambda_{i_{m}}(u+m-1),
$$

with different conditions for B_{n} and D_{n} :

- $\mathfrak{o}_{2 n+1}$: index $n+1$ occurs at most once;

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(a-b)
$$

Proposition.

$$
\chi_{V}(u)=\sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{m} \leqslant N} \lambda_{i_{1}}(u) \lambda_{i_{2}}(u+1) \ldots \lambda_{i_{m}}(u+m-1),
$$

with different conditions for B_{n} and D_{n} :

- $\mathfrak{o}_{2 n+1}$: index $n+1$ occurs at most once;
- $\mathfrak{o}_{2 n}$: indices n and $n+1$ do not occur simultaneously.

Type C: $\quad \mathfrak{g}=\mathfrak{s p}_{2 n}$

Type C: $\quad \mathfrak{g}=\mathfrak{s p}_{2 n}$

The R-matrix is

$$
R(u)=1-P u^{-1}+Q(u-n-1)^{-1}
$$

Type $C: \quad \mathfrak{g}=\mathfrak{s p}_{2 n}$

The R-matrix is

$$
R(u)=1-P u^{-1}+Q(u-n-1)^{-1}
$$

with

$$
Q=\sum_{i, j=1}^{2 n} \varepsilon_{i} \varepsilon_{j} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \in \operatorname{End} \mathbb{C}^{2 n} \otimes \operatorname{End} \mathbb{C}^{2 n}
$$

where $i^{\prime}=2 n-i+1$ and $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$.

Type $C: \quad \mathfrak{g}=\mathfrak{s p}_{2 n}$

The R-matrix is

$$
R(u)=1-P u^{-1}+Q(u-n-1)^{-1}
$$

with

$$
Q=\sum_{i, j=1}^{2 n} \varepsilon_{i} \varepsilon_{j} e_{i j} \otimes e_{i^{\prime} j^{\prime}} \in \operatorname{End} \mathbb{C}^{2 n} \otimes \operatorname{End} \mathbb{C}^{2 n}
$$

where $i^{\prime}=2 n-i+1$ and $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$.

Example. The representation of $\mathfrak{s p}_{2 n}$ with the highest weight
$(\underbrace{1, \ldots, 1}_{m}, 0, \ldots, 0)$ with $m \leqslant n$ extends to a fundamental module
of the Yangian $\mathrm{Y}\left(\mathfrak{s p}_{2 n}\right)$.

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{2 n} \otimes \ldots \otimes \mathbb{C}^{2 n}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{2 n} \otimes \ldots \otimes \mathbb{C}^{2 n}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(b-a)
$$

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{2 n} \otimes \ldots \otimes \mathbb{C}^{2 n}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(b-a)
$$

Proposition.

$$
\chi_{V}(u)=\sum_{1 \leqslant i_{1}<\cdots<i_{m} \leqslant 2 n} \lambda_{i_{1}}(u) \lambda_{i_{2}}(u-1) \ldots \lambda_{i_{m}}(u-m+1)
$$

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{2 n} \otimes \ldots \otimes \mathbb{C}^{2 n}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(b-a)
$$

Proposition.

$$
\chi_{V}(u)=\sum_{1 \leqslant i_{1}<\cdots<i_{m} \leqslant 2 n} \lambda_{i_{1}}(u) \lambda_{i_{2}}(u-1) \ldots \lambda_{i_{m}}(u-m+1)
$$

with the condition that if both i and i^{\prime} occur among the
summation indices as $i=i_{r}$ and $i^{\prime}=i_{s}$ for some $1 \leqslant r<s \leqslant m$, then $s-r \leqslant n-i$;

We have

$$
V=S^{(m)}(\underbrace{\mathbb{C}^{2 n} \otimes \ldots \otimes \mathbb{C}^{2 n}}_{m}),
$$

where $S^{(m)}$ is the Brauer algebra symmetrizer,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m} R_{a b}(b-a)
$$

Proposition.

$$
\chi_{V}(u)=\sum_{1 \leqslant i_{1}<\cdots<i_{m} \leqslant 2 n} \lambda_{i_{1}}(u) \lambda_{i_{2}}(u-1) \ldots \lambda_{i_{m}}(u-m+1)
$$

with the condition that if both i and i^{\prime} occur among the
summation indices as $i=i_{r}$ and $i^{\prime}=i_{s}$ for some $1 \leqslant r<s \leqslant m$, then $s-r \leqslant n-i$; also [Kuniba-Okado-Suzuki-Yamada, 2002].

Introduce a filtration on the algebra
of formal series $\mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}, \partial_{u}\right]\right]$ by setting

$$
\operatorname{deg} t_{i j}^{(r)}=r-1, \quad \operatorname{deg} u^{-1}=\operatorname{deg} \partial_{u}=-1
$$

Introduce a filtration on the algebra
of formal series $\mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}, \partial_{u}\right]\right]$ by setting

$$
\operatorname{deg} t_{i j}^{(r)}=r-1, \quad \operatorname{deg} u^{-1}=\operatorname{deg} \partial_{u}=-1
$$

The associated graded algebra is $\mathrm{U}(\mathfrak{g}[t])\left[\left[u^{-1}, \partial_{u}\right]\right]$ with

$$
F_{i j}[r] \mapsto \bar{t}_{i j}^{(r+1)}, \quad r \geqslant 0 .
$$

Introduce a filtration on the algebra
of formal series $\mathrm{Y}(\mathfrak{g})\left[\left[u^{-1}, \partial_{u}\right]\right]$ by setting

$$
\operatorname{deg} t_{i j}^{(r)}=r-1, \quad \operatorname{deg} u^{-1}=\operatorname{deg} \partial_{u}=-1
$$

The associated graded algebra is $\mathrm{U}(\mathfrak{g}[t])\left[\left[u^{-1}, \partial_{u}\right]\right]$ with

$$
F_{i j}[r] \mapsto \bar{t}_{i j}^{(r+1)}, \quad r \geqslant 0 .
$$

The component of degree -1 of the matrix $T(u) e^{\partial_{u}}-1$
equals $\partial_{u}+F(u)$, where

$$
F(u)=\sum_{r=0}^{\infty} F[r] u^{-r-1}, \quad F[r]=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j}[r] .
$$

Hence (taking $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n+1$), the series

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\partial_{u}+F_{1}(u)\right) \ldots\left(\partial_{u}+F_{m}(u)\right)
$$

Hence (taking $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n+1$), the series

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\partial_{u}+F_{1}(u)\right) \ldots\left(\partial_{u}+F_{m}(u)\right)
$$

coincides with the component of degree $-m$ of the series

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(T_{1}(u) e^{\partial_{u}}-1\right) \ldots\left(T_{m}(u) e^{\partial_{u}}-1\right)
$$

Hence (taking $\mathfrak{g}=\mathfrak{o}_{N}$ with $N=2 n+1$), the series

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(\partial_{u}+F_{1}(u)\right) \ldots\left(\partial_{u}+F_{m}(u)\right)
$$

coincides with the component of degree $-m$ of the series

$$
\gamma_{m}(N) \operatorname{tr} S^{(m)}\left(T_{1}(u) e^{\partial_{u}}-1\right) \ldots\left(T_{m}(u) e^{\partial_{u}}-1\right)
$$

By the character formula, the Harish-Chandra image equals

$$
\sum_{k=0}^{m}(-1)^{m-k} \gamma_{k}(N)\binom{N+m-2}{m-k} \sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{k} \leqslant N} \lambda_{i_{1}}(u) e^{\partial_{u}} \ldots \lambda_{i_{k}}(u) e^{\partial_{u}}
$$

with the condition that $n+1$ occurs among the summation indices i_{1}, \ldots, i_{k} at most once.

Commutative subalgebras

Commutative subalgebras

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of
$\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$. Its image under the evaluation homomorphism

$$
\mathrm{ev}_{z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}, \quad X \in \mathfrak{g}
$$

is a commutative subalgebra of $U(\mathfrak{g})$.

Commutative subalgebras

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of
$\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$. Its image under the evaluation homomorphism

$$
\mathrm{ev}_{z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}, \quad X \in \mathfrak{g}
$$

is a commutative subalgebra of $U(\mathfrak{g})$.

It can be made into a maximal commutative subalgebra by a quantum version of the shift of argument method.

Commutative subalgebras

The Feigin-Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$. Is image under the evaluation homomorphism

$$
\mathrm{ev}_{z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}, \quad X \in \mathfrak{g}
$$

is a commutative subalgebra of $\mathrm{U}(\mathfrak{g})$.
It can be made into a maximal commutative subalgebra by a quantum version of the shift of argument method.

This subalgebra is a quantization of the Mishchenko-Fomenko subalgebra of the Poisson algebra $\mathrm{S}(\mathfrak{g})$.

Type A

Type A

Suppose that a matrix $B=\operatorname{diag}\left[b_{1}, \ldots, b_{N}\right]$ is a regular element of the Cartan subalgebra of $\mathfrak{g l}_{N}$ so that the b_{i} are all distinct.

Type A

Suppose that a matrix $B=\operatorname{diag}\left[b_{1}, \ldots, b_{N}\right]$ is a regular element of the Cartan subalgebra of $\mathfrak{g l}_{N}$ so that the b_{i} are all distinct.

Expand the column determinant
$\operatorname{cdet}\left(\partial_{z}-B-E z^{-1}\right)=\partial_{z}^{N}+L_{1}(z) \partial_{z}^{N-1}+\cdots+L_{N-1}(z) \partial_{z}+L_{N}(z)$
and let

$$
L_{k}(z)=L_{k 0}+L_{k 1} z^{-1}+\cdots+L_{k k} z^{-k}
$$

Type A

Suppose that a matrix $B=\operatorname{diag}\left[b_{1}, \ldots, b_{N}\right]$ is a regular element of the Cartan subalgebra of $\mathfrak{g l}_{N}$ so that the b_{i} are all distinct.

Expand the column determinant
$\operatorname{cdet}\left(\partial_{z}-B-E z^{-1}\right)=\partial_{z}^{N}+L_{1}(z) \partial_{z}^{N-1}+\cdots+L_{N-1}(z) \partial_{z}+L_{N}(z)$
and let $\quad L_{k}(z)=L_{k 0}+L_{k 1} z^{-1}+\cdots+L_{k k} z^{-k}$.

Corollary. The elements $L_{k i}$ with $1 \leqslant i \leqslant k \leqslant N$ are free generators of a maximal commutative subalgebra of $U\left(\mathfrak{g l}_{N}\right)$.

Types B, C and D

Types B, C and D

Let B be a regular element of the Cartan subalgebra of \mathfrak{g}.

Types B, C and D

Let B be a regular element of the Cartan subalgebra of \mathfrak{g}.
Expand the trace

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\partial_{z}-B_{1}\right. & \left.-F_{1} z^{-1}\right) \ldots\left(\partial_{z}-B_{m}-F_{m} z^{-1}\right) \\
& =l_{m 0}(z) \partial_{z}^{m}+l_{m 1}(z) \partial_{z}^{m-1}+\cdots+l_{m m}(z)
\end{aligned}
$$

Types B, C and D

Let B be a regular element of the Cartan subalgebra of \mathfrak{g}.
Expand the trace

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\partial_{z}-B_{1}\right. & \left.-F_{1} z^{-1}\right) \ldots\left(\partial_{z}-B_{m}-F_{m} z^{-1}\right) \\
& =l_{m 0}(z) \partial_{z}^{m}+l_{m 1}(z) \partial_{z}^{m-1}+\cdots+l_{m m}(z)
\end{aligned}
$$

and let

$$
l_{m m}(z)=l_{m m}^{(0)}+l_{m m}^{(1)} z^{-1}+\cdots+l_{m m}^{(m)} z^{-m} .
$$

Types B, C and D

Let B be a regular element of the Cartan subalgebra of \mathfrak{g}.
Expand the trace

$$
\begin{aligned}
& \gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\partial_{z}-B_{1}-F_{1} z^{-1}\right) \ldots\left(\partial_{z}-B_{m}-F_{m} z^{-1}\right) \\
&=l_{m 0}(z) \partial_{z}^{m}+l_{m 1}(z) \partial_{z}^{m-1}+\cdots+l_{m m}(z)
\end{aligned}
$$

and let

$$
l_{m m}(z)=l_{m m}^{(0)}+l_{m m}^{(1)} z^{-1}+\cdots+l_{m m}^{(m)} z^{-m} .
$$

In the case of $\mathfrak{o}_{2 n}$ expand the Pfaffian

$$
\operatorname{Pf}\left(B+F z^{-1}\right)=p^{(0)}+p^{(1)} z^{-1}+\cdots+p^{(n)} z^{-n}
$$

Corollary. In types B and C the elements $l_{m m}^{(1)}, \ldots, l_{m m}^{(m)}$ with $m=2,4, \ldots, 2 n$ are algebraically independent generators of a maximal commutative subalgebra of $\mathrm{U}\left(\mathfrak{o}_{2 n+1}\right)$ and $\mathrm{U}\left(\mathfrak{s p}_{2 n}\right)$.

Corollary. In types B and C the elements $l_{m m}^{(1)}, \ldots, l_{m m}^{(m)}$ with $m=2,4, \ldots, 2 n$ are algebraically independent generators of a maximal commutative subalgebra of $\mathrm{U}\left(\mathfrak{o}_{2 n+1}\right)$ and $\mathrm{U}\left(\mathfrak{s p}_{2 n}\right)$.

In type D the elements $l_{m m}^{(1)}, \ldots, l_{m m}^{(m)}$ with $m=2,4, \ldots, 2 n-2$
and $p^{(1)}, \ldots, p^{(n)}$ are algebraically independent generators of a maximal commutative subalgebra of $\mathrm{U}\left(\mathfrak{o}_{2 n}\right)$.

