Invariants in enveloping algebras and vacuum modules

Alexander Molev

University of Sydney

Let V be a vector space over \mathbb{C} and let

 $A:V\to V$

be a linear map.

Let V be a vector space over \mathbb{C} and let

 $A:V\to V$

be a linear map. Choose a basis of *V* to write *A* as a matrix.

Let V be a vector space over \mathbb{C} and let

 $A:V\to V$

be a linear map. Choose a basis of V to write A as a matrix. By changing the basis, we get the matrix transformed by

 $A \mapsto TAT^{-1}.$

Let V be a vector space over \mathbb{C} and let

 $A:V\to V$

be a linear map. Choose a basis of V to write A as a matrix. By changing the basis, we get the matrix transformed by

 $A \mapsto TAT^{-1}$.

Question: What polynomials in the entries of *A* remain unchanged?

Let V be a vector space over \mathbb{C} and let

 $A:V\to V$

be a linear map. Choose a basis of V to write A as a matrix. By changing the basis, we get the matrix transformed by

 $A \mapsto TAT^{-1}$.

Question: What polynomials in the entries of *A* remain unchanged? Answer: The coefficients of det(uI + A).

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$Y \cdot X_1 \dots X_k = \sum_{i=1}^k X_1 \dots [Y, X_i] \dots X_k, \qquad X_i \in \mathfrak{g}.$$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$Y \cdot X_1 \dots X_k = \sum_{i=1}^k X_1 \dots [Y, X_i] \dots X_k, \qquad X_i \in \mathfrak{g}.$$

The subalgebra of invariants is

$$S(\mathfrak{g})^{\mathfrak{g}} = \{ P \in S(\mathfrak{g}) \mid Y \cdot P = 0 \text{ for all } Y \in \mathfrak{g} \}.$$

Let $n = \operatorname{rank} \mathfrak{g}$. Then $S(\mathfrak{g})^{\mathfrak{g}} = \mathbb{C}[P_1, \dots, P_n]$, for certain

algebraically independent invariants P_1, \ldots, P_n whose degrees

 d_1, \ldots, d_n are the exponents of \mathfrak{g} increased by 1.

Let $n = \operatorname{rank} \mathfrak{g}$. Then $S(\mathfrak{g})^{\mathfrak{g}} = \mathbb{C}[P_1, \ldots, P_n]$, for certain algebraically independent invariants P_1, \ldots, P_n whose degrees d_1, \ldots, d_n are the exponents of \mathfrak{g} increased by 1.

We have the Chevalley isomorphism

 $\varsigma: \mathbf{S}(\mathfrak{g})^{\mathfrak{g}} \to \mathbf{S}(\mathfrak{h})^{W},$

where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is its Weyl group.

Let $n = \operatorname{rank} \mathfrak{g}$. Then $S(\mathfrak{g})^{\mathfrak{g}} = \mathbb{C}[P_1, \dots, P_n]$, for certain algebraically independent invariants P_1, \dots, P_n whose degrees d_1, \dots, d_n are the exponents of \mathfrak{g} increased by 1.

We have the Chevalley isomorphism

 $\varsigma: \mathbf{S}(\mathfrak{g})^{\mathfrak{g}} \to \mathbf{S}(\mathfrak{h})^{W},$

where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is its Weyl group.

Here we use a triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ and ς is the projection $S(\mathfrak{g}) \to S(\mathfrak{h})$ whose kernel is $S(\mathfrak{g})(\mathfrak{n}_- \cup \mathfrak{n}_+).$

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

and write

$$\det (u + E) = u^{N} + C_1 u^{N-1} + \dots + C_N.$$

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

and write

$$\det (u + E) = u^{N} + C_{1} u^{N-1} + \dots + C_{N}.$$

Then $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[C_1, \dots, C_N]$

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

and write

$$\det (u + E) = u^{N} + C_{1} u^{N-1} + \dots + C_{N}.$$

Then $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[C_1, \dots, C_N]$ and

$$\varsigma : \det(u+E) \mapsto (u+\lambda_1) \dots (u+\lambda_N), \qquad \lambda_i = E_{ii}.$$

 $T_k = \operatorname{tr} E^k \in \mathrm{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$

for all $k \ge 0$,

$$S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[T_1,\ldots,T_N]$$

 $T_k = \operatorname{tr} E^k \in \operatorname{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$

for all $k \geqslant 0$, $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[T_1,\ldots,T_N]$ and

$$\varsigma: T_k \mapsto \lambda_1^k + \cdots + \lambda_N^k.$$

 $T_k = \operatorname{tr} E^k \in \operatorname{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$

for all $k \ge 0$, $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[T_1, \dots, T_N]$ and

$$\varsigma: T_k \mapsto \lambda_1^k + \cdots + \lambda_N^k.$$

The invariants C_k and T_k are related by the Newton formulas.

Center of universal enveloping algebra

Center of universal enveloping algebra

The adjoint action of $\ \mathfrak{g}$ on itself extends to the universal enveloping algebra $\ U(\mathfrak{g})$ by

$$Y \cdot X_1 \dots X_k = \sum_{i=1}^k X_1 \dots [Y, X_i] \dots X_k.$$

Center of universal enveloping algebra

The adjoint action of $\ \mathfrak{g}$ on itself extends to the universal enveloping algebra $\ U(\mathfrak{g})$ by

$$Y \cdot X_1 \dots X_k = \sum_{i=1}^k X_1 \dots [Y, X_i] \dots X_k.$$

The subalgebra of invariants is the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$,

$$Z(\mathfrak{g}) = \{ P \in U(\mathfrak{g}) \mid Y \cdot P = [Y, P] = 0 \text{ for all } Y \in \mathfrak{g} \}.$$

Its elements are called Casimir elements.

$$\mathbf{Z}(\mathbf{g}) = \mathbb{C}[P_1, \ldots, P_n],$$

for certain algebraically independent invariants P_1, \ldots, P_n

whose degrees d_1, \ldots, d_n are the exponents of \mathfrak{g} increased by 1.

$$\mathbf{Z}(\mathbf{g}) = \mathbb{C}[P_1, \ldots, P_n],$$

for certain algebraically independent invariants P_1, \ldots, P_n

whose degrees d_1, \ldots, d_n are the exponents of g increased by 1. We have the Harish-Chandra isomorphism

 $\chi: \mathbb{Z}(\mathfrak{g}) \to \mathbb{U}(\mathfrak{h})^{W_{sh}}, \qquad \text{with a shifted action of } W.$

$$\mathbf{Z}(\mathbf{g}) = \mathbb{C}[P_1, \ldots, P_n],$$

for certain algebraically independent invariants P_1, \ldots, P_n

whose degrees d_1, \ldots, d_n are the exponents of g increased by 1. We have the Harish-Chandra isomorphism

 $\chi: \mathrm{Z}(\mathfrak{g}) \to \mathrm{U}(\mathfrak{h})^{W_{\mathsf{sh}}}, \qquad \text{with a shifted action of } W.$

We use the decomposition

$$\mathrm{U}(\mathfrak{g}) = \mathrm{U}(\mathfrak{h}) \oplus \left(\mathrm{U}(\mathfrak{g})\mathfrak{n}_+ + \mathfrak{n}_-\mathrm{U}(\mathfrak{g})
ight)$$

and χ is the projection $U(\mathfrak{g}) \to U(\mathfrak{h})$.

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}.$$

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}.$$

The traces tr E^k are Casimir elements:

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}.$$

The traces tr E^k are Casimir elements:

$$\operatorname{tr} E = \sum_{i=1}^{N} E_{ii}, \qquad \operatorname{tr} E^{2} = \sum_{i,j=1}^{N} E_{ij} E_{ji}$$
$$\operatorname{tr} E^{3} = \sum_{i,j,k=1}^{N} E_{ij} E_{jk} E_{ki}, \qquad \text{etc.}$$

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}.$$

The traces tr E^k are Casimir elements:

$$\operatorname{tr} E = \sum_{i=1}^{N} E_{ii}, \qquad \operatorname{tr} E^{2} = \sum_{i,j=1}^{N} E_{ij} E_{ji}$$
$$\operatorname{tr} E^{3} = \sum_{i,j,k=1}^{N} E_{ij} E_{jk} E_{ki}, \qquad \text{etc.}$$

Any Casimir element is a unique polynomial in tr E^k , $1 \le k \le N$.

For the Harish-Chandra images we have

$$\chi:\sum_{i=1}^N E_{ii}\mapsto \sum_{i=1}^N l_i + \binom{N}{2},$$

For the Harish-Chandra images we have

$$\begin{split} \chi &: \sum_{i=1}^{N} E_{ii} \mapsto \sum_{i=1}^{N} l_i + \binom{N}{2}, \\ \chi &: \sum_{i,j=1}^{N} E_{ij} E_{ji} \mapsto \sum_{i=1}^{N} l_i^2 + (N-1) \sum_{i=1}^{N} l_i + \binom{N}{3}, \end{split}$$

where $l_i = E_{ii} - i + 1$.

For the Harish-Chandra images we have

$$\begin{split} \chi &: \sum_{i=1}^{N} E_{ii} \mapsto \sum_{i=1}^{N} l_i + \binom{N}{2}, \\ \chi &: \sum_{i,j=1}^{N} E_{ij} E_{ji} \mapsto \sum_{i=1}^{N} l_i^2 + (N-1) \sum_{i=1}^{N} l_i + \binom{N}{3}, \end{split}$$

where $l_i = E_{ii} - i + 1$.

In general,

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \,\chi(\operatorname{tr} E^m)}{(u-N+1)^{m+1}} = \prod_{i=1}^N \frac{u+l_i+1}{u+l_i}.$$

Many more constructions of Casimir elements for the Lie algebras \mathfrak{gl}_N , \mathfrak{o}_N and \mathfrak{sp}_{2n} are known.

Many more constructions of Casimir elements for the Lie algebras \mathfrak{gl}_N , \mathfrak{o}_N and \mathfrak{sp}_{2n} are known.

In particular, there is a linear basis of $Z(\mathfrak{gl}_N)$ formed by the quantum immanats \mathbb{S}_{λ} with λ running over partitions with at most *N* parts (Okounkov–Olshanski, 1996, 1998).
Many more constructions of Casimir elements for the Lie algebras \mathfrak{gl}_N , \mathfrak{o}_N and \mathfrak{sp}_{2n} are known.

In particular, there is a linear basis of $Z(\mathfrak{gl}_N)$ formed by the quantum immanats \mathbb{S}_{λ} with λ running over partitions with at most *N* parts (Okounkov–Olshanski, 1996, 1998).

The Harish-Chandra images $\chi(\mathbb{S}_{\lambda})$ are the shifted Schur polynomials.

Affine Kac–Moody algebras

Affine Kac–Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

Affine Kac–Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

For the classical types, $\langle X, Y \rangle = \text{const} \cdot \text{tr} XY$,

$$h^{\vee} = \begin{cases} N & \text{for } \mathfrak{g} = \mathfrak{sl}_N, \quad \text{const} = 1\\ N-2 & \text{for } \mathfrak{g} = \mathfrak{o}_N, \quad \text{const} = \frac{1}{2}\\ n+1 & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}, \quad \text{const} = 1. \end{cases}$$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r,-s} \langle X, Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac–Moody algebra $\hat{\mathfrak{g}}$ is the central extension

 $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \,\delta_{r, -s} \langle X, Y \rangle K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

Question: What are Casimir elements for $\hat{\mathfrak{g}}$?

A necessary condition for the existence of Casimir elements:

K is at the critical level, $\kappa = -h^{\vee}$.

A necessary condition for the existence of Casimir elements: *K* is at the critical level, $\kappa = -h^{\vee}$.

Still, $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is too small to contain Casimir elements: the center of $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is trivial.

A necessary condition for the existence of Casimir elements: *K* is at the critical level, $\kappa = -h^{\vee}$.

Still, $U_{-h^{\vee}}(\hat{\mathfrak{g}})$ is too small to contain Casimir elements: the center of $U_{-h^{\vee}}(\hat{\mathfrak{g}})$ is trivial.

By [Kac, 1974], the canonical quadratic Casimir element belongs to an extension of $U_{-h^{\vee}}(\hat{\mathfrak{g}})$.

Example: $\mathfrak{g} = \mathfrak{gl}_N$. Defining relations for $U(\widehat{\mathfrak{gl}}_N)$:

 $E_{ij}[r] E_{kl}[s] - E_{kl}[s] E_{ij}[r]$ = $\delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} \left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N} \right) K.$ Example: $\mathfrak{g} = \mathfrak{gl}_N$. Defining relations for $U(\widehat{\mathfrak{gl}}_N)$:

 $E_{ij}[r] E_{kl}[s] - E_{kl}[s] E_{ij}[r]$ = $\delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} \left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N} \right) K.$

The critical level is K = -N.

Example: $\mathfrak{g} = \mathfrak{gl}_N$. Defining relations for $U(\widehat{\mathfrak{gl}}_N)$:

$$E_{ij}[r] E_{kl}[s] - E_{kl}[s] E_{ij}[r]$$

= $\delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} \left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N} \right) K.$

The critical level is K = -N.

For all $r \in \mathbb{Z}$ the sums

$$\sum_{i=1}^{N} E_{ii}[r]$$

are Casimir elements.

For $r \in \mathbb{Z}$ set

$$C_{r} = \sum_{i,j=1}^{N} \left(\sum_{s<0} E_{ij}[s] E_{ji}[r-s] + \sum_{s\geq0} E_{ji}[r-s] E_{ij}[s] \right).$$

For $r \in \mathbb{Z}$ set

$$C_r = \sum_{i,j=1}^{N} \Big(\sum_{s<0} E_{ij}[s] E_{ji}[r-s] + \sum_{s\geq0} E_{ji}[r-s] E_{ij}[s] \Big).$$

All C_r are Casimir elements at the critical level.

For $r \in \mathbb{Z}$ set

$$C_r = \sum_{i,j=1}^{N} \Big(\sum_{s<0} E_{ij}[s] E_{ji}[r-s] + \sum_{s\geq0} E_{ji}[r-s] E_{ij}[s] \Big).$$

All C_r are Casimir elements at the critical level.

They belong to the completed universal enveloping algebra $\widetilde{U}_{-N}(\widehat{\mathfrak{gl}}_N)$ defined as the inverse limit

$$\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N) = \lim_{\longleftarrow} \mathrm{U}_{-N}(\widehat{\mathfrak{gl}}_N)/\mathrm{I}_m, \qquad m \to \infty,$$

where I_m is the left ideal of $U_{-N}(\widehat{\mathfrak{gl}}_N)$ generated by $t^m \mathfrak{gl}_N[t]$.

Introduce the (formal) Laurent series

$$E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] \, z^{-r-1}$$

Introduce the (formal) Laurent series

$$E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] \, z^{-r-1}$$

and use the notation

$$E_{ij}(z)_{+} = \sum_{r < 0} E_{ij}[r] \, z^{-r-1}, \qquad E_{ij}(z)_{-} = \sum_{r \ge 0} E_{ij}[r] \, z^{-r-1}.$$

Introduce the (formal) Laurent series

$$E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] \, z^{-r-1}$$

and use the notation

$$E_{ij}(z)_{+} = \sum_{r < 0} E_{ij}[r] \, z^{-r-1}, \qquad E_{ij}(z)_{-} = \sum_{r \ge 0} E_{ij}[r] \, z^{-r-1}.$$

Given two Laurent series a(z) and b(z),

their normally ordered product is defined by

$$: a(z)b(z): = a(z)_+b(z) + b(z)a(z)_-.$$

Note

$$\sum_{r\in\mathbb{Z}} C_r z^{-r-2} = \sum_{i,j=1}^N \left(E_{ij}(z)_+ E_{ji}(z) + E_{ji}(z)E_{ij}(z)_- \right).$$

Note

$$\sum_{r \in \mathbb{Z}} C_r z^{-r-2} = \sum_{i,j=1}^N \Big(E_{ij}(z)_+ E_{ji}(z) + E_{ji}(z) E_{ij}(z)_- \Big).$$

Hence, all coefficients of the series

tr :
$$E(z)^2$$
 : = $\sum_{i,j=1}^N : E_{ij}(z)E_{ji}(z)$:

are Casimir elements.

Similarly, all coefficients of the series

tr :
$$E(z)^3$$
 : = $\sum_{i,j,k=1}^N : E_{ij}(z) E_{jk}(z) E_{ki}(z)$:

are Casimir elements, where the normal ordering is applied

from right to left.

Similarly, all coefficients of the series

tr :
$$E(z)^3$$
 : = $\sum_{i,j,k=1}^N : E_{ij}(z) E_{jk}(z) E_{ki}(z)$:

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $tr : E(z)^4 : !$

Similarly, all coefficients of the series

tr :
$$E(z)^3$$
 : = $\sum_{i,j,k=1}^N : E_{ij}(z) E_{jk}(z) E_{ki}(z)$:

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $tr : E(z)^4 : !$

Correction term: all coefficients of the series

$$\operatorname{tr}: E(z)^4: -\operatorname{tr}: \left(\partial_z E(z)\right)^2:$$

are Casimir elements.

The vacuum module at the critical level is the $\hat{\mathfrak{g}}$ -module

 $V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})\mathfrak{g}[t].$

The vacuum module at the critical level is the \hat{g} -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})\mathfrak{g}[t].$$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$ -invariants

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

The vacuum module at the critical level is the \hat{g} -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})\mathfrak{g}[t].$$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$ -invariants

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

Note $V(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$ as a vector space.

The vacuum module at the critical level is the \hat{g} -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})\mathfrak{g}[t].$$

The Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$ -invariants

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

Note $V(\mathfrak{g}) \cong U(t^{-1}\mathfrak{g}[t^{-1}])$ as a vector space.

Hence, $\mathfrak{z}(\hat{\mathfrak{g}})$ is a subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Properties:

• The algebra $\mathfrak{z}(\hat{\mathfrak{g}})$ is commutative.

Properties:

• The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

► The subalgebra 3(g) of U(t⁻¹g[t⁻¹]) is invariant with respect to the translation operator *T* defined as the derivation T = -d/dt.

Properties:

• The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

► The subalgebra 3(g) of U(t⁻¹g[t⁻¹]) is invariant with respect to the translation operator *T* defined as the derivation T = -d/dt.

Any element of $\mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector.

Theorem (Feigin–Frenkel, 1992, Frenkel, 2007).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

Theorem (Feigin–Frenkel, 1992, Frenkel, 2007).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

Theorem (Feigin–Frenkel, 1992, Frenkel, 2007).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.
Theorem (Feigin–Frenkel, 1992, Frenkel, 2007).

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$,

 $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \ge 0].$$

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

Explicit constructions of such sets and a new proof of the theorem for the classical types *A*, *B*, *C*, *D*: [Chervov–Talalaev, 2006, Chervov–M., 2009, M. 2013]. Example: $\mathfrak{g} = \mathfrak{gl}_N$.

Example: $\mathfrak{g} = \mathfrak{gl}_N$.

Set $\tau = -d/dt$ and consider the $N \times N$ matrix

$$\tau + E[-1] = \begin{bmatrix} \tau + E_{11}[-1] & E_{12}[-1] & \dots & E_{1N}[-1] \\ E_{21}[-1] & \tau + E_{22}[-1] & \dots & E_{2N}[-1] \\ \vdots & \vdots & \ddots & \vdots \\ E_{N1}[-1] & E_{N2}[-1] & \dots & \tau + E_{NN}[-1] \end{bmatrix}.$$

The coefficients S_1, \ldots, S_N of the polynomial

 $\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + S_{1}\tau^{N-1} + \dots + S_{N-1}\tau + S_{N}$

form a complete set of Segal-Sugawara vectors.

The coefficients S_1, \ldots, S_N of the polynomial

$$\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + S_{1}\tau^{N-1} + \dots + S_{N-1}\tau + S_{N}$$

form a complete set of Segal–Sugawara vectors.

For N = 2

 $\operatorname{cdet}(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]$ $= \tau^2 + S_1 \tau + S_2$

The coefficients S_1, \ldots, S_N of the polynomial

$$\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + S_{1}\tau^{N-1} + \dots + S_{N-1}\tau + S_{N}$$

form a complete set of Segal-Sugawara vectors.

For N = 2

$$\operatorname{cdet}(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]$$
$$= \tau^2 + S_1 \tau + S_2$$

with

$$S_1 = E_{11}[-1] + E_{22}[-1],$$

$$S_2 = E_{11}[-1]E_{22}[-1] - E_{21}[-1]E_{12}[-1] + E_{22}[-2].$$

To get another family of Segal-Sugawara vectors, expand

tr
$$(\tau + E[-1])^m = U_{m0} \tau^m + U_{m1} \tau^{m-1} + \dots + U_{mm}$$

To get another family of Segal-Sugawara vectors, expand

tr
$$(\tau + E[-1])^m = U_{m0} \tau^m + U_{m1} \tau^{m-1} + \dots + U_{mm}$$

All coefficients U_{mi} belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

To get another family of Segal-Sugawara vectors, expand

tr
$$(\tau + E[-1])^m = U_{m0} \tau^m + U_{m1} \tau^{m-1} + \dots + U_{mm}$$

All coefficients U_{mi} belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

The elements U_{11}, \ldots, U_{NN} form

a complete set of Segal-Sugawara vectors.

To get another family of Segal–Sugawara vectors, expand

tr
$$(\tau + E[-1])^m = U_{m0} \tau^m + U_{m1} \tau^{m-1} + \dots + U_{mm}$$

All coefficients U_{mi} belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

The elements U_{11}, \ldots, U_{NN} form

a complete set of Segal-Sugawara vectors.

The following are Segal–Sugawara vectors for \mathfrak{gl}_N :

tr E[-1], tr $E[-1]^2$, tr $E[-1]^3$, tr $E[-1]^4$ - tr $E[-2]^2$.

The corresponding central elements in $\widetilde{U}_{-N}(\widehat{\mathfrak{gl}}_N)$ are recovered by the state-field correspondence map

 $Y: V(\mathfrak{gl}_N) \to \operatorname{End} V(\mathfrak{gl}_N)[[z, z^{-1}]]$

The corresponding central elements in $\widetilde{U}_{-N}(\widehat{\mathfrak{gl}}_N)$ are recovered by the state-field correspondence map

 $Y: V(\mathfrak{gl}_N) \to \operatorname{End} V(\mathfrak{gl}_N)[[z, z^{-1}]]$

applied to Segal–Sugawara vectors, i.e., elements of $\mathfrak{z}(\hat{\mathfrak{g}})$.

The corresponding central elements in $\widetilde{U}_{-N}(\widehat{\mathfrak{gl}}_N)$ are recovered by the state-field correspondence map

 $Y: V(\mathfrak{gl}_N) \to \operatorname{End} V(\mathfrak{gl}_N)[[z, z^{-1}]]$

applied to Segal–Sugawara vectors, i.e., elements of $\mathfrak{z}(\hat{\mathfrak{g}})$.

By definition,

$$Y: E_{ij}[-1] \mapsto E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] \, z^{-r-1}.$$

Also,

$$Y: E_{ij}[-r-1] \mapsto \frac{1}{r!} \partial_z^r E_{ij}(z), \qquad r \ge 0,$$

Also,

$$Y: E_{ij}[-r-1] \mapsto \frac{1}{r!} \,\partial_z^r E_{ij}(z), \qquad r \ge 0,$$

and

$$Y: E_{ij}[-1] E_{kl}[-1] \mapsto : E_{ij}(z) E_{kl}(z) :$$

Also,

$$Y: E_{ij}[-r-1] \mapsto \frac{1}{r!} \,\partial_z^r E_{ij}(z), \qquad r \ge 0,$$

and

$$Y: E_{ij}[-1] E_{kl}[-1] \mapsto : E_{ij}(z) E_{kl}(z) :$$

We have

 $Y : \operatorname{tr} E[-1] \mapsto \operatorname{tr} E(z)$ $Y : \operatorname{tr} E[-1]^2 \mapsto \operatorname{tr} : E(z)^2 :$ $Y : \operatorname{tr} E[-1]^3 \mapsto \operatorname{tr} : E(z)^3 :$ $Y : \operatorname{tr} E[-1]^4 - \operatorname{tr} E[-2]^2 \mapsto \operatorname{tr} : E(z)^4 : -\operatorname{tr} : \left(\partial_z E(z)\right)^2 :$

Write

$$\operatorname{tr}: \left(\partial_z + E(z)\right)^m := U_{m0}(z) \,\partial_z^m + \cdots + U_{mm}(z).$$

Write

$$\operatorname{tr}: \left(\partial_z + E(z)\right)^m := U_{m0}(z) \,\partial_z^m + \dots + U_{mm}(z).$$

Theorem. The coefficients of the Laurent series

 $U_{11}(z),\ldots,U_{NN}(z)$

are topological generators of the center of $\widetilde{U}_{-N}(\widehat{\mathfrak{gl}}_N)$.

▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.

- ▶ Produce Segal–Sugawara vectors S_1, \ldots, S_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent and generate 𝔅(𝔅).

- ▶ Produce Segal–Sugawara vectors *S*₁,..., *S*_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent and generate 𝔅(𝔅).

Use the classical limit:

$$\operatorname{gr} \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \cong \operatorname{S}(t^{-1}\mathfrak{g}[t^{-1}])$$

- ▶ Produce Segal–Sugawara vectors *S*₁,..., *S*_n explicitly.
- Show that all elements *T^kS_l* with *l* = 1,...,*n* and *k* ≥ 0 are algebraically independent and generate *z*(*g*).

Use the classical limit:

$$\operatorname{gr} \operatorname{U}(t^{-1}\mathfrak{g}[t^{-1}]) \cong \operatorname{S}(t^{-1}\mathfrak{g}[t^{-1}])$$

which yields a $\mathfrak{g}[t]$ -module structure on the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}]) \cong S(\mathfrak{g}[t,t^{-1}]/\mathfrak{g}[t]).$ Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$.

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \ge 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Let X_1, \ldots, X_d be a basis of \mathfrak{g} and let $P = P(X_1, \ldots, X_d)$ be a \mathfrak{g} -invariant in the symmetric algebra $S(\mathfrak{g})$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \ge 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Theorem (Raïs–Tauvel, 1992, Beilinson–Drinfeld, 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^\mathfrak{g}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \ge 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{+}[t^{-1}]$.

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_{+}[t^{-1}]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

 $\mathfrak{z}(\widehat{\mathfrak{g}}) \to \mathcal{W}({}^{L}\mathfrak{g}),$

and consider the (affine) Harish-Chandra homomorphism

$$\mathrm{U}(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{h}} \to \mathrm{U}(t^{-1}\mathfrak{h}[t^{-1}]),$$

the projection modulo the left ideal generated by $t^{-1}\mathfrak{n}_+[t^{-1}]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

 $\mathfrak{z}(\widehat{\mathfrak{g}}) \to \mathcal{W}({}^{L}\mathfrak{g}),$

where $\mathcal{W}({}^{L}\mathfrak{g})$ is the classical \mathcal{W} -algebra associated with the Langlands dual Lie algebra ${}^{L}\mathfrak{g}$ [Feigin and Frenkel, 1992].

Let $\mu_1, \ldots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} .

Let $\mu_1, \dots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

 $\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$

Let $\mu_1, \dots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

The classical \mathcal{W} -algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \{ P \in \mathcal{P}_n \mid V_i P = 0, \quad i = 1, \dots, n \},\$$

Let $\mu_1, \dots \mu_n$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Set $\mu_i[r] = \mu_i t^r$ and identify

$$\mathbf{U}(t^{-1}\mathfrak{h}[t^{-1}]) = \mathbb{C}\left[\mu_1[r], \ldots, \mu_n[r] \mid r < 0\right] =: \mathcal{P}_n.$$

The classical \mathcal{W} -algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$\mathcal{W}(\mathfrak{g}) = \{ P \in \mathcal{P}_n \mid V_i P = 0, \quad i = 1, \dots, n \},$$

the V_i are the screening operators.
Example. For $W(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

Example. For $W(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

$$V_{i} = \sum_{r=0}^{\infty} V_{i(r)} \left(\frac{\partial}{\partial \mu_{i}[-r-1]} - \frac{\partial}{\partial \mu_{i+1}[-r-1]} \right),$$

Example. For $W(\mathfrak{gl}_N)$ the operators V_1, \ldots, V_{N-1} are

$$V_{i} = \sum_{r=0}^{\infty} V_{i(r)} \left(\frac{\partial}{\partial \mu_{i}[-r-1]} - \frac{\partial}{\partial \mu_{i+1}[-r-1]} \right),$$

$$\sum_{r=0}^{\infty} V_{i(r)} z^{r} = \exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m] - \mu_{i+1}[-m]}{m} z^{m}.$$

Define the elements $\mathcal{E}_1, \ldots, \mathcal{E}_N$ by the Miura transformation

$$(\tau + \mu_N[-1]) \dots (\tau + \mu_1[-1]) = \tau^N + \mathcal{E}_1 \tau^{N-1} + \dots + \mathcal{E}_N.$$

Define the elements $\mathcal{E}_1, \ldots, \mathcal{E}_N$ by the Miura transformation

$$(\tau + \mu_N[-1]) \dots (\tau + \mu_1[-1]) = \tau^N + \mathcal{E}_1 \tau^{N-1} + \dots + \mathcal{E}_N.$$

Explicitly,

$$\mathcal{E}_m = e_m \big(T + \mu_1 [-1], \dots, T + \mu_N [-1] \big)$$

is the noncommutative elementary symmetric function,

$$e_m(x_1,\ldots,x_p)=\sum_{i_1>\cdots>i_m}x_{i_1}\ldots x_{i_m}.$$

Then

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \dots, T^k \mathcal{E}_N \mid k \geqslant 0].$$

Then

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \dots, T^k \mathcal{E}_N \mid k \ge 0].$$

Also,

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{H}_1, \dots, T^k \mathcal{H}_N \mid k \ge 0],$$

Then

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{E}_1, \ldots, T^k \mathcal{E}_N \mid k \ge 0].$$

Also,

$$\mathcal{W}(\mathfrak{gl}_N) = \mathbb{C}[T^k \mathcal{H}_1, \dots, T^k \mathcal{H}_N \mid k \ge 0],$$

where

$$\mathcal{H}_m = h_m \big(T + \mu_1 [-1], \dots, T + \mu_N [-1] \big)$$

is the noncommutative complete symmetric function,

$$h_m(x_1,\ldots,x_p)=\sum_{i_1\leqslant\cdots\leqslant i_m}x_{i_1}\ldots x_{i_m}.$$

For $1 \leq a < b \leq m$ denote by s_{ab} and ϵ_{ab} the diagrams

For $1 \leq a < b \leq m$ denote by s_{ab} and ϵ_{ab} the diagrams

The symmetrizer in the Brauer algebra $\mathcal{B}_m(\omega)$

is the idempotent $s^{(m)}$ such that

 $s_{ab} s^{(m)} = s^{(m)} s_{ab} = s^{(m)}$ and $\epsilon_{ab} s^{(m)} = s^{(m)} \epsilon_{ab} = 0.$

Action in tensors

Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act

in the tensor space

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_m$$

by the rule

 $s_{ab} \mapsto P_{ab}, \qquad \epsilon_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act

in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

 $s_{ab} \mapsto P_{ab}, \qquad \epsilon_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

where i' = N - i + 1 and

$$Q_{ab} = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

 $s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

with $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$ and

$$Q_{ab} = \sum_{i,j=1}^{N} \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g} = \mathfrak{sp}_N$ with N = 2n set $\omega = -N$. The

generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad \epsilon_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

with $\varepsilon_i = -\varepsilon_{n+i} = 1$ for i = 1, ..., n and $Q_{ab} = \sum_{i,j=1}^N \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$

under the action in tensors,

$$S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m.$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{n-b+a+1} \right).$$

Explicitly,

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b-a} - \frac{Q_{ab}}{n-b+a+1} \right).$$

Set

$$\gamma_m(\omega) = \frac{\omega + m - 2}{\omega + 2m - 2}, \qquad \omega = \begin{cases} N & \text{for } \mathfrak{g} = \mathfrak{o}_N \\ -2n & \text{for } \mathfrak{g} = \mathfrak{sp}_{2n}. \end{cases}$$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1. Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1. Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$

and

 $F_{ij}[r] = F_{ij} t^r \in \widehat{\mathfrak{g}}.$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1. Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$

and

 $F_{ij}[r] = F_{ij} t^r \in \widehat{\mathfrak{g}}.$

Combine into a matrix

$$F[r] = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}).$$

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

 $\gamma_m(\omega) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$

 $=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm}$

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(\tau + F[-1]_1) \dots (\tau + F[-1]_m)$$

$$=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$.

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$
$$= \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\hat{\mathfrak{g}})$.

Moreover, in the case $\mathfrak{g} = \mathfrak{o}_{2n}$, the Pfaffian

$$\operatorname{Pf} F[-1] = \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

belongs to $\mathfrak{z}(\widehat{\mathfrak{o}}_{2n})$ [M. 2013].

Corollary. The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n2n}$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} .

Corollary. The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n 2n}$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} .

The elements $\phi_{22}, \phi_{44}, \dots, \phi_{2n-22n-2}, \Pr[F[-1]]$ form a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n} .

Examples. Complete sets of Segal–Sugawara vectors:

for o_3 : tr $F[-1]^2$ for o_4 : tr $F[-1]^2$, Pf F[-1]for o_5 : tr $F[-1]^2$, tr $F[-1]^4 - \frac{1}{2}$ tr $F[-2]^2$ for o_6 : tr $F[-1]^2$, tr $F[-1]^4$, Pf F[-1]. Examples. Complete sets of Segal–Sugawara vectors:

for o_3 : tr $F[-1]^2$ for o_4 : tr $F[-1]^2$, Pf F[-1]for \mathfrak{o}_5 : tr $F[-1]^2$, tr $F[-1]^4 - \frac{1}{2}$ tr $F[-2]^2$ for o_6 : tr $F[-1]^2$, tr $F[-1]^4$, Pf F[-1]. for \mathfrak{sp}_2 : tr $F[-1]^2$ for \mathfrak{sp}_4 : tr $F[-1]^2$, tr $F[-1]^4 - 5$ tr $F[-2]^2$.