Invariants in enveloping algebras

and vacuum modules

Alexander Molev

University of Sydney

Invariants of a linear operator

Invariants of a linear operator

Let V be a vector space over \mathbb{C} and let

$$
A: V \rightarrow V
$$

be a linear map.

Invariants of a linear operator

Let V be a vector space over \mathbb{C} and let

$$
A: V \rightarrow V
$$

be a linear map. Choose a basis of V to write A as a matrix.

Invariants of a linear operator

Let V be a vector space over \mathbb{C} and let

$$
A: V \rightarrow V
$$

be a linear map. Choose a basis of V to write A as a matrix. By changing the basis, we get the matrix transformed by

$$
A \mapsto T A T^{-1}
$$

Invariants of a linear operator

Let V be a vector space over \mathbb{C} and let

$$
A: V \rightarrow V
$$

be a linear map. Choose a basis of V to write A as a matrix. By changing the basis, we get the matrix transformed by

$$
A \mapsto T A T^{-1}
$$

Question: What polynomials in the entries of A remain unchanged?

Invariants of a linear operator

Let V be a vector space over \mathbb{C} and let

$$
A: V \rightarrow V
$$

be a linear map. Choose a basis of V to write A as a matrix. By changing the basis, we get the matrix transformed by

$$
A \mapsto T A T^{-1}
$$

Question: What polynomials in the entries of A remain unchanged? Answer: The coefficients of $\operatorname{det}(u I+A)$.

Invariants in symmetric algebra

Invariants in symmetric algebra

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Invariants in symmetric algebra

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}, \quad X_{i} \in \mathfrak{g}
$$

Invariants in symmetric algebra

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}, \quad X_{i} \in \mathfrak{g}
$$

The subalgebra of invariants is

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\{P \in \mathrm{~S}(\mathfrak{g}) \mid Y \cdot P=0 \quad \text { for all } \quad Y \in \mathfrak{g}\} .
$$

Let $n=\operatorname{rank} \mathfrak{g}$. Then $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$, for certain algebraically independent invariants P_{1}, \ldots, P_{n} whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 .

Let $n=\operatorname{rank} \mathfrak{g}$. Then $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$, for certain algebraically independent invariants P_{1}, \ldots, P_{n} whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 .

We have the Chevalley isomorphism

$$
\varsigma: \mathbf{S}(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathbf{S}(\mathfrak{h})^{W},
$$

where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is its Weyl group.

Let $n=\operatorname{rank} \mathfrak{g}$. Then $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$, for certain algebraically independent invariants P_{1}, \ldots, P_{n} whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 .

We have the Chevalley isomorphism

$$
\varsigma: S(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathrm{S}(\mathfrak{h})^{W}
$$

where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is its Weyl group.

Here we use a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and ς is the projection $S(\mathfrak{g}) \rightarrow S(\mathfrak{h})$ whose kernel is $\mathrm{S}(\mathfrak{g})\left(\mathfrak{n}_{-} \cup \mathfrak{n}_{+}\right)$.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}(u+E)=u^{N}+C_{1} u^{N-1}+\cdots+C_{N} .
$$

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}(u+E)=u^{N}+C_{1} u^{N-1}+\cdots+C_{N} .
$$

Then

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[C_{1}, \ldots, C_{N}\right]
$$

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}(u+E)=u^{N}+C_{1} u^{N-1}+\cdots+C_{N} .
$$

Then

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[C_{1}, \ldots, C_{N}\right] \quad \text { and }
$$

$$
\varsigma: \operatorname{det}(u+E) \mapsto\left(u+\lambda_{1}\right) \ldots\left(u+\lambda_{N}\right), \quad \lambda_{i}=E_{i i}
$$

We have

$$
T_{k}=\operatorname{tr} E^{k} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}
$$

for all $k \geqslant 0$,

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[T_{1}, \ldots, T_{N}\right]
$$

We have

$$
T_{k}=\operatorname{tr} E^{k} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}
$$

for all $k \geqslant 0$,

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[T_{1}, \ldots, T_{N}\right]
$$

and

$$
\varsigma: T_{k} \mapsto \lambda_{1}^{k}+\cdots+\lambda_{N}^{k} .
$$

We have

$$
T_{k}=\operatorname{tr} E^{k} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}
$$

for all $k \geqslant 0$,

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[T_{1}, \ldots, T_{N}\right]
$$

and

$$
\varsigma: T_{k} \mapsto \lambda_{1}^{k}+\cdots+\lambda_{N}^{k} .
$$

The invariants C_{k} and T_{k} are related by the Newton formulas.

Center of universal enveloping algebra

Center of universal enveloping algebra

The adjoint action of \mathfrak{g} on itself extends to the universal enveloping algebra $U(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}
$$

Center of universal enveloping algebra

The adjoint action of \mathfrak{g} on itself extends to the universal enveloping algebra $U(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}
$$

The subalgebra of invariants is the center $\mathrm{Z}(\mathfrak{g})$ of $\mathrm{U}(\mathfrak{g})$,

$$
\mathrm{Z}(\mathfrak{g})=\{P \in \mathrm{U}(\mathfrak{g}) \mid Y \cdot P=[Y, P]=0 \quad \text { for all } \quad Y \in \mathfrak{g}\} .
$$

Its elements are called Casimir elements.

We have

$$
\mathrm{Z}(\mathfrak{g})=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]
$$

for certain algebraically independent invariants P_{1}, \ldots, P_{n} whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 .

We have

$$
\mathrm{Z}(\mathfrak{g})=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right],
$$

for certain algebraically independent invariants P_{1}, \ldots, P_{n} whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 . We have the Harish-Chandra isomorphism

$$
\chi: \mathrm{Z}(\mathfrak{g}) \rightarrow \mathbf{U}(\mathfrak{h})^{W_{\text {sh }}}, \quad \text { with a shifted action of } W
$$

We have

$$
\mathrm{Z}(\mathfrak{g})=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right],
$$

for certain algebraically independent invariants P_{1}, \ldots, P_{n} whose degrees d_{1}, \ldots, d_{n} are the exponents of \mathfrak{g} increased by 1 .

We have the Harish-Chandra isomorphism

$$
\chi: \mathrm{Z}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{h})^{W_{\text {sh }}}, \quad \text { with a shifted action of } W
$$

We use the decomposition

$$
\mathrm{U}(\mathfrak{g})=\mathrm{U}(\mathfrak{h}) \oplus\left(\mathrm{U}(\mathfrak{g}) \mathfrak{n}_{+}+\mathfrak{n}_{-} \mathrm{U}(\mathfrak{g})\right)
$$

and χ is the projection $\mathrm{U}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{h})$.

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right] .
$$

The traces $\operatorname{tr} E^{k}$ are Casimir elements:

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

The traces $\operatorname{tr} E^{k}$ are Casimir elements:

$$
\begin{aligned}
\operatorname{tr} E & =\sum_{i=1}^{N} E_{i i}, \quad \operatorname{tr} E^{2}=\sum_{i, j=1}^{N} E_{i j} E_{j i} \\
\operatorname{tr} E^{3} & =\sum_{i, j, k=1}^{N} E_{i j} E_{j k} E_{k i}, \quad \text { etc. }
\end{aligned}
$$

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

The traces $\operatorname{tr} E^{k}$ are Casimir elements:

$$
\begin{aligned}
\operatorname{tr} E & =\sum_{i=1}^{N} E_{i i}, \quad \operatorname{tr} E^{2}=\sum_{i, j=1}^{N} E_{i j} E_{j i} \\
\operatorname{tr} E^{3} & =\sum_{i, j, k=1}^{N} E_{i j} E_{j k} E_{k i}, \quad \text { etc. }
\end{aligned}
$$

Any Casimir element is a unique polynomial in $\operatorname{tr} E^{k}, 1 \leqslant k \leqslant N$.

For the Harish-Chandra images we have

$$
\chi: \sum_{i=1}^{N} E_{i i} \mapsto \sum_{i=1}^{N} l_{i}+\binom{N}{2}
$$

For the Harish-Chandra images we have

$$
\begin{aligned}
& \chi: \sum_{i=1}^{N} E_{i i} \mapsto \sum_{i=1}^{N} l_{i}+\binom{N}{2}, \\
& \chi: \sum_{i, j=1}^{N} E_{i j} E_{j i} \mapsto \sum_{i=1}^{N} l_{i}^{2}+(N-1) \sum_{i=1}^{N} l_{i}+\binom{N}{3},
\end{aligned}
$$

where $l_{i}=E_{i i}-i+1$.

For the Harish-Chandra images we have

$$
\begin{aligned}
& \chi: \sum_{i=1}^{N} E_{i i} \mapsto \sum_{i=1}^{N} l_{i}+\binom{N}{2}, \\
& \chi: \sum_{i, j=1}^{N} E_{i j} E_{j i} \mapsto \sum_{i=1}^{N} l_{i}^{2}+(N-1) \sum_{i=1}^{N} l_{i}+\binom{N}{3},
\end{aligned}
$$

where $l_{i}=E_{i i}-i+1$.

In general,

$$
1+\sum_{m=0}^{\infty} \frac{(-1)^{m} \chi\left(\operatorname{tr} E^{m}\right)}{(u-N+1)^{m+1}}=\prod_{i=1}^{N} \frac{u+l_{i}+1}{u+l_{i}}
$$

Many more constructions of Casimir elements for the Lie algebras $\mathfrak{g l}_{N}, \mathfrak{o}_{N}$ and $\mathfrak{s p}_{2 n}$ are known.

Many more constructions of Casimir elements for the Lie algebras $\mathfrak{g l}_{N}, \mathfrak{o}_{N}$ and $\mathfrak{s p}_{2 n}$ are known.

In particular, there is a linear basis of $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ formed by the quantum immanats \mathbb{S}_{λ} with λ running over partitions with at most N parts (Okounkov-Olshanski, 1996, 1998).

Many more constructions of Casimir elements for the Lie algebras $\mathfrak{g l}_{N}, \mathfrak{o}_{N}$ and $\mathfrak{s p}_{2 n}$ are known.

In particular, there is a linear basis of $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ formed by the quantum immanats \mathbb{S}_{λ} with λ running over partitions with at most N parts (Okounkov-Olshanski, 1996, 1998).

The Harish-Chandra images $\chi\left(\mathbb{S}_{\lambda}\right)$ are the shifted Schur polynomials.

Affine Kac-Moody algebras

Affine Kac-Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g},

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

Affine Kac-Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g},

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.
For the classical types, $\quad\langle X, Y\rangle=$ const $\cdot \operatorname{tr} X Y$,

$$
h^{\vee}=\left\{\begin{array}{lll}
N & \text { for } \mathfrak{g}=\mathfrak{s l}_{N}, & \text { const }=1 \\
N-2 & \text { for } \mathfrak{g}=\mathfrak{o}_{N}, & \text { const }=\frac{1}{2} \\
n+1 & \text { for } \mathfrak{g}=\mathfrak{s p}_{2 n}, & \text { const }=1
\end{array}\right.
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

Question: What are Casimir elements for $\widehat{\mathfrak{g}}$?

Given $\kappa \in \mathbb{C}$, the universal enveloping algebra $\mathrm{U}_{\kappa}(\widehat{\mathfrak{g}})$ at the level κ is the quotient of $\mathrm{U}(\hat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

Given $\kappa \in \mathbb{C}$, the universal enveloping algebra $\mathrm{U}_{\kappa}(\widehat{\mathfrak{g}})$ at the
level κ is the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

A necessary condition for the existence of Casimir elements:
K is at the critical level, $\kappa=-h^{\vee}$.

Given $\kappa \in \mathbb{C}$, the universal enveloping algebra $\mathrm{U}_{\kappa}(\widehat{\mathfrak{g}})$ at the
level κ is the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

A necessary condition for the existence of Casimir elements:
K is at the critical level, $\kappa=-h^{\vee}$.

Still, $\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is too small to contain Casimir elements:
the center of $\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is trivial.

Given $\kappa \in \mathbb{C}$, the universal enveloping algebra $\mathrm{U}_{\kappa}(\widehat{\mathfrak{g}})$ at the
level κ is the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

A necessary condition for the existence of Casimir elements:
K is at the critical level, $\kappa=-h^{\vee}$.

Still, $U_{-h^{\vee}}(\hat{\mathfrak{g}})$ is too small to contain Casimir elements:
the center of $\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is trivial.

By [Kac, 1974], the canonical quadratic Casimir element belongs to an extension of $U_{-h \vee}(\widehat{\mathfrak{g}})$.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right) K .
\end{aligned}
$$

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right) K .
\end{aligned}
$$

The critical level is $K=-N$.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{N}\right) K .
\end{aligned}
$$

The critical level is $K=-N$.

For all $r \in \mathbb{Z}$ the sums

$$
\sum_{i=1}^{N} E_{i i}[r]
$$

are Casimir elements.

For $r \in \mathbb{Z}$ set

$$
C_{r}=\sum_{i, j=1}^{N}\left(\sum_{s<0} E_{i j}[s] E_{j i}[r-s]+\sum_{s \geqslant 0} E_{j i}[r-s] E_{i j}[s]\right)
$$

For $r \in \mathbb{Z}$ set

$$
C_{r}=\sum_{i, j=1}^{N}\left(\sum_{s<0} E_{i j}[s] E_{j i}[r-s]+\sum_{s \geqslant 0} E_{j i}[r-s] E_{i j}[s]\right)
$$

All C_{r} are Casimir elements at the critical level.

For $r \in \mathbb{Z}$ set

$$
C_{r}=\sum_{i, j=1}^{N}\left(\sum_{s<0} E_{i j}[s] E_{j i}[r-s]+\sum_{s \geqslant 0} E_{j i}[r-s] E_{i j}[s]\right) .
$$

All C_{r} are Casimir elements at the critical level.
They belong to the completed universal enveloping algebra
$\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$ defined as the inverse limit

$$
\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)=\lim _{\longleftarrow} \mathrm{U}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right) / \mathrm{I}_{m}, \quad m \rightarrow \infty,
$$

where I_{m} is the left ideal of $\mathrm{U}_{-N}\left(\widehat{\mathfrak{g}}_{N}\right)$ generated by $t^{m} \mathfrak{g l}_{N}[t]$.

Introduce the (formal) Laurent series

$$
E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

Introduce the (formal) Laurent series

$$
E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

and use the notation

$$
E_{i j}(z)_{+}=\sum_{r<0} E_{i j}[r] z^{-r-1}, \quad E_{i j}(z)_{-}=\sum_{r \geqslant 0} E_{i j}[r] z^{-r-1}
$$

Introduce the (formal) Laurent series

$$
E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

and use the notation

$$
E_{i j}(z)_{+}=\sum_{r<0} E_{i j}[r] z^{-r-1}, \quad E_{i j}(z)_{-}=\sum_{r \geqslant 0} E_{i j}[r] z^{-r-1}
$$

Given two Laurent series $a(z)$ and $b(z)$,
their normally ordered product is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}
$$

Note

$$
\sum_{r \in \mathbb{Z}} C_{r} z^{-r-2}=\sum_{i, j=1}^{N}\left(E_{i j}(z)_{+} E_{j i}(z)+E_{j i}(z) E_{i j}(z)_{-}\right)
$$

Note

$$
\sum_{r \in \mathbb{Z}} C_{r} z^{-r-2}=\sum_{i, j=1}^{N}\left(E_{i j}(z)_{+} E_{j i}(z)+E_{j i}(z) E_{i j}(z)_{-}\right)
$$

Hence, all coefficients of the series

$$
\operatorname{tr}: E(z)^{2}:=\sum_{i, j=1}^{N}: E_{i j}(z) E_{j i}(z):
$$

are Casimir elements.

Similarly, all coefficients of the series

$$
\operatorname{tr}: E(z)^{3}:=\sum_{i, j, k=1}^{N}: E_{i j}(z) E_{j k}(z) E_{k i}(z):
$$

are Casimir elements, where the normal ordering is applied
from right to left.

Similarly, all coefficients of the series

$$
\operatorname{tr}: E(z)^{3}:=\sum_{i, j, k=1}^{N}: E_{i j}(z) E_{j k}(z) E_{k i}(z):
$$

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $\operatorname{tr}: E(z)^{4}:!$

Similarly, all coefficients of the series

$$
\operatorname{tr}: E(z)^{3}:=\sum_{i, j, k=1}^{N}: E_{i j}(z) E_{j k}(z) E_{k i}(z):
$$

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $\operatorname{tr}: E(z)^{4}:!$

Correction term: all coefficients of the series

$$
\operatorname{tr}: E(z)^{4}:-\operatorname{tr}:\left(\partial_{z} E(z)\right)^{2}:
$$

are Casimir elements.

Invariants of the vacuum module

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$-invariants

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$-invariants

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Invariants of the vacuum module

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$-module

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t] .
$$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$-invariants

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Any element of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Theorem (Feigin-Frenkel, 1992, Frenkel, 2007).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Explicit constructions of such sets and a new proof of the theorem for the classical types A, B, C, D :
[Chervov-Talalaev, 2006, Chervov-M., 2009, M. 2013].

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$.

Example: $\mathfrak{g}=\mathfrak{g l}_{N}$.
Set $\quad \tau=-d / d t$ and consider the $N \times N$ matrix

$$
\tau+E[-1]=\left[\begin{array}{cccc}
\tau+E_{11}[-1] & E_{12}[-1] & \ldots & E_{1 N}[-1] \\
E_{21}[-1] & \tau+E_{22}[-1] & \ldots & E_{2 N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
E_{N 1}[-1] & E_{N 2}[-1] & \ldots & \tau+E_{N N}[-1]
\end{array}\right]
$$

The coefficients S_{1}, \ldots, S_{N} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+S_{1} \tau^{N-1}+\cdots+S_{N-1} \tau+S_{N}
$$

form a complete set of Segal-Sugawara vectors.

The coefficients S_{1}, \ldots, S_{N} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+S_{1} \tau^{N-1}+\cdots+S_{N-1} \tau+S_{N}
$$

form a complete set of Segal-Sugawara vectors.

For $N=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+S_{1} \tau+S_{2}
\end{aligned}
$$

The coefficients S_{1}, \ldots, S_{N} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+S_{1} \tau^{N-1}+\cdots+S_{N-1} \tau+S_{N}
$$

form a complete set of Segal-Sugawara vectors.

For $N=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+S_{1} \tau+S_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& S_{1}=E_{11}[-1]+E_{22}[-1] \\
& S_{2}=E_{11}[-1] E_{22}[-1]-E_{21}[-1] E_{12}[-1]+E_{22}[-2] .
\end{aligned}
$$

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=U_{m 0} \tau^{m}+U_{m 1} \tau^{m-1}+\cdots+U_{m m}
$$

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=U_{m 0} \tau^{m}+U_{m 1} \tau^{m-1}+\cdots+U_{m m}
$$

All coefficients $U_{m i}$ belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=U_{m 0} \tau^{m}+U_{m 1} \tau^{m-1}+\cdots+U_{m m}
$$

All coefficients $U_{m i}$ belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

The elements $U_{11}, \ldots, U_{N N}$ form
a complete set of Segal-Sugawara vectors.

To get another family of Segal-Sugawara vectors, expand

$$
\operatorname{tr}(\tau+E[-1])^{m}=U_{m 0} \tau^{m}+U_{m 1} \tau^{m-1}+\cdots+U_{m m}
$$

All coefficients $U_{m i}$ belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$.

The elements $U_{11}, \ldots, U_{N N}$ form
a complete set of Segal-Sugawara vectors.

The following are Segal-Sugawara vectors for $\mathfrak{g l}_{N}$:

$$
\operatorname{tr} E[-1], \quad \operatorname{tr} E[-1]^{2}, \quad \operatorname{tr} E[-1]^{3}, \quad \operatorname{tr} E[-1]^{4}-\operatorname{tr} E[-2]^{2} .
$$

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$ are recovered by the state-field correspondence map

$$
Y: V\left(\mathfrak{g l}_{N}\right) \rightarrow \operatorname{End} V\left(\mathfrak{g l}_{N}\right)\left[\left[z, z^{-1}\right]\right]
$$

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$ are recovered by the state-field correspondence map

$$
Y: V\left(\mathfrak{g l}_{N}\right) \rightarrow \text { End } V\left(\mathfrak{g l}_{N}\right)\left[\left[z, z^{-1}\right]\right]
$$

applied to Segal-Sugawara vectors, i.e., elements of $\mathfrak{z}(\widehat{\mathfrak{g}})$.

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$ are recovered by the state-field correspondence map

$$
Y: V\left(\mathfrak{g l}_{N}\right) \rightarrow \text { End } V\left(\mathfrak{g l}_{N}\right)\left[\left[z, z^{-1}\right]\right]
$$

applied to Segal-Sugawara vectors, i.e., elements of $\mathfrak{z}(\widehat{\mathfrak{g}})$.

By definition,

$$
Y: E_{i j}[-1] \mapsto E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1}
$$

Also,

$$
Y: E_{i j}[-r-1] \mapsto \frac{1}{r!} \partial_{z}^{r} E_{i j}(z), \quad r \geqslant 0,
$$

Also,

$$
Y: E_{i j}[-r-1] \mapsto \frac{1}{r!} \partial_{z}^{r} E_{i j}(z), \quad r \geqslant 0,
$$

and

$$
Y: E_{i j}[-1] E_{k l}[-1] \mapsto: E_{i j}(z) E_{k l}(z):
$$

Also,

$$
Y: E_{i j}[-r-1] \mapsto \frac{1}{r!} \partial_{z}^{r} E_{i j}(z), \quad r \geqslant 0
$$

and

$$
Y: E_{i j}[-1] E_{k l}[-1] \mapsto: E_{i j}(z) E_{k l}(z):
$$

We have

$$
\begin{gathered}
Y: \operatorname{tr} E[-1] \mapsto \operatorname{tr} E(z) \\
Y: \operatorname{tr} E[-1]^{2} \mapsto \operatorname{tr}: E(z)^{2}: \\
Y: \operatorname{tr} E[-1]^{3} \mapsto \operatorname{tr}: E(z)^{3}: \\
Y: \operatorname{tr} E[-1]^{4}-\operatorname{tr} E[-2]^{2} \mapsto \operatorname{tr}: E(z)^{4}:-\operatorname{tr}:\left(\partial_{z} E(z)\right)^{2}:
\end{gathered}
$$

Write

$$
\operatorname{tr}:\left(\partial_{z}+E(z)\right)^{m}:=U_{m 0}(z) \partial_{z}^{m}+\cdots+U_{m m}(z)
$$

Write

$$
\operatorname{tr}:\left(\partial_{z}+E(z)\right)^{m}:=U_{m 0}(z) \partial_{z}^{m}+\cdots+U_{m m}(z)
$$

Theorem. The coefficients of the Laurent series

$$
U_{11}(z), \ldots, U_{N N}(z)
$$

are topological generators of the center of $\widetilde{\mathrm{U}}_{-N}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

Proving the Feigin-Frenkel theorem for the classical types:

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

Proving the Feigin-Frenkel theorem for the classical types:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)
$$

which yields a $\mathfrak{g}[t]$-module structure on the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \cong \mathrm{S}\left(\mathfrak{g}\left[t, t^{-1}\right] / \mathfrak{g}[t]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is a $\mathfrak{g}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{g} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be a \mathfrak{g}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{g})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is a $\mathfrak{g}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Theorem (Raïs-Tauvel, 1992, Beilinson-Drinfeld, 1997).
If P_{1}, \ldots, P_{n} are algebraically independent generators of $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$,
then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \geqslant 0$ are algebraically independent generators of $\mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathbf{~}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{+}\left[t^{-1}\right]$.

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{+}\left[t^{-1}\right]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \rightarrow \mathcal{W}\left({ }^{L} \mathfrak{g}\right)
$$

Take a triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ and consider the (affine) Harish-Chandra homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{h}} \rightarrow \mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)
$$

the projection modulo the left ideal generated by $t^{-1} \mathfrak{n}_{+}\left[t^{-1}\right]$.

The restriction to $\mathfrak{z}(\widehat{\mathfrak{g}})$ yields the Harish-Chandra isomorphism

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \rightarrow \mathcal{W}\left({ }^{L} \mathfrak{g}\right)
$$

where $\mathcal{W}\left({ }^{L} \mathfrak{g}\right)$ is the classical \mathcal{W}-algebra associated with the Langlands dual Lie algebra ${ }^{L} \mathfrak{g} \quad$ [Feigin and Frenkel, 1992].

Classical \mathcal{W}-algebras

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

Classical \mathcal{W}-algebras

Let $\mu_{1}, \ldots \mu_{n}$ be a basis of the Cartan subalgebra \mathfrak{h} of \mathfrak{g}.
Set $\mu_{i}[r]=\mu_{i} t^{r} \quad$ and identify

$$
\mathrm{U}\left(t^{-1} \mathfrak{h}\left[t^{-1}\right]\right)=\mathbb{C}\left[\mu_{1}[r], \ldots, \mu_{n}[r] \mid r<0\right]=: \mathcal{P}_{n}
$$

The classical \mathcal{W}-algebra $\mathcal{W}(\mathfrak{g})$ is defined by

$$
\mathcal{W}(\mathfrak{g})=\left\{P \in \mathcal{P}_{n} \mid V_{i} P=0, \quad i=1, \ldots, n\right\}
$$

the V_{i} are the screening operators.

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right)
$$

Example. For $\mathcal{W}\left(\mathfrak{g l}_{N}\right)$ the operators V_{1}, \ldots, V_{N-1} are

$$
\begin{aligned}
& V_{i}=\sum_{r=0}^{\infty} V_{i(r)}\left(\frac{\partial}{\partial \mu_{i}[-r-1]}-\frac{\partial}{\partial \mu_{i+1}[-r-1]}\right) \\
& \sum_{r=0}^{\infty} V_{i(r)} z^{r}=\exp \sum_{m=1}^{\infty} \frac{\mu_{i}[-m]-\mu_{i+1}[-m]}{m} z^{m}
\end{aligned}
$$

Define the elements $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}$ by the Miura transformation

$$
\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=\tau^{N}+\mathcal{E}_{1} \tau^{N-1}+\cdots+\mathcal{E}_{N} .
$$

Define the elements $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N}$ by the Miura transformation

$$
\left(\tau+\mu_{N}[-1]\right) \ldots\left(\tau+\mu_{1}[-1]\right)=\tau^{N}+\mathcal{E}_{1} \tau^{N-1}+\cdots+\mathcal{E}_{N} .
$$

Explicitly,

$$
\mathcal{E}_{m}=e_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right)
$$

is the noncommutative elementary symmetric function,

$$
e_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1}>\cdots>i_{m}} x_{i_{1}} \ldots x_{i_{m}}
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

Then

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{E}_{1}, \ldots, T^{k} \mathcal{E}_{N} \mid k \geqslant 0\right] .
$$

Also,

$$
\mathcal{W}\left(\mathfrak{g l}_{N}\right)=\mathbb{C}\left[T^{k} \mathcal{H}_{1}, \ldots, T^{k} \mathcal{H}_{N} \mid k \geqslant 0\right],
$$

where

$$
\mathcal{H}_{m}=h_{m}\left(T+\mu_{1}[-1], \ldots, T+\mu_{N}[-1]\right)
$$

is the noncommutative complete symmetric function,

$$
h_{m}\left(x_{1}, \ldots, x_{p}\right)=\sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}} .
$$

Brauer algebra $\mathcal{B}_{m}(\omega)$

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

Brauer algebra $\mathcal{B}_{m}(\omega)$

Multiplication of m-diagrams $(m=8)$:

For $1 \leqslant a<b \leqslant m$ denote by $s_{a b}$ and $\epsilon_{a b}$ the diagrams

For $1 \leqslant a<b \leqslant m$ denote by $s_{a b}$ and $\epsilon_{a b}$ the diagrams

The symmetrizer in the Brauer algebra $\mathcal{B}_{m}(\omega)$
is the idempotent $s^{(m)}$ such that

$$
s_{a b} s^{(m)}=s^{(m)} s_{a b}=s^{(m)} \quad \text { and } \quad \epsilon_{a b} s^{(m)}=s^{(m)} \epsilon_{a b}=0
$$

Action in tensors

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_{N}$ set $\omega=N$. The generators of $\mathcal{B}_{m}(N)$ act
in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad \epsilon_{a b} \mapsto Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_{N}$ set $\omega=N$. The generators of $\mathcal{B}_{m}(N)$ act in the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by the rule

$$
s_{a b} \mapsto P_{a b}, \quad \epsilon_{a b} \mapsto Q_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

where $i^{\prime}=N-i+1$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad \epsilon_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad \epsilon_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

with $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In the case $\mathfrak{g}=\mathfrak{s p}_{N}$ with $N=2 n$ set $\omega=-N$. The generators of $\mathcal{B}_{m}(-N)$ act in the tensor space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ by

$$
s_{a b} \mapsto-P_{a b}, \quad \epsilon_{a b} \mapsto-Q_{a b}, \quad 1 \leqslant a<b \leqslant m,
$$

with $\varepsilon_{i}=-\varepsilon_{n+i}=1$ for $i=1, \ldots, n$ and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$ under the action in tensors,

$$
S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m}
$$

Explicitly,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

Explicitly,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Explicitly,

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right) .
$$

Set

$$
\gamma_{m}(\omega)=\frac{\omega+m-2}{\omega+2 m-2}
$$

$$
\omega=\left\{\begin{array}{rll}
N & \text { for } & \mathfrak{g}=\mathfrak{o}_{N} \\
-2 n & \text { for } & \mathfrak{g}=\mathfrak{s p}_{2 n}
\end{array}\right.
$$

Types B, C and D

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

and

$$
F_{i j}[r]=F_{i j} t^{r} \in \widehat{\mathfrak{g}} .
$$

Types B, C and D

Let $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ with $N=2 n$ or $N=2 n+1$.
Set

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

and

$$
F_{i j}[r]=F_{i j} t^{r} \in \widehat{\mathfrak{g}} .
$$

Combine into a matrix

$$
F[r]=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}_{-h \vee}(\widehat{\mathfrak{g}})
$$

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots & \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots & \ldots\left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Theorem. All coefficients of the polynomial in $\tau=-d / d t$

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(\tau+F[-1]_{1}\right) \ldots & \left(\tau+F[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Moreover, in the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian

$$
\operatorname{Pf} F[-1]=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}[-1]
$$

belongs to $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{2 n}\right)$ [M. 2013].

Corollary. The elements $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$ and $\mathfrak{s p}_{2 n}$.

Corollary. The elements $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$ and $\mathfrak{s p}_{2 n}$.

The elements $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n-22 n-2}, \operatorname{Pf} F[-1]$ form a complete set of Segal-Sugawara vectors for $\mathfrak{o}_{2 n}$.

Examples. Complete sets of Segal-Sugawara vectors:

for $\mathfrak{o}_{3}: \quad \operatorname{tr} F[-1]^{2}$
for $\mathfrak{o}_{4}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{Pf} F[-1]$
for $\mathrm{o}_{5}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{tr} F[-1]^{4}-\frac{1}{2} \operatorname{tr} F[-2]^{2}$
for $\mathfrak{o}_{6}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{tr} F[-1]^{4}, \quad \operatorname{Pf} F[-1]$.

Examples. Complete sets of Segal-Sugawara vectors:

for $\mathfrak{o}_{3}: \quad \operatorname{tr} F[-1]^{2}$
for $\mathfrak{o}_{4}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{Pf} F[-1]$
for $\mathfrak{o}_{5}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{tr} F[-1]^{4}-\frac{1}{2} \operatorname{tr} F[-2]^{2}$
for $\mathfrak{o}_{6}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{tr} F[-1]^{4}, \quad \operatorname{Pf} F[-1]$.
for $\mathfrak{s p}_{2}: \quad \operatorname{tr} F[-1]^{2}$
for $\mathfrak{s p}_{4}: \quad \operatorname{tr} F[-1]^{2}, \quad \operatorname{tr} F[-1]^{4}-5 \operatorname{tr} F[-2]^{2}$.

