Higher Sugawara operators and the classical W-algebra for $\mathfrak{g l}_{n}$

Alexander Molev
joint work with
Alexander Chervov
University of Sydney
ITEP, Moscow

Vertex algebras

Vertex algebras

A vertex algebra V is a vector space with the additional data
$(Y, T, \mathbf{1})$,

Vertex algebras

A vertex algebra V is a vector space with the additional data $(Y, T, \mathbf{1}), \quad$ where the state-field correspondence Y is a map

$$
Y: V \rightarrow \operatorname{End} V\left[\left[z, z^{-1}\right]\right]
$$

Vertex algebras

A vertex algebra V is a vector space with the additional data $(Y, T, \mathbf{1}), \quad$ where the state-field correspondence Y is a map

$$
Y: V \rightarrow \text { End } V\left[\left[z, z^{-1}\right]\right]
$$

$\mathbf{1}$ is a vacuum vector $\mathbf{1} \in V$,

Vertex algebras

A vertex algebra V is a vector space with the additional data $(Y, T, \mathbf{1}), \quad$ where the state-field correspondence Y is a map

$$
Y: V \rightarrow \operatorname{End} V\left[\left[z, z^{-1}\right]\right]
$$

$\mathbf{1}$ is a vacuum vector $\mathbf{1} \in V$, and the infinitesimal translation T is an operator

$$
T: V \rightarrow V
$$

These data must satisfy certain axioms. For $a \in V$ we write

$$
Y(a, z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)} \in \text { End } V
$$

These data must satisfy certain axioms. For $a \in V$ we write

$$
Y(a, z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)} \in \text { End } V
$$

the elements $a_{(n)}$ are called the Fourier coefficients of a.

These data must satisfy certain axioms. For $a \in V$ we write

$$
Y(a, z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)} \in \operatorname{End} V,
$$

the elements $a_{(n)}$ are called the Fourier coefficients of a.

Each formal series $Y(a, z) \in$ End $V\left[\left[z, z^{-1}\right]\right]$ must be a field:

These data must satisfy certain axioms. For $a \in V$ we write

$$
Y(a, z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)} \in \operatorname{End} V,
$$

the elements $a_{(n)}$ are called the Fourier coefficients of a.

Each formal series $Y(a, z) \in$ End $V\left[\left[z, z^{-1}\right]\right]$ must be a field:
for any $b \in V$ we must have $a_{(n)} b=0$ for $n \gg 0$.

- Translation covariance: $[T, Y(a, z)]=\partial_{z} Y(a, z)$.
- Translation covariance: $\quad[T, Y(a, z)]=\partial_{z} Y(a, z)$.
- Vacuum axioms: $T \mathbf{1}=0$,
- Translation covariance: $\quad[T, Y(a, z)]=\partial_{z} Y(a, z)$.
- Vacuum axioms: $T \mathbf{1}=0$,
$Y(a, z) 1$ is a power series in z and

$$
\left.Y(a, z) \mathbf{1}\right|_{z=0}=a, \quad Y(\mathbf{1}, z)=\mathrm{id} .
$$

- Translation covariance: $\quad[T, Y(a, z)]=\partial_{z} Y(a, z)$.
- Vacuum axioms: $T \mathbf{1}=0$,
$Y(a, z) 1$ is a power series in z and

$$
\left.Y(a, z) \mathbf{1}\right|_{z=0}=a, \quad Y(\mathbf{1}, z)=\mathrm{id} .
$$

- Locality: for all $a, b \in V$,

$$
(z-w)^{N} Y(a, z) Y(b, w)=(z-w)^{N} Y(b, w) Y(a, z), \quad N \gg 0
$$

- Translation covariance: $\quad[T, Y(a, z)]=\partial_{z} Y(a, z)$.
- Vacuum axioms: $T \mathbf{1}=0$,
$Y(a, z) 1$ is a power series in z and

$$
\left.Y(a, z) \mathbf{1}\right|_{z=0}=a, \quad Y(\mathbf{1}, z)=\mathrm{id} .
$$

- Locality: for all $a, b \in V$,

$$
(z-w)^{N} Y(a, z) Y(b, w)=(z-w)^{N} Y(b, w) Y(a, z), \quad N \gg 0
$$

Remarks. T is determined by $Y: \quad T a=a_{(-2)} 1$.

- Translation covariance: $\quad[T, Y(a, z)]=\partial_{z} Y(a, z)$.
- Vacuum axioms: $T \mathbf{1}=0$,
$Y(a, z) 1$ is a power series in z and

$$
\left.Y(a, z) \mathbf{1}\right|_{z=0}=a, \quad Y(\mathbf{1}, z)=\mathrm{id} .
$$

- Locality: for all $a, b \in V$,

$$
(z-w)^{N} Y(a, z) Y(b, w)=(z-w)^{N} Y(b, w) Y(a, z), \quad N \gg 0
$$

Remarks. T is determined by $Y: \quad T a=a_{(-2)} 1$.
Moreover, $\quad Y(T a, z)=\partial_{z} Y(a, z)$.

Example. Let V be a commutative associative algebra with 1 and let $T: V \rightarrow V$ be a derivation.

Example. Let V be a commutative associative algebra with 1 and let $T: V \rightarrow V$ be a derivation.

Then V is a vertex algebra with the vacuum vector 1 , the infinitesimal translation T and
$Y(a, z)$ is the operator of multiplication by $e^{z T} a$.

Example. Let V be a commutative associative algebra with 1 and let $T: V \rightarrow V$ be a derivation.

Then V is a vertex algebra with the vacuum vector 1 , the infinitesimal translation T and
$Y(a, z)$ is the operator of multiplication by $e^{z T} a$.
V is a commutative vertex algebra.

Example. Let V be a commutative associative algebra with 1 and let $T: V \rightarrow V$ be a derivation.

Then V is a vertex algebra with the vacuum vector 1 , the infinitesimal translation T and

$$
Y(a, z) \text { is the operator of multiplication by } e^{z T} a \text {. }
$$

V is a commutative vertex algebra.

A general vertex algebra can be viewed as a vector space with the multiplication depending on z :

$$
a_{z} b=Y(a, z) b .
$$

The span in End V of all Fourier coefficients $a_{(n)}$ of all vertex operators $Y(a, z)$ is a Lie subalgebra of End V.

The span in End V of all Fourier coefficients $a_{(n)}$ of all vertex operators $Y(a, z)$ is a Lie subalgebra of End V.

The commutator of Fourier coefficients is given by the Borcherds identity:

$$
\left[a_{(m)}, b_{(k)}\right]=\sum_{n \geqslant 0}\binom{m}{n}\left(a_{(n)} b\right)_{(m+k-n)}
$$

The span in End V of all Fourier coefficients $a_{(n)}$ of all vertex operators $Y(a, z)$ is a Lie subalgebra of End V.

The commutator of Fourier coefficients is given by the Borcherds identity:

$$
\left[a_{(m)}, b_{(k)}\right]=\sum_{n \geqslant 0}\binom{m}{n}\left(a_{(n)} b\right)_{(m+k-n)}
$$

- Hence, if $a_{(n)} b=0$ for all $a \in V$ and $n \geqslant 0$, then all Fourier coefficients $b_{(n)}$ belong to the center of this Lie subalgebra.

Center of a vertex algebra

Center of a vertex algebra

The center $\mathcal{Z}(V)$ of a vertex algebra V is the subspace of V defined by
$\mathcal{Z}(V)=\left\{b \in V \mid a_{(n)} b=0\right.$ for all $a \in V$ and $\left.n \geqslant 0\right\}$.

Center of a vertex algebra

The center $\mathcal{Z}(V)$ of a vertex algebra V is the subspace of V defined by
$\mathcal{Z}(V)=\left\{b \in V \mid a_{(n)} b=0\right.$ for all $a \in V$ and $\left.n \geqslant 0\right\}$.

- $\mathcal{Z}(V)$ is T-invariant.

Center of a vertex algebra

The center $\mathcal{Z}(V)$ of a vertex algebra V is the subspace of V defined by
$\mathcal{Z}(V)=\left\{b \in V \mid a_{(n)} b=0\right.$ for all $a \in V$ and $\left.n \geqslant 0\right\}$.

- $\mathcal{Z}(V)$ is T-invariant.
- $\mathcal{Z}(V)$ is a commutative associative algebra with

$$
a b:=a_{(-1)} b, \quad a, b \in \mathcal{Z}(V) .
$$

Center of a vertex algebra

The center $\mathcal{Z}(V)$ of a vertex algebra V is the subspace of V defined by
$\mathcal{Z}(V)=\left\{b \in V \mid a_{(n)} b=0\right.$ for all $a \in V$ and $\left.n \geqslant 0\right\}$.

- $\mathcal{Z}(V)$ is T-invariant.
- $\mathcal{Z}(V)$ is a commutative associative algebra with
$a b:=a_{(-1)} b, \quad a, b \in \mathcal{Z}(V)$.
- The vacuum vector $\mathbf{1}$ is a unit, T is a derivation.

Vertex algebra associated with $\widehat{\mathfrak{g l}}_{n}$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}_{n}=\mathfrak{g l}_{n}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ has the commutation relations

$$
\left[e_{i j}[r], e_{k}[s]\right]=\delta_{k j} e_{i l}[r+s]-\delta_{i l} e_{k j}[r+s]+K\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{n}\right) r \delta_{r,-s},
$$

and the element K is central.

Vertex algebra associated with $\widehat{\mathfrak{g l}}_{n}$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}_{n}=\mathfrak{g l}_{n}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ has the commutation relations
$\left[e_{i j}[r], e_{k}[s]\right]=\delta_{k j} e_{i l}[r+s]-\delta_{i l} e_{k j}[r+s]+K\left(\delta_{k j} \delta_{i l}-\frac{\delta_{i j} \delta_{k l}}{n}\right) r \delta_{r,-s}$,
and the element K is central.

In particular, for any r the element $e_{11}[r]+\cdots+e_{n n}[r]$ belongs to the center of $\hat{\mathfrak{g}}_{n}$.

Let $\kappa \in \mathbb{C}$.

Let $\kappa \in \mathbb{C}$.

Introduce the vector space $V_{k}\left(\mathfrak{g l}_{n}\right)$ as the quotient of the universal enveloping algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}_{n}\right)$ by the left ideal generated by $\mathfrak{g l}_{n}[t]$ and $K-\kappa$:

Let $\kappa \in \mathbb{C}$.

Introduce the vector space $V_{k}\left(\mathfrak{g l}_{n}\right)$ as the quotient of the universal enveloping algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}_{n}\right)$ by the left ideal generated by $\mathfrak{g l}_{n}[t]$ and $K-\kappa$:

Let $\kappa \in \mathbb{C}$.
Introduce the vector space $V_{k}\left(\mathfrak{g l}_{n}\right)$ as the quotient of the universal enveloping algebra $\mathrm{U}\left(\widehat{\mathfrak{g}}_{n}\right)$ by the left ideal generated by $\mathfrak{g l}_{n}[t]$ and $K-\kappa$:

We view $V_{k}\left(\mathfrak{g l}_{n}\right)$ as a $\hat{\mathfrak{g}}_{n}$-module. It is called the vacuum representation of level κ.

As a vector space, $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

As a vector space, $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

- $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ is a vertex algebra.

As a vector space, $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

- $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ is a vertex algebra.

The vacuum vector is 1 ,

As a vector space, $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

- $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ is a vertex algebra.

The vacuum vector is 1 ,

$$
T: 1 \mapsto 0, \quad\left[T, e_{i j}[r]\right]=-r e_{i j}[r-1] .
$$

As a vector space, $V_{k}\left(\mathfrak{g l}_{n}\right)$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

- $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ is a vertex algebra.

The vacuum vector is 1 ,

$$
T: 1 \mapsto 0, \quad\left[T, e_{i j}[r]\right]=-r e_{i j}[r-1] .
$$

The state-field correspondence Y is defined as follows. First,

$$
Y\left(e_{i j}[-1], z\right)=\sum_{m \in \mathbb{Z}} e_{i j}[m] z^{-m-1}=: e_{i j}(z) .
$$

Furthermore, for any $r \geqslant 0$ we get

$$
Y\left(e_{i j}[-r-1], z\right)=\frac{1}{r!} Y\left(T^{r} e_{i j}[-1], z\right)=\frac{1}{r!} \partial_{z}^{r} e_{i j}(z)
$$

Furthermore, for any $r \geqslant 0$ we get

$$
Y\left(e_{i j}[-r-1], z\right)=\frac{1}{r!} Y\left(T^{r} e_{i j}[-1], z\right)=\frac{1}{r!} \partial_{z}^{r} e_{i j}(z)
$$

In order to define $Y\left(e_{i_{1} j_{1}}\left[-r_{1}-1\right] \ldots e_{i_{m j_{m}}}\left[-r_{m}-1\right], z\right)$,
we need to use normal ordering.

Let

$$
a(z)=\sum_{r \in \mathbb{Z}} a_{(r)} z^{-r-1} \quad \text { and } \quad b(w)=\sum_{r \in \mathbb{Z}} b_{(r)} w^{-r-1}
$$

Let

$$
a(z)=\sum_{r \in \mathbb{Z}} a_{(r)} z^{-r-1} \quad \text { and } \quad b(w)=\sum_{r \in \mathbb{Z}} b_{(r)} w^{-r-1}
$$

Then the normally ordered product is

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-},
$$

Let

$$
a(z)=\sum_{r \in \mathbb{Z}} a_{(r)} z^{-r-1} \quad \text { and } \quad b(w)=\sum_{r \in \mathbb{Z}} b_{(r)} w^{-r-1}
$$

Then the normally ordered product is

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-},
$$

where

$$
a(z)_{+}=\sum_{r<0} a_{(r)} z^{-r-1} \quad \text { and } \quad a(z)_{-}=\sum_{r \geqslant 0} a_{(r)} z^{-r-1} .
$$

Now, for any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
& Y\left(e_{i_{1} j_{1}}\left[-r_{1}-1\right] \ldots e_{i_{m j} j_{m}}\left[-r_{m}-1\right], z\right) \\
&=\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} e_{i_{1} j_{1}}(z) \ldots \partial_{z}^{r_{m}} e_{i_{m} j_{m}}(z):
\end{aligned}
$$

with the convention that the ordered product is read
from right to left.

Example. We have

$$
Y\left(e_{i j}[-1] e_{k l}[-1], z\right)=: e_{i j}(z) e_{k l}(z):
$$

Example. We have

$$
\begin{aligned}
& Y\left(e_{i j}[-1] e_{k l}[-1], z\right)=: e_{i j}(z) e_{k l}(z): \\
& =\sum_{s \in \mathbb{Z}}\left(\sum_{r<0} e_{i j}[r] e_{k l}[s] z^{-r-s-2}+\sum_{r \geqslant 0} e_{k l}[s] e_{i j}[r] z^{-r-s-2}\right) .
\end{aligned}
$$

Example. We have

$$
\begin{aligned}
& Y\left(e_{i j}[-1] e_{k l}[-1], z\right)=: e_{i j}(z) e_{k l}(z): \\
& =\sum_{s \in \mathbb{Z}}\left(\sum_{r<0} e_{i j}[r] e_{k l}[s] z^{-r-s-2}+\sum_{r \geqslant 0} e_{k l}[s] e_{i j}[r] z^{-r-s-2}\right) .
\end{aligned}
$$

Hence, for the Fourier coefficients we have

$$
\left(e_{i j}[-1] e_{k l}[-1]\right)_{(m)}=\sum_{r<0} e_{i j}[r] e_{k l}[m-r-1]+\sum_{r \geqslant 0} e_{k l}[m-r-1] e_{i j}[r] .
$$

Example. We have

$$
\begin{aligned}
& Y\left(e_{i j}[-1] e_{k l}[-1], z\right)=: e_{i j}(z) e_{k l}(z): \\
& =\sum_{s \in \mathbb{Z}}\left(\sum_{r<0} e_{i j}[r] e_{k l}[s] z^{-r-s-2}+\sum_{r \geqslant 0} e_{k l}[s] e_{i j}[r] z^{-r-s-2}\right) .
\end{aligned}
$$

Hence, for the Fourier coefficients we have

$$
\left(e_{i j}[-1] e_{k l}[-1]\right)_{(m)}=\sum_{r<0} e_{i j}[r] e_{k l}[m-r-1]+\sum_{r \geqslant 0} e_{k l}[m-r-1] e_{i j}[r] .
$$

The local completion of the universal enveloping algebra
$\mathrm{U}\left(\hat{\mathfrak{g l}}_{n}\right)$ at the level κ is the Lie algebra $\mathrm{U}_{\kappa}\left(\widehat{\mathfrak{g}}_{n}\right)_{\text {loc }}$ spanned by the Fourier coefficients of the fields $Y(a, z)$ with $a \in V_{\kappa}\left(\mathfrak{g l}_{n}\right)$.

The center of $V_{k}\left(\mathfrak{g l}_{n}\right)$

The center of $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$

By a Segal-Sugawara vector S we will mean any element of the center of the vertex algebra $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$, that is, any element
$S \in V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ satisfying $\mathfrak{g l}_{n}[t] S=0$.

The center of $V_{k}\left(\mathfrak{g l}_{n}\right)$

By a Segal-Sugawara vector S we will mean any element of the center of the vertex algebra $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$, that is, any element
$S \in V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ satisfying $\mathfrak{g l}_{n}[t] S=0$.

If $\kappa \neq-n$, then the center of $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ is trivial, i.e., coincides with the algebra of polynomials in

$$
e_{11}[-1]+\cdots+e_{n n}[-1], \quad e_{11}[-2]+\cdots+e_{n n}[-2]
$$

The center of $V_{k}\left(\mathfrak{g l}_{n}\right)$

By a Segal-Sugawara vector S we will mean any element of the center of the vertex algebra $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$, that is, any element
$S \in V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ satisfying $\mathfrak{g l}_{n}[t] S=0$.

If $\kappa \neq-n$, then the center of $V_{\kappa}\left(\mathfrak{g l}_{n}\right)$ is trivial, i.e., coincides with the algebra of polynomials in

$$
e_{11}[-1]+\cdots+e_{n n}[-1], \quad e_{11}[-2]+\cdots+e_{n n}[-2]
$$

Remark. $n=h^{\vee}$ is the dual Coxeter number for $\mathfrak{s l}_{n}$.

From now on suppose $\kappa=-n$, the critical level.

From now on suppose $\kappa=-n$, the critical level.

Example.

The quadratic element

$$
S=\sum_{i, j=1}^{n} e_{i j}[-1] e_{j i}[-1]
$$

is the classical Segal-Sugawara vector.

From now on suppose $\kappa=-n$, the critical level.

Example.

The quadratic element

$$
S=\sum_{i, j=1}^{n} e_{i j}[-1] e_{j i}[-1]
$$

is the classical Segal-Sugawara vector.
Remark. If $\kappa \neq-n$ then the Fourier coefficients of the field

$$
\frac{1}{2(\kappa+n)} Y(S, z)
$$

generate an action of the Virasoro algebra on $V_{\kappa}\left(\mathfrak{s l}_{n}\right)$
(the Sugawara construction).

Set
$\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)=$ the center of the vertex algebra $\quad V_{-n}\left(\mathfrak{g l}_{n}\right)$.

Set
$\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)=$ the center of the vertex algebra $\quad V_{-n}\left(\mathfrak{g l}_{n}\right)$.

This is a T-invariant commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

Set

$$
\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)=\text { the center of the vertex algebra } \quad V_{-n}\left(\mathfrak{g l}_{n}\right) .
$$

This is a T-invariant commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

For any element $S \in \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ denote by \bar{S} its highest degree component with respect to the natural filtration in the universal enveloping algebra.

Segal-Sugawara vectors

$$
S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)
$$

form a complete set of Segal-Sugawara vectors, if the highest degree components $\bar{S}_{1}, \ldots, \bar{S}_{n}$ coincide with the images of certain algebraically independent generators of the algebra of invariants $\mathrm{S}\left(\mathfrak{g l}_{n}\right)^{\mathfrak{g l}_{n}}$ under the embedding
$\mathrm{S}\left(\mathfrak{g l} l_{n}\right) \hookrightarrow \mathrm{S}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ defined by $e_{i j} \mapsto e_{i j}[-1]$.

Theorem (T. Hayashi '88, R. Goodman \& N. Wallach '89,
B. Feigin \& E. Frenkel '92).

Theorem (T. Hayashi '88, R. Goodman \& N. Wallach '89,
B. Feigin \& E. Frenkel '92).

There exists a complete set S_{1}, \ldots, S_{n} of Segal-Sugawara
vectors and

Theorem (T. Hayashi '88, R. Goodman \& N. Wallach '89,
B. Feigin \& E. Frenkel '92).

There exists a complete set S_{1}, \ldots, S_{n} of Segal-Sugawara
vectors and

$$
\mathfrak{z}\left(\widehat{\mathfrak{g}} l_{n}\right)=\mathbb{C}\left[T^{r} S_{l} \mid I=1, \ldots, n, \quad r \geqslant 0\right] .
$$

Explicit formulas for Segal-Sugawara vectors

Explicit formulas for Segal-Sugawara vectors

We will need the extended Lie algebra $\widehat{\mathfrak{g}}_{n} \oplus \mathbb{C} \tau$, where for the element τ we have the relations

$$
\left[\tau, e_{i j}[r]\right]=-r e_{i j}[r-1], \quad[\tau, K]=0
$$

Explicit formulas for Segal-Sugawara vectors

We will need the extended Lie algebra $\widehat{\mathfrak{g}}_{n} \oplus \mathbb{C} \tau$, where for the element τ we have the relations

$$
\left[\tau, e_{i j}[r]\right]=-r e_{i j}[r-1], \quad[\tau, K]=0
$$

Note that $\quad T a=[\tau, a] \quad$ for any $\quad a \in V_{-n}\left(\mathfrak{g l}_{n}\right)$.

For an arbitrary $n \times n$ matrix $A=\left[a_{i j}\right]$ with entries in a ring we define its column-determinant $\operatorname{cdet} A$ by the formula

$$
\operatorname{cdet} A=\sum_{\sigma} \operatorname{sgn} \sigma \cdot a_{\sigma(1) 1} \ldots a_{\sigma(n) n}
$$

summed over all permutations σ of the set $\{1, \ldots, n\}$.

Consider the $n \times n$ matrix $\tau+E[-1]$ given by

$$
\tau+E[-1]=\left[\begin{array}{cccc}
\tau+e_{11}[-1] & e_{12}[-1] & \ldots & e_{1 n}[-1] \\
e_{21}[-1] & \tau+e_{22}[-1] & \ldots & e_{2 n}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
e_{n 1}[-1] & e_{n 2}[-1] & \ldots & \tau+e_{n n}[-1]
\end{array}\right]
$$

Theorem (A. Chervov \& A. M. '09).
The coefficients S_{1}, \ldots, S_{n} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n-1} \tau+S_{n}
$$

form a complete set of Segal-Sugawara vectors in $V_{-n}\left(\mathfrak{g l}_{n}\right)$.

Theorem (A. Chervov \& A. M. '09).
The coefficients S_{1}, \ldots, S_{n} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n-1} \tau+S_{n}
$$

form a complete set of Segal-Sugawara vectors in $V_{-n}\left(\mathfrak{g l}_{n}\right)$.
Hence, $\mathfrak{z}\left(\hat{\mathfrak{g l}}_{n}\right)$ is the algebra of polynomials,

$$
\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)=\mathbb{C}\left[T^{r} S_{l} \mid I=1, \ldots, n ; r \geqslant 0\right] .
$$

Examples.

If $n=2$ then

Examples.

If $n=2$ then

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+e_{11}[-1]\right)\left(\tau+e_{22}[-1]\right)-e_{21}[-1] e_{12}[-1] \\
& =\tau^{2}+S_{1} \tau+S_{2}
\end{aligned}
$$

Examples.

If $n=2$ then

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+e_{11}[-1]\right)\left(\tau+e_{22}[-1]\right)-e_{21}[-1] e_{12}[-1] \\
& =\tau^{2}+S_{1} \tau+S_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& S_{1}=e_{11}[-1]+e_{22}[-1], \\
& S_{2}=e_{11}[-1] e_{22}[-1]-e_{21}[-1] e_{12}[-1]+e_{22}[-2] .
\end{aligned}
$$

Regarding the Lie algebra $\mathfrak{s l}_{n}$ as the quotient of $\mathfrak{g l}_{n}$ by the relation $e_{11}+\cdots+e_{n n}=0$, we obtain the respective complete set of Segal-Sugawara vectors in $V_{-n}\left(\mathfrak{s l}_{n}\right)$. In particular, the vector S_{1} vanishes, while S_{2} coincides with the canonical quadratic element, up to a constant factor.

Proof. A matrix $A=\left[a_{i j}\right]$ over a ring is a Manin matrix if

$$
a_{i j} a_{k l}-a_{k l} a_{i j}=a_{k j} a_{i l}-a_{i l} a_{k j} \quad \text { for all possible } i, j, k, l .
$$

Proof. A matrix $A=\left[a_{i j}\right]$ over a ring is a Manin matrix if

$$
a_{i j} a_{k l}-a_{k l} a_{i j}=a_{k j} a_{i l}-a_{i l} a_{k j} \quad \text { for all possible } i, j, k, l .
$$

Lemma. The matrix $\tau+E[-1]$ with entries in the algebra $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right] \oplus \mathbb{C} \tau\right)$ is a Manin matrix.

Proof. A matrix $A=\left[a_{i j}\right]$ over a ring is a Manin matrix if

$$
a_{i j} a_{k l}-a_{k l} a_{i j}=a_{k j} a_{i l}-a_{i l} a_{k j} \quad \text { for all possible } i, j, k, l .
$$

Lemma. The matrix $\tau+E[-1]$ with entries in the algebra $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right] \oplus \mathbb{C} \tau\right)$ is a Manin matrix.

Check that for all i, j

$$
\begin{aligned}
e_{i j}[0] \operatorname{cdet}(\tau+E[-1]) & =0 \quad \text { and } \\
e_{n n}[1] \operatorname{cdet}(\tau+E[-1]) & =0
\end{aligned}
$$

in the $\widehat{\mathfrak{g l}}_{n}$-module $V_{-n}\left(\mathfrak{g l}_{n}\right) \otimes \mathbb{C}[\tau]$.

Corollary. For any $k \geqslant 0$ all coefficients $P_{k l}$ in the expansion

$$
\operatorname{tr}(\tau+E[-1])^{k}=P_{k 0} \tau^{k}+P_{k 1} \tau^{k-1}+\cdots+P_{k k}
$$

are Segal-Sugawara vectors in $V_{-n}\left(\mathfrak{g l}_{n}\right)$.

Corollary. For any $k \geqslant 0$ all coefficients $P_{k l}$ in the expansion

$$
\operatorname{tr}(\tau+E[-1])^{k}=P_{k 0} \tau^{k}+P_{k 1} \tau^{k-1}+\cdots+P_{k k}
$$

are Segal-Sugawara vectors in $V_{-n}\left(\mathfrak{g l}_{n}\right)$.
Moreover, the elements $P_{11}, \ldots, P_{n n}$ form a complete set of
Segal-Sugawara vectors.

Corollary. For any $k \geqslant 0$ all coefficients $P_{k l}$ in the expansion

$$
\operatorname{tr}(\tau+E[-1])^{k}=P_{k 0} \tau^{k}+P_{k 1} \tau^{k-1}+\cdots+P_{k k}
$$

are Segal-Sugawara vectors in $V_{-n}\left(\mathfrak{g l}_{n}\right)$.
Moreover, the elements $P_{11}, \ldots, P_{n n}$ form a complete set of
Segal-Sugawara vectors.
Hence, $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{n}\right)$ is the algebra of polynomials,

$$
\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{n}\right)=\mathbb{C}\left[T^{r} P_{l /} \mid I=1, \ldots, n ; r \geqslant 0\right] .
$$

Proof is based on the Newton formula

(A. Chervov \& G. Falqui, '08):

$$
\begin{aligned}
& \operatorname{cdet}(u+\tau+E[-1])^{-1} \cdot \partial_{u} \operatorname{cdet}(u+\tau+E[-1]) \\
& =\sum_{k=0}^{\infty}(-1)^{k} u^{-k-1} \operatorname{tr}(\tau+E[-1])^{k}
\end{aligned}
$$

Proof is based on the Newton formula

(A. Chervov \& G. Falqui, '08):

$$
\begin{aligned}
& \operatorname{cdet}(u+\tau+E[-1])^{-1} \cdot \partial_{u} \operatorname{cdet}(u+\tau+E[-1]) \\
& =\sum_{k=0}^{\infty}(-1)^{k} u^{-k-1} \operatorname{tr}(\tau+E[-1])^{k}
\end{aligned}
$$

Examples. We have
$P_{10}=n, \quad P_{11}=\operatorname{tr} E[-1]$
$P_{20}=n, \quad P_{21}=2 \operatorname{tr} E[-1], \quad P_{22}=\operatorname{tr} E[-1]^{2}+\operatorname{tr} E[-2]$,
$P_{30}=n, \quad P_{31}=3 \operatorname{tr} E[-1], \quad P_{32}=3 \operatorname{tr} E[-1]^{2}+3 \operatorname{tr} E[-2]$,
$P_{33}=\operatorname{tr} E[-1]^{3}+2 \operatorname{tr} E[-1] E[-2]+\operatorname{tr} E[-2] E[-1]+2 \operatorname{tr} E[-3]$.

Proof is based on the Newton formula

(A. Chervov \& G. Falqui, '08):

$$
\begin{aligned}
& \operatorname{cdet}(u+\tau+E[-1])^{-1} \cdot \partial_{u} \operatorname{cdet}(u+\tau+E[-1]) \\
& =\sum_{k=0}^{\infty}(-1)^{k} u^{-k-1} \operatorname{tr}(\tau+E[-1])^{k} .
\end{aligned}
$$

Examples. We have
$P_{10}=n, \quad P_{11}=\operatorname{tr} E[-1]$
$P_{20}=n, \quad P_{21}=2 \operatorname{tr} E[-1], \quad P_{22}=\operatorname{tr} E[-1]^{2}+\operatorname{tr} E[-2]$,
$P_{30}=n, \quad P_{31}=3 \operatorname{tr} E[-1], \quad P_{32}=3 \operatorname{tr} E[-1]^{2}+3 \operatorname{tr} E[-2]$,
$P_{33}=\operatorname{tr} E[-1]^{3}+2 \operatorname{tr} E[-1] E[-2]+\operatorname{tr} E[-2] E[-1]+2 \operatorname{tr} E[-3]$.

Center of the local completion

Center of the local completion

Recall that in the vertex algebra $V_{-n}\left(\mathfrak{g l}_{n}\right)$ we have

$$
\begin{aligned}
& e_{i j}(z)=Y\left(e_{i j}[-1], z\right) \text { with } \\
& \qquad e_{i j}(z)=\sum_{r \in \mathbb{Z}} e_{i j}[r] z^{-r-1}, \quad i, j=1, \ldots, n .
\end{aligned}
$$

Center of the local completion

Recall that in the vertex algebra $V_{-n}\left(\mathfrak{g l}_{n}\right)$ we have
$e_{i j}(z)=Y\left(e_{i j}[-1], z\right)$ with

$$
e_{i j}(z)=\sum_{r \in \mathbb{Z}} e_{i j}[r] z^{-r-1}, \quad i, j=1, \ldots, n .
$$

Recall also that the local completion of $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{n}\right)$ at the critical level $\kappa=-n$ is the Lie algebra $\mathrm{U}_{-n}\left(\widehat{\mathfrak{g l}}_{n}\right)_{\text {loc }}$ spanned by the

Fourier coefficients of the fields $Y(a, z)$ with $a \in V_{-n}\left(\mathfrak{g l}_{n}\right)$.

Introduce the $n \times n$ matrix $\partial_{z}+E(z)$ by

$$
\partial_{z}+E(z)=\left[\begin{array}{cccc}
\partial_{z}+e_{11}(z) & e_{12}(z) & \ldots & e_{1 n}(z) \\
e_{21}(z) & \partial_{z}+e_{22}(z) & \ldots & e_{2 n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
e_{n 1}(z) & e_{n 2}(z) & \ldots & \partial_{z}+e_{n n}(z)
\end{array}\right]
$$

Expand the normally ordered column-determinant

$: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)$.

Expand the normally ordered column-determinant
$: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)$.
Equivalently, the fields $S_{l}(z)$ are given by $S_{l}(z)=Y\left(S_{l}, z\right)$.

Expand the normally ordered column-determinant
$: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)$.
Equivalently, the fields $S_{l}(z)$ are given by $S_{l}(z)=Y\left(S_{l}, z\right)$.
Example. For $n=2$ we have

$$
\begin{aligned}
& S_{1}(z)=e_{11}(z)+e_{22}(z) \\
& S_{2}(z)=: e_{11}(z) e_{22}(z):-: e_{21}(z) e_{12}(z):+e_{22}^{\prime}(z)
\end{aligned}
$$

Expand the normally ordered column-determinant
$: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)$.
Equivalently, the fields $S_{l}(z)$ are given by $S_{l}(z)=Y\left(S_{l}, z\right)$.
Example. For $n=2$ we have

$$
\begin{aligned}
& S_{1}(z)=e_{11}(z)+e_{22}(z), \\
& S_{2}(z)=: e_{11}(z) e_{22}(z):-: e_{21}(z) e_{12}(z):+e_{22}^{\prime}(z) .
\end{aligned}
$$

The fields $P_{k l}(z)=Y\left(P_{k l}, z\right)$ corresponding to the
Segal-Sugawara vectors $P_{k l}$ are given by

$$
: \operatorname{tr}\left(\partial_{z}+E(z)\right)^{k}:=P_{k 0}(z) \partial_{z}^{k}+P_{k 1}(z) \partial_{z}^{k-1}+\cdots+P_{k k}(z) .
$$

The center of the local completion $\mathrm{U}_{-n}\left(\widehat{\mathfrak{g l}}_{n}\right)_{\text {loc }}$ at the critical level is the vector subspace $\mathcal{Z}\left(\widehat{\mathfrak{g}}_{n}\right)$ which consists of the elements commuting with $\widehat{\mathfrak{g l}}_{n}$.

The center of the local completion $U_{-n}\left(\widehat{\mathfrak{g}}_{n}\right)_{\text {loc }}$ at the critical level is the vector subspace $3\left(\widehat{\mathfrak{g}}_{n}\right)$ which consists of the elements commuting with $\widehat{\mathfrak{g}}_{n}$.

Corollary. The center $\mathcal{Z}\left(\widehat{\mathfrak{g}}_{n}\right)$ of the local completion $\mathrm{U}_{-n}\left(\widehat{\mathfrak{g}}_{n}\right)_{\text {loc }}$ consists of the Fourier coefficients of all differential polynomials in either family of the fields $S_{1}(z), \ldots, S_{n}(z)$ or $P_{11}(z), \ldots, P_{n n}(z)$.

Sugawara operators in Verma modules

Sugawara operators in Verma modules

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{C}$.

Sugawara operators in Verma modules

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{C}$. The Verma module $M(\lambda)$ of the critical level over $\widehat{\mathfrak{g l}}_{n}$ is the universal module generated by a nonzero vector ξ (the highest vector) satisfying the conditions

Sugawara operators in Verma modules

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{C}$. The Verma module $M(\lambda)$ of the critical level over $\widehat{\mathfrak{g l}}_{n}$ is the universal module generated by a nonzero vector ξ (the highest vector) satisfying the conditions

$$
e_{i i}[0] \xi=\lambda_{i} \xi \quad \text { for } \quad i=1, \ldots, n,
$$

Sugawara operators in Verma modules

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{C}$. The Verma module $M(\lambda)$ of the critical level over $\widehat{\mathfrak{g l}}_{n}$ is the universal module generated by a nonzero vector ξ (the highest vector) satisfying the conditions

$$
\begin{array}{ll}
e_{i i}[0] \xi=\lambda_{i} \xi & \text { for } \quad i=1, \ldots, n, \\
e_{i j}[0] \xi=0 & \text { for } \quad i<j,
\end{array}
$$

Sugawara operators in Verma modules

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{C}$. The Verma module $M(\lambda)$ of the critical level over $\widehat{\mathfrak{g l}}_{n}$ is the universal module generated by a nonzero vector ξ (the highest vector) satisfying the conditions

$$
\begin{array}{ll}
e_{i i}[0] \xi=\lambda_{i} \xi & \text { for } \quad i=1, \ldots, n, \\
e_{i j}[0] \xi=0 & \text { for } \quad i<j, \\
e_{i j}[r] \xi=0 & \text { for all } i, j \quad \text { and } \quad r \geqslant 1,
\end{array}
$$

Sugawara operators in Verma modules

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i} \in \mathbb{C}$. The Verma module $M(\lambda)$ of the critical level over $\widehat{\mathfrak{g l}}_{n}$ is the universal module generated by a nonzero vector ξ (the highest vector) satisfying the conditions

$$
\begin{aligned}
e_{i i}[0] \xi & =\lambda_{i} \xi & & \text { for } \quad i=1, \ldots, n, \\
e_{i j}[0] \xi & =0 & & \text { for } \quad i<j, \\
e_{i j}[r] \xi & =0 & & \text { for all } \quad i, j \quad \text { and } \quad r \geqslant 1, \\
K \xi & =-n \xi . & &
\end{aligned}
$$

A singular vector of the Verma module is any nonzero vector $\eta \in M(\lambda)$ satisfying the conditions

$$
e_{i j}[0] \eta=0 \quad \text { for } \quad i<j,
$$

A singular vector of the Verma module is any nonzero vector $\eta \in M(\lambda)$ satisfying the conditions

$$
\begin{array}{ll}
e_{i j}[0] \eta=0 & \text { for } \quad i<j, \\
e_{i j}[r] \eta=0 & \text { for all } \quad i, j \quad \text { and } \quad r \geqslant 1 .
\end{array}
$$

A singular vector of the Verma module is any nonzero vector $\eta \in M(\lambda)$ satisfying the conditions

$$
\begin{array}{ll}
e_{i j}[0] \eta=0 & \text { for } \quad i<j, \\
e_{i j}[r] \eta=0 & \text { for all } \quad i, j \quad \text { and } \quad r \geqslant 1 .
\end{array}
$$

Write

$$
S_{l}(z)=\sum_{r \in \mathbb{Z}} S_{l,(r)} z^{-r-1}
$$

A singular vector of the Verma module is any nonzero vector $\eta \in M(\lambda)$ satisfying the conditions

$$
\begin{array}{ll}
e_{i j}[0] \eta=0 & \text { for } \quad i<j, \\
e_{i j}[r] \eta=0 & \text { for all } \quad i, j \quad \text { and } \quad r \geqslant 1 .
\end{array}
$$

Write

$$
S_{l}(z)=\sum_{r \in \mathbb{Z}} S_{l,(r)} z^{-r-1}
$$

If η is a singular vector, then so is $S_{l,(r)} \eta$ for any $I=1, \ldots, n$ and $r \leqslant 1-2$.

Corollary. If $\lambda_{i}-\lambda_{j}+j-i \notin\{0,1, \ldots\}$ for all $i<j$, then the space of singular vectors of $M(\lambda)$ is

$$
\mathbb{C}\left[S_{I,(I-2)}, S_{l,(I-3)}, \ldots \mid I=1, \ldots, n\right] \xi
$$

Corollary. If $\lambda_{i}-\lambda_{j}+j-i \notin\{0,1, \ldots\}$ for all $i<j$, then the space of singular vectors of $M(\lambda)$ is

$$
\mathbb{C}\left[S_{I,(I-2)}, S_{l,(I-3)}, \ldots \mid I=1, \ldots, n\right] \xi
$$

Example. For $n=2$ we have $S_{1,(r)}=e_{11}[r]+e_{22}[r]$

Corollary. If $\lambda_{i}-\lambda_{j}+j-i \notin\{0,1, \ldots\}$ for all $i<j$, then the space of singular vectors of $M(\lambda)$ is

$$
\mathbb{C}\left[S_{l,(I-2)}, S_{l,(I-3)}, \ldots \mid I=1, \ldots, n\right] \xi
$$

Example. For $n=2$ we have $S_{1,(r)}=e_{11}[r]+e_{22}[r]$ and

$$
\begin{aligned}
S_{2,(r)} & =\sum_{s<0}^{\infty}\left(e_{11}[s] e_{22}[r-s-1]-e_{21}[s] e_{12}[r-s-1]\right) \\
& +\sum_{s \geqslant 0}^{\infty}\left(e_{22}[r-s-1] e_{11}[s]-e_{12}[r-s-1] e_{21}[s]\right) \\
& -r e_{22}[r-1] .
\end{aligned}
$$

Commutative subalgebras in $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$

Commutative subalgebras in $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$

By the vacuum axiom of a vertex algebra, the application of the fields $S_{l}(z)$ and $P_{k l}(z)$ to the vacuum vector 1 of $V_{-n}\left(\mathfrak{g l}_{n}\right)$ yields power series in z which we denote respectively by

$$
S_{l}(z)_{+}=\sum_{r<0} S_{l,(r)}^{+} z^{-r-1} \quad \text { and } \quad P_{k l}(z)_{+}=\sum_{r<0} P_{k l,(r)}^{+} z^{-r-1}
$$

Commutative subalgebras in $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$

By the vacuum axiom of a vertex algebra, the application of the fields $S_{l}(z)$ and $P_{k l}(z)$ to the vacuum vector 1 of $V_{-n}\left(\mathfrak{g l}_{n}\right)$ yields power series in z which we denote respectively by

$$
S_{l}(z)_{+}=\sum_{r<0} S_{l,(r)}^{+} z^{-r-1} \quad \text { and } \quad P_{k l}(z)_{+}=\sum_{r<0} P_{k l,(r)}^{+} z^{-r-1}
$$

More explicitly, set

$$
e_{i j}(z)_{+}=\sum_{r<0} e_{i j}[r] z^{-r-1}, \quad i, j=1, \ldots, n .
$$

Consider the matrix

$$
\partial_{z}+E(z)_{+}=\left[\begin{array}{cccc}
\partial_{z}+e_{11}(z)_{+} & e_{12}(z)_{+} & \ldots & e_{1 n}(z)_{+} \\
e_{21}(z)_{+} & \partial_{z}+e_{22}(z)_{+} & \ldots & e_{2 n}(z)_{+} \\
\vdots & \vdots & \ddots & \vdots \\
e_{n 1}(z)_{+} & e_{n 2}(z)_{+} & \ldots & \partial_{z}+e_{n n}(z)_{+}
\end{array}\right]
$$

Consider the matrix
$\partial_{z}+E(z)_{+}=\left[\begin{array}{cccc}\partial_{z}+e_{11}(z)_{+} & e_{12}(z)_{+} & \ldots & e_{1 n}(z)_{+} \\ e_{21}(z)_{+} & \partial_{z}+e_{22}(z)_{+} & \ldots & e_{2 n}(z)_{+} \\ \vdots & \vdots & \ddots & \vdots \\ e_{n 1}(z)_{+} & e_{n 2}(z)_{+} & \ldots & \partial_{z}+e_{n n}(z)_{+}\end{array}\right]$

Then

$$
\operatorname{cdet}\left(\partial_{z}+E(z)_{+}\right)=\partial_{z}^{n}+S_{1}(z)_{+} \partial_{z}^{n-1}+\cdots+S_{n-1}(z)_{+} \partial_{z}+S_{n}(z)_{+}
$$

Consider the matrix

$$
\partial_{z}+E(z)_{+}=\left[\begin{array}{cccc}
\partial_{z}+e_{11}(z)_{+} & e_{12}(z)_{+} & \ldots & e_{1 n}(z)_{+} \\
e_{21}(z)_{+} & \partial_{z}+e_{22}(z)_{+} & \ldots & e_{2 n}(z)_{+} \\
\vdots & \vdots & \ddots & \vdots \\
e_{n 1}(z)_{+} & e_{n 2}(z)_{+} & \ldots & \partial_{z}+e_{n n}(z)_{+}
\end{array}\right]
$$

Then

$$
\begin{gathered}
\operatorname{cdet}\left(\partial_{z}+E(z)_{+}\right)=\partial_{z}^{n}+S_{1}(z)_{+} \partial_{z}^{n-1}+\cdots+S_{n-1}(z)_{+} \partial_{z}+S_{n}(z)_{+} \\
\operatorname{tr}\left(\partial_{z}+E(z)_{+}\right)^{k}=P_{k 0}(z)_{+} \partial_{z}^{k}+P_{k 1}(z)_{+} \partial_{z}^{k-1}+\cdots+P_{k k}(z)_{+} .
\end{gathered}
$$

Corollary. The elements of each of the families

$$
\begin{aligned}
& S_{I,(r)}^{+} \text {with } \quad l=1, \ldots, n \quad \text { and } \quad r<0, \\
& P_{k l,(r)}^{+} \text {with } \quad 0 \leqslant l \leqslant k \quad \text { and } \quad r<0,
\end{aligned}
$$

belong to $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$. In particular, they commute pairwise.

Corollary. The elements of each of the families

$$
\begin{aligned}
& S_{l,(r)}^{+} \text {with } \quad I=1, \ldots, n \quad \text { and } \quad r<0, \\
& P_{k l,(r)}^{+} \text {with } \quad 0 \leqslant l \leqslant k \quad \text { and } \quad r<0,
\end{aligned}
$$

belong to $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$. In particular, they commute pairwise.

Moreover, $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$ is the algebra of polynomials

$$
\begin{aligned}
\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right) & =\mathbb{C}\left[S_{l,(r)}^{+} \mid I=1, \ldots, n, r<0\right] \\
& =\mathbb{C}\left[P_{I l,(r)}^{+} \mid I=1, \ldots, n ; r<0\right] .
\end{aligned}
$$

Remarks. The first family of commuting elements in
$\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ was originally discovered by D. Talalaev '06 in a slightly different form.

Remarks. The first family of commuting elements in
$\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ was originally discovered by D. Talalaev '06 in a slightly different form.

The results were extended by A. Chervov and D. Talalaev '06 to get central elements in the local completion $\mathrm{U}_{-n}\left(\hat{\mathfrak{g}}_{n}\right)_{\text {loc }}$.

Remarks. The first family of commuting elements in
$\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ was originally discovered by D. Talalaev '06 in a slightly different form.

The results were extended by A. Chervov and D. Talalaev '06 to get central elements in the local completion $\mathrm{U}_{-n}\left(\hat{\mathfrak{g}}_{n}\right)_{\text {loc }}$.

The fact that the elements $S_{l,(r)}^{+}$and the elements $T^{r} S_{l}$ generate the same commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$
was established by L. Rybnikov '08. Each of them coincides with the centralizer of the element S_{2}.

Remarks. The first family of commuting elements in
$\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$ was originally discovered by D. Talalaev '06 in a slightly different form.

The results were extended by A. Chervov and D. Talalaev '06 to get central elements in the local completion $\mathrm{U}_{-n}\left(\hat{\mathfrak{g}}_{n}\right)_{\text {loc }}$.

The fact that the elements $S_{l,(r)}^{+}$and the elements $T^{r} S_{l}$ generate the same commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$
was established by L. Rybnikov '08. Each of them coincides with the centralizer of the element S_{2}.

The second subalgebra was constructed earlier by B. Feigin, E. Frenkel and N. Reshetikhin, '94.

Classical \mathcal{W}-algebra for $\mathfrak{g l}_{n}$

Classical \mathcal{W}-algebra for $\mathfrak{g l}_{n}$

Let π_{0} denote the algebra of polynomials

$$
\pi_{0}=\mathbb{C}\left[b_{i}[r] \mid i=1, \ldots, n ; r<0\right]
$$

in the variables $b_{i}[r]$, which we consider as a (commutative)
vertex algebra.

Classical \mathcal{W}-algebra for $\mathfrak{g l}_{n}$

Let π_{0} denote the algebra of polynomials

$$
\pi_{0}=\mathbb{C}\left[b_{i}[r] \mid i=1, \ldots, n ; r<0\right]
$$

in the variables $b_{i}[r]$, which we consider as a (commutative)
vertex algebra.

The translation operator on π_{0} is defined by

$$
T 1=0, \quad\left[T, b_{i}[r]\right]=-r b_{i}[r-1]
$$

Introduce the operators

$$
Q_{i}: \pi_{0} \rightarrow \pi_{0}, \quad i=1, \ldots, n-1
$$

by

$$
Q_{i}=\sum_{r=0}^{\infty} \sum_{\lambda \vdash r} \frac{\mathbf{b}_{i}(\lambda)}{z_{\lambda}}\left(\frac{\partial}{\partial b_{i}[-r-1]}-\frac{\partial}{\partial b_{i+1}[-r-1]}\right)
$$

Introduce the operators

$$
Q_{i}: \pi_{0} \rightarrow \pi_{0}, \quad i=1, \ldots, n-1
$$

by

$$
Q_{i}=\sum_{r=0}^{\infty} \sum_{\lambda \vdash r} \frac{\mathbf{b}_{i}(\lambda)}{z_{\lambda}}\left(\frac{\partial}{\partial b_{i}[-r-1]}-\frac{\partial}{\partial b_{i+1}[-r-1]}\right)
$$

Here,

$$
\begin{aligned}
\mathbf{b}_{i}(\lambda) & =\left(b_{i}\left[-\lambda_{1}\right]-b_{i+1}\left[-\lambda_{1}\right]\right) \ldots\left(b_{i}\left[-\lambda_{p}\right]-b_{i+1}\left[-\lambda_{p}\right]\right) \\
z_{\lambda} & =1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\ldots r^{m_{r}} m_{r}!
\end{aligned}
$$

where m_{k} is the multiplicity of k in λ.

The first few terms:

$$
\begin{aligned}
Q_{i} & =\frac{\partial}{\partial b_{i}[-1]}-\frac{\partial}{\partial b_{i+1}[-1]} \\
& +\left(b_{i}[-1]-b_{i+1}[-1]\right)\left(\frac{\partial}{\partial b_{i}[-2]}-\frac{\partial}{\partial b_{i+1}[-2]}\right) \\
& +\frac{b_{i}[-2]-b_{i+1}[-2]+\left(b_{i}[-1]-b_{i+1}[-1]\right)^{2}}{2} \\
& \quad \times\left(\frac{\partial}{\partial b_{i}[-3]}-\frac{\partial}{\partial b_{i+1}[-3]}\right)+\ldots
\end{aligned}
$$

The classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{n}\right)$ consists of the elements of π_{0}, annihilated by all operators Q_{i},

$$
\mathcal{W}\left(\mathfrak{g l}_{n}\right)=\bigcap_{1 \leqslant i \leqslant n-1} \operatorname{Ker} Q_{i} .
$$

The classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{n}\right)$ consists of the elements of π_{0}, annihilated by all operators Q_{i},

$$
\mathcal{W}\left(\mathfrak{g l}_{n}\right)=\bigcap_{1 \leqslant i \leqslant n-1} \operatorname{Ker} Q_{i}
$$

Example. The following are elements of $\mathcal{W}\left(\mathfrak{g l}_{3}\right)$:

$$
B_{1}=b_{1}[-1]+b_{2}[-1]+b_{3}[-1]
$$

The classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{n}\right)$ consists of the elements of π_{0}, annihilated by all operators Q_{i},

$$
\mathcal{W}\left(\mathfrak{g l}_{n}\right)=\bigcap_{1 \leqslant i \leqslant n-1} \operatorname{Ker} Q_{i} .
$$

Example. The following are elements of $\mathcal{W}\left(\mathfrak{g l}_{3}\right)$:

$$
\begin{aligned}
& B_{1}=b_{1}[-1]+b_{2}[-1]+b_{3}[-1] \\
& B_{2}=b_{1}[-1] b_{2}[-1]+b_{1}[-1] b_{3}[-1]+b_{2}[-1] b_{3}[-1]
\end{aligned}
$$

$$
+2 b_{1}[-2]+b_{2}[-2],
$$

The classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{n}\right)$ consists of the elements of π_{0}, annihilated by all operators Q_{i},

$$
\mathcal{W}\left(\mathfrak{g l}_{n}\right)=\bigcap_{1 \leqslant i \leqslant n-1} \operatorname{Ker} Q_{i} .
$$

Example. The following are elements of $\mathcal{W}\left(\mathfrak{g l}_{3}\right)$:

$$
B_{3}=b_{1}[-1] b_{2}[-1] b_{3}[-1]+b_{1}[-2] b_{2}[-1]
$$

$$
+b_{1}[-2] b_{3}[-1]+b_{1}[-1] b_{2}[-2]+2 b_{1}[-3] .
$$

$$
\begin{aligned}
& B_{1}=b_{1}[-1]+b_{2}[-1]+b_{3}[-1], \\
& B_{2}=b_{1}[-1] b_{2}[-1]+b_{1}[-1] b_{3}[-1]+b_{2}[-1] b_{3}[-1] \\
& +2 b_{1}[-2]+b_{2}[-2] \text {, }
\end{aligned}
$$

The Weyl algebra $\mathcal{A}\left(\mathfrak{g l}_{n}\right)$ is generated by the elements $a_{j i}[r]$ with $r \in \mathbb{Z}, i, j=1, \ldots, n$ and $i \neq j$ and the defining relations

$$
\left[a_{j i}[r], a_{k}[s]\right]=\delta_{k j} \delta_{i l} \delta_{r,-s} \quad \text { for } \quad i<j ;
$$

all other pairs of the generators commute.

The Weyl algebra $\mathcal{A}\left(\mathfrak{g l}_{n}\right)$ is generated by the elements $a_{i j}[r]$ with $r \in \mathbb{Z}, i, j=1, \ldots, n$ and $i \neq j$ and the defining relations

$$
\left[a_{j i}[r], a_{k}[s]\right]=\delta_{k j} \delta_{i l} \delta_{r,-s} \quad \text { for } \quad i<j ;
$$

all other pairs of the generators commute.

The Fock representation $M\left(\mathfrak{g l}_{n}\right)$ of $\mathcal{A}\left(\mathfrak{g l}_{n}\right)$ is generated by a vector $|0\rangle$ such that for $i<j$ we have

$$
a_{i j}[r]|0\rangle=0, \quad r \geqslant 0 \quad \text { and } \quad a_{j i}[r]|0\rangle=0, \quad r>0 .
$$

Example. For $n=2$ the Weyl algebra $\mathcal{A}\left(\mathfrak{g l}_{2}\right)$ is generated by the elements $a_{12}[r]$ and $a_{21}[r]$ with $r \in \mathbb{Z}$.

Example. For $n=2$ the Weyl algebra $\mathcal{A}\left(\mathfrak{g l}_{2}\right)$ is generated by the elements $a_{12}[r]$ and $a_{21}[r]$ with $r \in \mathbb{Z}$.

The defining relations are $\left[a_{12}[r], a_{21}[s]\right]=\delta_{r,-s}$.

Example. For $n=2$ the Weyl algebra $\mathcal{A}\left(\mathfrak{g l}_{2}\right)$ is generated by the elements $a_{12}[r]$ and $a_{21}[r]$ with $r \in \mathbb{Z}$.

The defining relations are $\left[a_{12}[r], a_{21}[s]\right]=\delta_{r,-s}$.

The Fock representation $M\left(\mathfrak{g l}_{2}\right)$ is generated by a vector $|0\rangle$ such that

$$
a_{12}[r]|0\rangle=0, \quad r \geqslant 0 \quad \text { and } \quad a_{21}[r]|0\rangle=0, \quad r>0 .
$$

Example. For $n=2$ the Weyl algebra $\mathcal{A}\left(\mathfrak{g l}_{2}\right)$ is generated by the elements $a_{12}[r]$ and $a_{21}[r]$ with $r \in \mathbb{Z}$.

The defining relations are $\left[a_{12}[r], a_{21}[s]\right]=\delta_{r,-s}$.

The Fock representation $M\left(\mathfrak{g l}_{2}\right)$ is generated by a vector $|0\rangle$ such that

$$
a_{12}[r]|0\rangle=0, \quad r \geqslant 0 \quad \text { and } \quad a_{21}[r]|0\rangle=0, \quad r>0 .
$$

The elements of $M\left(\mathfrak{g l}_{2}\right)$ are polynomials in the $a_{12}[r]$ with $r<0$ and $a_{21}[r]$ with $r \leqslant 0$ applied to $|0\rangle$.

The vector space $M\left(\mathfrak{g l}_{n}\right)$ carries a vertex algebra structure. In particular, $|0\rangle$ is the vacuum vector, and for $i<j$ we have

$$
\begin{aligned}
Y\left(a_{i j}[-1]|0\rangle, z\right) & =\sum_{r \in \mathbb{Z}} a_{i j}[r] z^{-r-1}=: a_{i j}(z) \\
Y\left(a_{j i}[0]|0\rangle, z\right) & =\sum_{r \in \mathbb{Z}} a_{j i}[r] z^{-r}=: a_{j i}(z)
\end{aligned}
$$

The vector space $M\left(\mathfrak{g l}_{n}\right)$ carries a vertex algebra structure. In particular, $|0\rangle$ is the vacuum vector, and for $i<j$ we have

$$
\begin{aligned}
Y\left(a_{i j}[-1]|0\rangle, z\right) & =\sum_{r \in \mathbb{Z}} a_{i j}[r] z^{-r-1}=: a_{i j}(z) \\
Y\left(a_{j i}[0]|0\rangle, z\right) & =\sum_{r \in \mathbb{Z}} a_{j i}[r] z^{-r}=: a_{j i}(z)
\end{aligned}
$$

Key fact (M. Wakimoto '86, B. Feigin \& E. Frenkel '88).
There exists a vertex algebra homomorphism

$$
\rho: V_{-n}\left(\mathfrak{g l}_{n}\right) \rightarrow M\left(\mathfrak{g l}_{n}\right) \otimes \pi_{0}
$$

Example. For $n=2$ the explicit formulas are

$$
\begin{aligned}
& e_{12}(z) \mapsto a_{12}(z) \\
& e_{11}(z) \mapsto-: a_{21}(z) a_{12}(z):+b_{1}(z) \\
& e_{22}(z) \mapsto: a_{21}(z) a_{12}(z):+b_{2}(z) \\
& \begin{array}{r}
e_{21}(z) \mapsto-: a_{21}(z)^{2} a_{12}(z):-2 \partial_{z} a_{21}(z) \\
\\
\end{array} \begin{array}{r}
+a_{21}(z)\left(b_{1}(z)-b_{2}(z)\right)
\end{array}
\end{aligned}
$$

where

$$
b_{i}(z)=\sum_{r<0} b_{i}[r] z^{-r-1}
$$

The image of the center $\mathfrak{z}\left(\hat{\mathfrak{g l}}_{n}\right)$ of the vertex algebra $V_{-n}\left(\mathfrak{g l}_{n}\right)$ under the homomorphism ρ is contained in $\pi_{0} \cong 1 \otimes \pi_{0}$.

The image of the center $\mathfrak{z}\left(\hat{\mathfrak{g l}}_{n}\right)$ of the vertex algebra $V_{-n}\left(\mathfrak{g l}_{n}\right)$ under the homomorphism ρ is contained in $\pi_{0} \cong 1 \otimes \pi_{0}$.

This image coincides with the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{n}\right)$.

The image of the center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$ of the vertex algebra $V_{-n}\left(\mathfrak{g l}_{n}\right)$ under the homomorphism ρ is contained in $\pi_{0} \cong 1 \otimes \pi_{0}$.

This image coincides with the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g l}_{n}\right)$.
Corollary.

$$
\rho: \operatorname{cdet}(\tau+E[-1]) \mapsto\left(\tau+b_{n}[-1]\right) \cdots\left(\tau+b_{1}[-1]\right)
$$

where $\quad\left[\tau, b_{i}[r]\right]=-r b_{i}[r-1]$.

The image of the center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{n}\right)$ of the vertex algebra $V_{-n}\left(\mathfrak{g l}_{n}\right)$ under the homomorphism ρ is contained in $\pi_{0} \cong 1 \otimes \pi_{0}$.

This image coincides with the classical \mathcal{W}-algebra $\mathcal{W}\left(\mathfrak{g r}_{n}\right)$.

Corollary.

$$
\rho: \operatorname{cdet}(\tau+E[-1]) \mapsto\left(\tau+b_{n}[-1]\right) \cdots\left(\tau+b_{1}[-1]\right),
$$

where $\left[\tau, b_{i}[r]\right]=-r b_{i}[r-1]$.
Hence, $\mathcal{W}\left(\mathfrak{g l}_{n}\right)=\mathbb{C}\left[T^{r} B_{i} \mid i=1, \ldots, n, \quad r \geqslant 0\right], \quad$ where

$$
\left(\tau+b_{n}[-1]\right) \cdots\left(\tau+b_{1}[-1]\right)=\tau^{n}+B_{1} \tau^{n-1}+\cdots+B_{n} .
$$

Corollary.

$$
\begin{aligned}
& \rho: \sum_{k=0}^{\infty} t^{k} \operatorname{tr}(\tau+E[-1])^{k} \\
& \mapsto \sum_{i=1}^{n}\left(1-t\left(\tau+b_{1}[-1]\right)\right)^{-1} \cdots\left(1-t\left(\tau+b_{i}[-1]\right)\right)^{-1} \\
&
\end{aligned}
$$

where t is a complex variable.

Eigenvalues in the Wakimoto modules

Eigenvalues in the Wakimoto modules

Take an n-tuple

$$
\chi(t)=\left(\chi_{1}(t), \ldots, \chi_{n}(t)\right), \quad \chi_{i}(t)=\sum_{r \in \mathbb{Z}} \chi_{i}[r] t^{-r-1} \in \mathbb{C}((t)) .
$$

Eigenvalues in the Wakimoto modules

Take an n-tuple

$$
\chi(t)=\left(\chi_{1}(t), \ldots, \chi_{n}(t)\right), \quad \chi_{i}(t)=\sum_{r \in \mathbb{Z}} \chi_{i}[r] t^{-r-1} \in \mathbb{C}((t)) .
$$

$\mathrm{A} \widehat{\mathfrak{g l}}_{n}$-module structure on the vector space $M\left(\mathfrak{g l}_{n}\right)$ can be obtained by replacing the $b_{i}(z)$ by $\chi_{i}(z)$ in the formulas for the homomorphism ρ.

Eigenvalues in the Wakimoto modules

Take an n-tuple

$$
\chi(t)=\left(\chi_{1}(t), \ldots, \chi_{n}(t)\right), \quad \chi_{i}(t)=\sum_{r \in \mathbb{Z}} \chi_{i}[r] t^{-r-1} \in \mathbb{C}((t)) .
$$

$\mathrm{A} \widehat{\mathfrak{g l}}_{n}$-module structure on the vector space $M\left(\mathfrak{g l}_{n}\right)$ can be obtained by replacing the $b_{i}(z)$ by $\chi_{i}(z)$ in the formulas for the homomorphism ρ.

We obtain the Wakimoto modules of critical level $W_{\chi(t)}$.

Example. For $n=2$ the explicit formulas are

$$
\begin{aligned}
& e_{12}(z) \mapsto a_{12}(z) \\
& e_{11}(z) \mapsto-: a_{21}(z) a_{12}(z):+\chi_{1}(z) \\
& e_{22}(z) \mapsto: a_{21}(z) a_{12}(z):+\chi_{2}(z) \\
& e_{21}(z) \mapsto-: a_{21}(z)^{2} a_{12}(z):-2 \partial_{z} a_{21}(z)
\end{aligned}
$$

$$
+\left(\chi_{1}(z)-\chi_{2}(z)\right) a_{21}(z)
$$

The elements of the center $\mathcal{Z}\left(\widehat{\mathfrak{g}}_{n}\right)$ of $U_{-n}\left(\widehat{\mathfrak{g}}_{n}\right)_{\text {loc }}$ act on the Wakimoto modules $W_{\chi(t)}$ as multiplications by scalars.

The elements of the center $\mathcal{Z}\left(\widehat{\mathfrak{g}}_{n}\right)$ of $U_{-n}\left(\widehat{\mathfrak{g}}_{n}\right)_{\text {loc }}$ act on the
Wakimoto modules $W_{\chi(t)}$ as multiplications by scalars.
Corollary.

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right): \mapsto\left(\partial_{z}+\chi_{n}(z)\right) \ldots\left(\partial_{z}+\chi_{1}(z)\right)
$$

The elements of the center $\mathfrak{Z}\left(\widehat{\mathfrak{g}}_{n}\right)$ of $U_{-n}\left(\widehat{\mathfrak{g}}_{n}\right)_{\text {loc }}$ act on the
Wakimoto modules $W_{\chi(t)}$ as multiplications by scalars.
Corollary.

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right): \mapsto\left(\partial_{z}+\chi_{n}(z)\right) \ldots\left(\partial_{z}+\chi_{1}(z)\right)
$$

and

$$
\begin{aligned}
& \sum_{k=0}^{\infty} t^{k}: \operatorname{tr}\left(\partial_{z}+E(z)\right)^{k}: \\
& \mapsto \sum_{i=1}^{n}\left(1-t\left(\partial_{z}+\chi_{1}(z)\right)\right)^{-1} \cdots\left(1-t\left(\partial_{z}+\chi_{i}(z)\right)\right)^{-1} \\
& \quad \times\left(1-t\left(\partial_{z}+\chi_{i-1}(z)\right)\right) \cdots\left(1-t\left(\partial_{z}+\chi_{1}(z)\right)\right) .
\end{aligned}
$$

Example. If $n=3$, then

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{3}+S_{1}(z) \partial_{z}^{2}+S_{2}(z) \partial_{z}+S_{3}(z)
$$

Example. If $n=3$, then

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{3}+S_{1}(z) \partial_{z}^{2}+S_{2}(z) \partial_{z}+S_{3}(z)
$$

and
$S_{1}(z) \mapsto \chi_{1}(z)+\chi_{2}(z)+\chi_{3}(z)$,
$S_{2}(z) \mapsto \chi_{1}(z) \chi_{2}(z)+\chi_{1}(z) \chi_{3}(z)+\chi_{2}(z) \chi_{3}(z)+2 \chi_{1}^{\prime}(z)+\chi_{2}^{\prime}(z)$,
$S_{3}(z) \mapsto \chi_{1}(z) \chi_{2}(z) \chi_{3}(z)+\chi_{1}^{\prime}(z) \chi_{2}(z)+\chi_{1}^{\prime}(z) \chi_{3}(z)$

$$
+\chi_{1}(z) \chi_{2}^{\prime}(z)+\chi_{1}^{\prime \prime}(z) .
$$

