Feigin-Frenkel center for classical types

Alexander Molev

University of Sydney

Affine Kac-Moody algebras

Affine Kac-Moody algebras

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Affine Kac-Moody algebras

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
Consider the standard invariant bilinear form on \mathfrak{g}

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.

Affine Kac-Moody algebras

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
Consider the standard invariant bilinear form on \mathfrak{g}

$$
\langle X, Y\rangle=\frac{1}{2 h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)
$$

where h^{\vee} is the dual Coxeter number.
For the classical types,

$$
h^{\vee}= \begin{cases}n & \text { for } \quad \mathfrak{g}=\mathfrak{s l}_{n} \\ N-2 & \text { for } \\ \mathfrak{g}=\mathfrak{o}_{N} \\ n+1 & \text { for } \\ \mathfrak{g}=\mathfrak{s p}_{2 n}\end{cases}
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The vacuum module at the critical level $V(\mathfrak{g})$ over $\widehat{\mathfrak{g}}$ is the quotient of the universal enveloping algebra $U(\widehat{\mathfrak{g}})$ by the left ideal generated by $\mathfrak{g}[t]$ and $K+h^{\vee}$.

Feigin-Frenkel center

Feigin-Frenkel center

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\operatorname{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}) .
$$

Feigin-Frenkel center

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\operatorname{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}) .
$$

Equivalently,

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=V(\mathfrak{g})^{\mathfrak{g}[t]}=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\}
$$

Feigin-Frenkel center

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\operatorname{End}_{\widehat{\mathfrak{g}}} V(\mathfrak{g}) .
$$

Equivalently,

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=V(\mathfrak{g})^{\mathfrak{g}[t]}=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Then the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be regarded as a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Then the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be regarded as a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Define the translation operator $T: V(\mathfrak{g}) \rightarrow V(\mathfrak{g})$
as the derivation $T=-\partial_{t}$.

As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Then the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be regarded as a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Define the translation operator $T: V(\mathfrak{g}) \rightarrow V(\mathfrak{g})$ as the derivation $T=-\partial_{t}$.

The subspace $\mathfrak{z}(\hat{\mathfrak{g}})$ of $V(\mathfrak{g})$ is T-invariant.

As a vector space, the vacuum module $V(\mathfrak{g})$ can be identified with the universal enveloping algebra $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Then the Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be regarded as a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Define the translation operator $T: V(\mathfrak{g}) \rightarrow V(\mathfrak{g})$ as the derivation $T=-\partial_{t}$.

The subspace $\mathfrak{z}(\hat{\mathfrak{g}})$ of $V(\mathfrak{g})$ is T-invariant.

Any element of $\mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal-Sugawara vector.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$

such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right],
$$

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right],
$$

where $n=\operatorname{rank} \mathfrak{g}$ and the symbols $\bar{S}_{1}, \ldots, \bar{S}_{n}$ coincide with the images of certain algebraically independent generators of the algebra of invariants $S(\mathfrak{g})^{\mathfrak{g}}$ under the embedding
$\mathrm{S}(\mathfrak{g}) \hookrightarrow \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined by $X \mapsto X[-1]$.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right],
$$

where $n=\operatorname{rank} \mathfrak{g}$ and the symbols $\bar{S}_{1}, \ldots, \bar{S}_{n}$ coincide with the images of certain algebraically independent generators of the algebra of invariants $S(\mathfrak{g})^{\mathfrak{g}}$ under the embedding $\mathrm{S}(\mathfrak{g}) \hookrightarrow \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ defined by $X \mapsto X[-1]$.

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

A detailed proof is explained in the book by
E. Frenkel, Langlands correspondence for loop groups, 2007.

A detailed proof is explained in the book by
E. Frenkel, Langlands correspondence for loop groups, 2007.

Let $P=P\left(Y_{1}, \ldots, Y_{l}\right)$ be a \mathfrak{g}-invariant in $\mathrm{S}(\mathfrak{g})$.

A detailed proof is explained in the book by
E. Frenkel, Langlands correspondence for loop groups, 2007.

Let $P=P\left(Y_{1}, \ldots, Y_{l}\right)$ be a \mathfrak{g}-invariant in $\mathrm{S}(\mathfrak{g})$.

Set $\quad Y_{i}(z)=\sum_{r<0} Y_{i}[r] z^{-r-1} \quad$ and write

$$
P\left(Y_{1}(z), \ldots, Y_{l}(z)\right)=\sum_{r<0} P_{(r)} z^{-r-1}
$$

A detailed proof is explained in the book by
E. Frenkel, Langlands correspondence for loop groups, 2007.

Let $P=P\left(Y_{1}, \ldots, Y_{l}\right)$ be a \mathfrak{g}-invariant in $\mathrm{S}(\mathfrak{g})$.

Set $\quad Y_{i}(z)=\sum_{r<0} Y_{i}[r] z^{-r-1} \quad$ and write

$$
P\left(Y_{1}(z), \ldots, Y_{l}(z)\right)=\sum_{r<0} P_{(r)} z^{-r-1}
$$

Then each $P_{(r)}$ is a $\mathfrak{g}[t]$-invariant in $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

A detailed proof is explained in the book by
E. Frenkel, Langlands correspondence for loop groups, 2007.

Let $P=P\left(Y_{1}, \ldots, Y_{l}\right)$ be a \mathfrak{g}-invariant in $\mathrm{S}(\mathfrak{g})$.

Set $\quad Y_{i}(z)=\sum_{r<0} Y_{i}[r] z^{-r-1} \quad$ and write

$$
P\left(Y_{1}(z), \ldots, Y_{l}(z)\right)=\sum_{r<0} P_{(r)} z^{-r-1}
$$

Then each $P_{(r)}$ is a $\mathfrak{g}[t]$-invariant in $\quad \mathrm{S}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.
Moreover, $\quad k!P_{(-k-1)}=T^{k} P\left(Y_{1}[-1], \ldots, Y_{l}[-1]\right) \quad$ for $k \geqslant 0$.

Theorem (Beilinson-Drinfeld, 1997). If P_{1}, \ldots, P_{n} are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r<0$ are algebraically independent generators of $S\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Theorem (Beilinson-Drinfeld, 1997). If P_{1}, \ldots, P_{n} are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r<0$ are algebraically independent generators of $S\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)^{\mathfrak{g}[t]}$.

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types A, B, C V. Kac and D. Kazhdan, 1979.

Explicit formulas for Segal-Sugawara vectors

Explicit formulas for Segal-Sugawara vectors

They will lead, in particular, to a simpler proof of the
Feigin-Frenkel theorem for classical types.

Explicit formulas for Segal-Sugawara vectors

They will lead, in particular, to a simpler proof of the
Feigin-Frenkel theorem for classical types.

We will need the extended Lie algebra $\widehat{\mathfrak{g}} \oplus \mathbb{C} \tau$, where for the element $\tau=-\partial_{t}$ we have the relations

$$
[\tau, X[r]]=-r X[r-1], \quad[\tau, K]=0
$$

Type A

Type A

Lie algebra $\mathfrak{g}=\mathfrak{g l}_{n}$, the standard basis $\left\{E_{i j} \mid i, j=1, \ldots, n\right\}$.

Type A

Lie algebra $\mathfrak{g}=\mathfrak{g l}_{n}$, the standard basis $\left\{E_{i j} \mid i, j=1, \ldots, n\right\}$.

Consider the $n \times n$ matrix $\tau+E[-1]$ given by

$$
\tau+E[-1]=\left[\begin{array}{cccc}
\tau+E_{11}[-1] & E_{12}[-1] & \ldots & E_{1 n}[-1] \\
E_{21}[-1] & \tau+E_{22}[-1] & \ldots & E_{2 n}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1}[-1] & E_{n 2}[-1] & \ldots & \tau+E_{n n}[-1]
\end{array}\right]
$$

Theorem (Chervov-Talalaev, 2006; also Chervov-M., 2009).
The coefficients S_{1}, \ldots, S_{n} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n-1} \tau+S_{n}
$$

form a complete set of Segal-Sugawara vectors in $V\left(\mathfrak{g l}_{n}\right)$.

Theorem (Chervov-Talalaev, 2006; also Chervov-M., 2009).
The coefficients S_{1}, \ldots, S_{n} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n-1} \tau+S_{n}
$$

form a complete set of Segal-Sugawara vectors in $V\left(\mathfrak{g l}_{n}\right)$.
Example. For $n=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+S_{1} \tau+S_{2}
\end{aligned}
$$

Theorem (Chervov-Talalaev, 2006; also Chervov-M., 2009).
The coefficients S_{1}, \ldots, S_{n} of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{n}+S_{1} \tau^{n-1}+\cdots+S_{n-1} \tau+S_{n}
$$

form a complete set of Segal-Sugawara vectors in $V\left(\mathfrak{g l}_{n}\right)$.
Example. For $n=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+S_{1} \tau+S_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& S_{1}=E_{11}[-1]+E_{22}[-1] \\
& S_{2}=E_{11}[-1] E_{22}[-1]-E_{21}[-1] E_{12}[-1]+E_{22}[-2] .
\end{aligned}
$$

Corollary. For any $k \geqslant 0$ all coefficients $P_{k l}$ in the expansion

$$
\operatorname{tr}(\tau+E[-1])^{k}=P_{k 0} \tau^{k}+P_{k 1} \tau^{k-1}+\cdots+P_{k k}
$$

are Segal-Sugawara vectors in $V\left(\mathfrak{g l}_{n}\right)$.

Corollary. For any $k \geqslant 0$ all coefficients $P_{k l}$ in the expansion

$$
\operatorname{tr}(\tau+E[-1])^{k}=P_{k 0} \tau^{k}+P_{k 1} \tau^{k-1}+\cdots+P_{k k}
$$

are Segal-Sugawara vectors in $V\left(\mathfrak{g l}_{n}\right)$.

Moreover, the elements $P_{11}, \ldots, P_{n n}$ form a complete set of Segal-Sugawara vectors.

Corollary. For any $k \geqslant 0$ all coefficients $P_{k l}$ in the expansion

$$
\operatorname{tr}(\tau+E[-1])^{k}=P_{k 0} \tau^{k}+P_{k 1} \tau^{k-1}+\cdots+P_{k k}
$$

are Segal-Sugawara vectors in $V\left(\mathfrak{g l}_{n}\right)$.

Moreover, the elements $P_{11}, \ldots, P_{n n}$ form a complete set of
Segal-Sugawara vectors.

Remark. These results generalize to the Lie superalgebra $\mathfrak{g l}_{m \mid n}$.
The column-determinant is replaced by a noncommutative
Berezinian (M.-Ragoucy, 2009).

Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_{N} of skew-symmetric matrices is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}=E_{i j}-E_{j i}$.

Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_{N} of skew-symmetric matrices is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}=E_{i j}-E_{j i}$.

Denote by F the $N \times N$ matrix whose (i, j) entry is $F_{i j}$. Regard F as the element

$$
F=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{o}_{N}\right)
$$

Types B, C and D

The orthogonal Lie algebra \mathfrak{o}_{N} of skew-symmetric matrices is the subalgebra of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}=E_{i j}-E_{j i}$.

Denote by F the $N \times N$ matrix whose (i, j) entry is $F_{i j}$. Regard F as the element

$$
F=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{o}_{N}\right) .
$$

Introduce elements of End $\mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \cong \operatorname{End}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{N}\right)$ by

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i}, \quad Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i j} .
$$

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{o}_{N}\right)$ have the form

$$
F_{1} F_{2}-F_{2} F_{1}=(P-Q) F_{2}-F_{2}(P-Q)
$$

together with the relation $F+F^{t}=0$,

The defining relations of the algebra $\mathrm{U}\left(\mathfrak{o}_{N}\right)$ have the form

$$
F_{1} F_{2}-F_{2} F_{1}=(P-Q) F_{2}-F_{2}(P-Q)
$$

together with the relation $F+F^{t}=0$, where both sides are regarded as elements of the algebra End $\mathbb{C}^{N} \otimes$ End $\mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{o}_{N}\right)$ and

$$
F_{1}=\sum_{i, j=1}^{N} e_{i j} \otimes 1 \otimes F_{i j}, \quad F_{2}=\sum_{i, j=1}^{N} 1 \otimes e_{i j} \otimes F_{i j}
$$

In the affine Kac-Moody algebra $\widehat{\mathfrak{o}}_{N}=\mathfrak{o}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ set

$$
F_{i j}[r]=F_{i j} r^{r} \text { for any } r \in \mathbb{Z}
$$

In the affine Kac-Moody algebra $\widehat{\mathfrak{o}}_{N}=\mathfrak{o}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ set
$F_{i j}[r]=F_{i j} t^{r}$ for any $r \in \mathbb{Z}$. Introduce the matrix $F[r]=\left[F_{i j}[r]\right]$ and regard it as the element

$$
F[r]=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\widehat{\mathfrak{o}}_{N}\right)
$$

In the affine Kac-Moody algebra $\widehat{\mathfrak{o}}_{N}=\mathfrak{o}_{N}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ set
$F_{i j}[r]=F_{i j} t^{r}$ for any $r \in \mathbb{Z}$. Introduce the matrix $F[r]=\left[F_{i j}[r]\right]$ and regard it as the element

$$
F[r]=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\widehat{\mathfrak{o}}_{N}\right) .
$$

The defining relations of the algebra $\mathrm{U}\left(\widehat{\mathfrak{o}}_{N}\right)$ can be written as

$$
\begin{aligned}
F[r]_{1} F[s]_{2}-F[s]_{2} F[r]_{1} & =(P-Q) F[r+s]_{2}-F[r+s]_{2}(P-Q) \\
& +r \delta_{r,-s}(P-Q) K .
\end{aligned}
$$

Consider the $N \times N$ matrix $\Phi=\tau+F[-1]$,

Consider the $N \times N$ matrix $\Phi=\tau+F[-1]$,

$$
\Phi=\left[\begin{array}{cccc}
\tau & F_{12}[-1] & \ldots & F_{1 N}[-1] \\
F_{21}[-1] & \tau & \ldots & F_{2 N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
F_{N 1}[-1] & F_{N 2}[-1] & \ldots & \tau
\end{array}\right] .
$$

Consider the $N \times N$ matrix $\Phi=\tau+F[-1]$,

$$
\Phi=\left[\begin{array}{cccc}
\tau & F_{12}[-1] & \ldots & F_{1 N}[-1] \\
F_{21}[-1] & \tau & \ldots & F_{2 N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
F_{N 1}[-1] & F_{N 2}[-1] & \ldots & \tau
\end{array}\right] .
$$

Note that

$$
F_{i j}[-1]+F_{j i}[-1]=0 .
$$

For each $a \in\{1, \ldots, m\}$ define the element Φ_{a} of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\widehat{\mathfrak{o}}_{N} \oplus \mathbb{C} \tau\right)
$$

For each $a \in\{1, \ldots, m\}$ define the element Φ_{a} of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\widehat{\mathfrak{o}}_{N} \oplus \mathbb{C} \tau\right)
$$

by

$$
\Phi_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes \Phi_{i j}
$$

For each $a \in\{1, \ldots, m\}$ define the element Φ_{a} of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\widehat{\mathfrak{o}}_{N} \oplus \mathbb{C} \tau\right)
$$

by

$$
\Phi_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes \Phi_{i j}
$$

where $\quad \Phi_{i j}=\delta_{i j} \tau+F_{i j}[-1]$.

For each $a \in\{1, \ldots, m\}$ define the element Φ_{a} of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(\widehat{\mathfrak{o}}_{N} \oplus \mathbb{C} \tau\right)
$$

by

$$
\Phi_{a}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(m-a)} \otimes \Phi_{i j}
$$

where $\quad \Phi_{i j}=\delta_{i j} \tau+F_{i j}[-1]$.

The trace map $\operatorname{tr}:$ End $\mathbb{C}^{N} \rightarrow \mathbb{C}$ is defined by $\operatorname{tr}: e_{i j} \mapsto \delta_{i j}$.

Introduce the element $S^{(m)}$ of the algebra

Introduce the element $S^{(m)}$ of the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m}
$$

by

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

the product is taken in the lexicographic order on the pairs
(a, b), and $P_{a b}$ and $Q_{a b}$ act as the respective operators P and Q
in the a-th and b-th copies of \mathbb{C}^{N} and as the identity operators in all the remaining copies.

Properties: for $1 \leqslant a<b \leqslant m$ we have

$$
P_{a b} S^{(m)}=S^{(m)} P_{a b}=S^{(m)} \quad \text { and } \quad Q_{a b} S^{(m)}=S^{(m)} Q_{a b}=0
$$

Properties: for $1 \leqslant a<b \leqslant m$ we have

$$
P_{a b} S^{(m)}=S^{(m)} P_{a b}=S^{(m)} \quad \text { and } \quad Q_{a b} S^{(m)}=S^{(m)} Q_{a b}=0
$$

Equivalent formula:

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{Q_{a b}}{N+a+b-3}\right) \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}\right) .
$$

Properties: for $1 \leqslant a<b \leqslant m$ we have

$$
P_{a b} S^{(m)}=S^{(m)} P_{a b}=S^{(m)} \quad \text { and } \quad Q_{a b} S^{(m)}=S^{(m)} Q_{a b}=0 .
$$

Equivalent formula:

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{Q_{a b}}{N+a+b-3}\right) \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}\right) .
$$

Remark. $S^{(m)}$ is the idempotent associated with the trivial representation of the Brauer algebra $\mathcal{B}_{m}(N)$. In particular, $\left(S^{(m)}\right)^{2}=S^{(m)}$.

In a reduced form,

$$
S^{(m)}=H^{(m)} \sum_{r=0}^{\lfloor m / 2\rfloor} \frac{(-1)^{r}}{2^{r} r!}\binom{N / 2+m-2}{r}^{-1} \sum_{a_{i}<b_{i}} Q_{a_{1} b_{1}} \ldots Q_{a_{r} b_{r}},
$$

where $H^{(m)}$ is the symmetrizer in the group algebra $\mathbb{C}\left[\mathfrak{S}_{m}\right]$.

In a reduced form,

$$
S^{(m)}=H^{(m)} \sum_{r=0}^{\lfloor m / 2\rfloor} \frac{(-1)^{r}}{2^{r} r!}\binom{N / 2+m-2}{r}^{-1} \sum_{a_{i}<b_{i}} Q_{a_{1} b_{1}} \ldots Q_{a_{r} b_{r}},
$$

where $H^{(m)}$ is the symmetrizer in the group algebra $\mathbb{C}\left[\mathfrak{S}_{m}\right]$.

In terms of the Jucys-Murphy elements:

$$
\begin{aligned}
S^{(m)}=\prod_{b=2}^{m} \frac{1}{b(N+2 b-4)}(1 & \left.+\sum_{a=1}^{b-1}\left(P_{a b}-Q_{a b}\right)\right) \\
& \times\left(N+b-3+\sum_{a=1}^{b-1}\left(P_{a b}-Q_{a b}\right)\right)
\end{aligned}
$$

Theorem. The elements $\phi_{m a} \in \mathrm{U}\left(t^{-1} \mathfrak{o}_{N}\left[t^{-1}\right]\right)$ defined by

$$
\operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
$$

are Segal-Sugawara vectors for \mathfrak{o}_{N}.

Theorem. The elements $\phi_{m a} \in \mathrm{U}\left(t^{-1} \mathfrak{o}_{N}\left[t^{-1}\right]\right)$ defined by

$$
\operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
$$

are Segal-Sugawara vectors for \mathfrak{o}_{N}.

Moreover, $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$,

Theorem. The elements $\phi_{m a} \in \mathrm{U}\left(t^{-1} \mathfrak{o}_{N}\left[t^{-1}\right]\right)$ defined by

$$
\operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
$$

are Segal-Sugawara vectors for \mathfrak{o}_{N}.

Moreover, $\phi_{22}, \phi_{44}, \ldots, \phi_{2 n 2 n}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{o}_{2 n+1}$,
$\phi_{22}, \phi_{44}, \ldots, \phi_{2 n-22 n-2}, \phi_{n}^{\prime}$ is a complete set of
Segal-Sugawara vectors for $\mathfrak{o}_{2 n}$, where $\phi_{n}^{\prime}=\operatorname{Pf} F[-1]$ is the
Pfaffian of the skew-symmetric matrix $F[-1]$.

Example. For $m=2$ we have

$$
S^{(2)}=\frac{1+P}{2}-\frac{Q}{N}
$$

Example. For $m=2$ we have

$$
S^{(2)}=\frac{1+P}{2}-\frac{Q}{N}
$$

Note the relations $\operatorname{tr}_{1} P=1$ and $\operatorname{tr}_{1} Q=1$.

Example. For $m=2$ we have

$$
S^{(2)}=\frac{1+P}{2}-\frac{Q}{N} .
$$

Note the relations $\operatorname{tr}_{1} P=1$ and $\operatorname{tr}_{1} Q=1$.
Hence, ϕ_{22} is found from

$$
\begin{aligned}
\operatorname{tr} S^{(2)} \Phi_{1} \Phi_{2} & =\frac{1}{2}(\operatorname{tr}(\tau+F[-1]))^{2}+\frac{1}{2} \operatorname{tr}(\tau+F[-1])^{2} \\
& -\frac{1}{N} \operatorname{tr}(\tau-F[-1])(\tau+F[-1])
\end{aligned}
$$

Example. For $m=2$ we have

$$
S^{(2)}=\frac{1+P}{2}-\frac{Q}{N} .
$$

Note the relations $\operatorname{tr}_{1} P=1$ and $\operatorname{tr}_{1} Q=1$.
Hence, ϕ_{22} is found from

$$
\begin{aligned}
\operatorname{tr} S^{(2)} \Phi_{1} \Phi_{2} & =\frac{1}{2}(\operatorname{tr}(\tau+F[-1]))^{2}+\frac{1}{2} \operatorname{tr}(\tau+F[-1])^{2} \\
& -\frac{1}{N} \operatorname{tr}(\tau-F[-1])(\tau+F[-1]) \\
& =\frac{N+2}{2 N}\left(\left(N^{2}-N\right) \tau^{2}+\operatorname{tr} F[-1]^{2}\right) .
\end{aligned}
$$

In the case of $\mathfrak{o}_{2 n}$ the Pfaffian $\operatorname{Pf} F[-1]$ is

$$
\operatorname{Pf} F[-1]=\sum_{\sigma} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)}[-1],
$$

summed over the permutations $\sigma \in \mathfrak{S}_{2 n}$ such that

In the case of $\mathfrak{o}_{2 n}$ the Pfaffian $\operatorname{Pf} F[-1]$ is

$$
\operatorname{Pf} F[-1]=\sum_{\sigma} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)}[-1],
$$

summed over the permutations $\sigma \in \mathfrak{S}_{2 n}$ such that
$\sigma(1)<\sigma(2), \quad \sigma(3)<\sigma(4), \quad \ldots, \quad \sigma(2 n-1)<\sigma(2 n) \quad$ and

In the case of $\mathfrak{o}_{2 n}$ the Pfaffian $\operatorname{Pf} F[-1]$ is

$$
\operatorname{Pf} F[-1]=\sum_{\sigma} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)}[-1],
$$

summed over the permutations $\sigma \in \mathfrak{S}_{2 n}$ such that
$\sigma(1)<\sigma(2), \quad \sigma(3)<\sigma(4), \quad \ldots, \quad \sigma(2 n-1)<\sigma(2 n) \quad$ and
$\sigma(1)<\sigma(3)<\cdots<\sigma(2 n-1)$.

In the case of $\mathfrak{o}_{2 n}$ the Pfaffian $\operatorname{Pf} F[-1]$ is

$$
\operatorname{Pf} F[-1]=\sum_{\sigma} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}[-1] \ldots F_{\sigma(2 n-1) \sigma(2 n)}[-1],
$$

summed over the permutations $\sigma \in \mathfrak{S}_{2 n}$ such that
$\sigma(1)<\sigma(2), \quad \sigma(3)<\sigma(4), \quad \ldots, \quad \sigma(2 n-1)<\sigma(2 n) \quad$ and
$\sigma(1)<\sigma(3)<\cdots<\sigma(2 n-1)$.

Example. For \mathfrak{o}_{4} we have
$\operatorname{Pf} F[-1]=F_{12}[-1] F_{34}[-1]-F_{13}[-1] F_{24}[-1]+F_{14}[-1] F_{23}[-1]$.

For the proof of the theorem we show that

$$
F[0]_{0} \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=0 \quad \text { and } \quad F[1]_{0} \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=0
$$

For the proof of the theorem we show that

$$
F[0]_{0} \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=0 \quad \text { and } \quad F[1]_{0} \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m}=0
$$

in the module

with the copies of $\operatorname{End} \mathbb{C}^{N}$ labelled by $0,1, \ldots, m$.

For the symbols of the Segal-Sugawara vectors $\phi_{2 k 2 k}$ find

$$
\operatorname{tr} S^{(2 k)} X_{1} \ldots X_{2 k}, \quad X \in \mathfrak{o}_{N}
$$

For the symbols of the Segal-Sugawara vectors $\phi_{2 k 2 k}$ find

$$
\operatorname{tr} S^{(2 k)} X_{1} \ldots X_{2 k}, \quad X \in \mathfrak{o}_{N}
$$

Suppose that the eigenvalues of X are

$$
\begin{aligned}
x_{1}, \ldots, x_{n},-x_{1}, \ldots,-x_{n}, 0 & \text { if } \quad N=2 n+1 \\
x_{1}, \ldots, x_{n},-x_{1}, \ldots,-x_{n} & \text { if } \quad N=2 n
\end{aligned}
$$

For the symbols of the Segal-Sugawara vectors $\phi_{2 k 2 k}$ find

$$
\operatorname{tr} S^{(2 k)} X_{1} \ldots X_{2 k}, \quad X \in \mathfrak{o}_{N}
$$

Suppose that the eigenvalues of X are

$$
\begin{aligned}
& x_{1}, \ldots, x_{n},-x_{1}, \ldots,-x_{n}, 0 \text { if } \\
& x_{1}, \ldots, x_{n},-x_{1}, \ldots,-x_{n} \text { if } \quad \\
& \quad N=2 n+1,
\end{aligned}
$$

Then

$$
\operatorname{tr} S^{(2 k)} X_{1} \ldots X_{2 k}=\frac{N+4 k-2}{N+2 k-2} h_{k}\left(x_{1}^{2}, \ldots, x_{n}^{2}\right),
$$

h_{k} is the complete symmetric polynomial.

Vertex algebra structure

Vertex algebra structure

The vacuum module $V(\mathfrak{g})$ is a vertex algebra with

Vertex algebra structure

The vacuum module $V(\mathfrak{g})$ is a vertex algebra with
the vacuum vector 1 ,

Vertex algebra structure

The vacuum module $V(\mathfrak{g})$ is a vertex algebra with
the vacuum vector 1 ,
the translation operator $T=-\partial_{t}$,

Vertex algebra structure

The vacuum module $V(\mathfrak{g})$ is a vertex algebra with
the vacuum vector 1 ,
the translation operator $T=-\partial_{t}$,
and the state-field correspondence Y which is a linear map

$$
Y: V(\mathfrak{g}) \rightarrow \operatorname{End} V(\mathfrak{g})\left[\left[z, z^{-1}\right]\right] .
$$

Vertex algebra structure

The vacuum module $V(\mathfrak{g})$ is a vertex algebra with
the vacuum vector 1 ,
the translation operator $T=-\partial_{t}$,
and the state-field correspondence Y which is a linear map

$$
Y: V(\mathfrak{g}) \rightarrow \operatorname{End} V(\mathfrak{g})\left[\left[z, z^{-1}\right]\right]
$$

It is determined by

$$
Y(X[-1], z)=\sum_{r \in \mathbb{Z}} X[r] z^{-r-1}=: X(z)
$$

For any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
& Y\left(X_{1}\left[-r_{1}-1\right] \ldots X_{m}\left[-r_{m}-1\right], z\right) \\
&=\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} X_{1}(z) \ldots \partial_{z}^{r_{m}} X_{m}(z):
\end{aligned}
$$

with the convention that the normally ordered product is read
from right to left;

For any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
& Y\left(X_{1}\left[-r_{1}-1\right] \ldots X_{m}\left[-r_{m}-1\right], z\right) \\
&=\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} X_{1}(z) \ldots \partial_{z}^{r_{m}} X_{m}(z):
\end{aligned}
$$

with the convention that the normally ordered product is read
from right to left;

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-}
$$

For any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
& Y\left(X_{1}\left[-r_{1}-1\right] \ldots X_{m}\left[-r_{m}-1\right], z\right) \\
&=\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} X_{1}(z) \ldots \partial_{z}^{r_{m}} X_{m}(z):
\end{aligned}
$$

with the convention that the normally ordered product is read from right to left;

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-}
$$

where

$$
a(z)_{+}=\sum_{r \geqslant 0} a_{r} z^{r} \quad \text { and } \quad a(z)_{-}=\sum_{r<0} a_{r} z^{r}
$$

Suppose that S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors in $\mathfrak{z}(\widehat{\mathfrak{g}})$. Apply the state-field correspondence map:

$$
Y\left(S_{l}, z\right)=\sum_{r \in \mathbb{Z}} S_{l, r} z^{-r-1}
$$

Suppose that S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors in $\mathfrak{z}(\widehat{\mathfrak{g}})$. Apply the state-field correspondence map:

$$
Y\left(S_{l}, z\right)=\sum_{r \in \mathbb{Z}} S_{l, r} z^{-r-1}
$$

The elements $S_{l, r}$ are Sugawara operators for $\widehat{\mathfrak{g}}$. They generate the center of the completed algebra $U(\widehat{\mathfrak{g}})$ at the critical level.

Suppose that S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors in $\mathfrak{z}(\widehat{\mathfrak{g}})$. Apply the state-field correspondence map:

$$
Y\left(S_{l}, z\right)=\sum_{r \in \mathbb{Z}} S_{l, r} z^{-r-1}
$$

The elements $S_{l, r}$ are Sugawara operators for $\widehat{\mathfrak{g}}$. They generate the center of the completed algebra $U(\widehat{\mathfrak{g}})$ at the critical level.

Applications: Singular vectors in Verma modules and Weyl modules over $\widehat{\mathfrak{g}}$ (E. Frenkel and D. Gaitsgory, 2006, 2007).

Example.

Apply Y to the Segal-Sugawara vector $\operatorname{tr} F[-1]^{2}$ for $\widehat{\mathfrak{o}}_{N}$:

Example.

Apply Y to the Segal-Sugawara vector $\operatorname{tr} F[-1]^{2}$ for $\widehat{\mathfrak{o}}_{N}$:
$: \operatorname{tr} F(z)^{2}:=\sum_{i, j=1}^{N}: F_{i j}(z) F_{j i}(z):$

Example.

Apply Y to the Segal-Sugawara vector $\operatorname{tr} F[-1]^{2}$ for $\widehat{\mathfrak{o}}_{N}$:

$$
\begin{aligned}
: \operatorname{tr} F(z)^{2}: & =\sum_{i, j=1}^{N}: F_{i j}(z) F_{j i}(z): \\
& =\sum_{i, j=1}^{N}\left(F_{i j}(z)_{+} F_{j i}(z)+F_{j i}(z) F_{i j}(z)_{-}\right)=\sum_{p \in \mathbb{Z}} S_{p} z^{-p-2} .
\end{aligned}
$$

Example.

Apply Y to the Segal-Sugawara vector $\operatorname{tr} F[-1]^{2}$ for $\widehat{\mathfrak{o}}_{N}$:

$$
\begin{aligned}
: \operatorname{tr} F(z)^{2}: & =\sum_{i, j=1}^{N}: F_{i j}(z) F_{j i}(z): \\
& =\sum_{i, j=1}^{N}\left(F_{i j}(z)_{+} F_{j i}(z)+F_{j i}(z) F_{i j}(z)_{-}\right)=\sum_{p \in \mathbb{Z}} S_{p} z^{-p-2} .
\end{aligned}
$$

The S_{p} are the Sugawara operators

$$
S_{p}=\sum_{i, j=1}^{N}\left(\sum_{r<0} F_{i j}[r] F_{j i}[p-r]+\sum_{r \geqslant 0} F_{j i}[p-r] F_{i j}[r]\right)
$$

commuting with $\widehat{\mathfrak{o}}_{N}$.

Type A

Type A

Apply the state-field correspondence map

$$
Y: \operatorname{cdet}(\tau+E[-1]) \quad \mapsto: \operatorname{cdet}\left(\partial_{z}+E(z)\right):
$$

Type A

Apply the state-field correspondence map

$$
Y: \operatorname{cdet}(\tau+E[-1]) \mapsto: \operatorname{cdet}\left(\partial_{z}+E(z)\right):
$$

where $E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1} \quad$ and

Type A

Apply the state-field correspondence map

$$
Y: \operatorname{cdet}(\tau+E[-1]) \mapsto: \operatorname{cdet}\left(\partial_{z}+E(z)\right):
$$

where $E_{i j}(z)=\sum_{r \in \mathbb{Z}} E_{i j}[r] z^{-r-1} \quad$ and

$$
\partial_{z}+E(z)=\left[\begin{array}{cccc}
\partial_{z}+E_{11}(z) & E_{12}(z) & \ldots & E_{1 n}(z) \\
E_{21}(z) & \partial_{z}+E_{22}(z) & \ldots & E_{2 n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1}(z) & E_{n 2}(z) & \ldots & \partial_{z}+E_{n n}(z)
\end{array}\right]
$$

Expand the normally ordered column-determinant

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)
$$

Expand the normally ordered column-determinant

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)
$$

The coefficients $S_{l, r}$ of the $S_{l}(z)$ are Sugawara operators for $\widehat{\mathfrak{g l}}_{n}$.

Expand the normally ordered column-determinant

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right):=\partial_{z}^{n}+S_{1}(z) \partial_{z}^{n-1}+\cdots+S_{n-1}(z) \partial_{z}+S_{n}(z)
$$

The coefficients $S_{l, r}$ of the $S_{l}(z)$ are Sugawara operators for $\widehat{\mathfrak{g}}_{n}$.

Using the vacuum axiom

$$
: \operatorname{cdet}\left(\partial_{z}+E(z)\right): 1=\operatorname{cdet}\left(\partial_{z}+E(z)_{+}\right)
$$

we get explicit generators of $\mathfrak{z}\left(\hat{\mathfrak{g l}}_{n}\right)$ and hence, generators of the commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{n}\left[t^{-1}\right]\right)$.

Types B, C and D

Types B, C and D

Apply the state-field correspondence map

$$
Y: \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m} \mapsto: \operatorname{tr} S^{(m)}\left(\partial_{z}+F_{1}(z)\right) \ldots\left(\partial_{z}+F_{m}(z)\right):
$$

Types B, C and D

Apply the state-field correspondence map

$$
Y: \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m} \mapsto: \operatorname{tr} S^{(m)}\left(\partial_{z}+F_{1}(z)\right) \ldots\left(\partial_{z}+F_{m}(z)\right):
$$

where $F_{i j}(z)=\sum_{r \in \mathbb{Z}} F_{i j}[r] z^{-r-1} \quad$ and

Types B, C and D

Apply the state-field correspondence map

$$
Y: \operatorname{tr} S^{(m)} \Phi_{1} \ldots \Phi_{m} \mapsto: \operatorname{tr} S^{(m)}\left(\partial_{z}+F_{1}(z)\right) \ldots\left(\partial_{z}+F_{m}(z)\right):
$$

where $F_{i j}(z)=\sum_{r \in \mathbb{Z}} F_{i j}[r] z^{-r-1} \quad$ and

$$
\partial_{z}+F(z)=\left[\begin{array}{cccc}
\partial_{z} & F_{12}(z) & \ldots & F_{1 N}(z) \\
F_{21}(z) & \partial_{z} & \ldots & F_{2 N}(z) \\
\vdots & \vdots & \ddots & \vdots \\
F_{N 1}(z) & F_{N 2}(z) & \ldots & \partial_{z}
\end{array}\right]
$$

Expand into a polynomial in ∂_{z} :

$$
\begin{aligned}
: \operatorname{tr} S^{(m)}\left(\partial_{z}+F_{1}(z)\right) & \ldots\left(\partial_{z}+F_{m}(z)\right): \\
& =f_{m 0}(z) \partial_{z}^{m}+f_{m 1}(z) \partial_{z}^{m-1}+\cdots+f_{m m}(z)
\end{aligned}
$$

Expand into a polynomial in ∂_{z} :

$$
\begin{aligned}
: \operatorname{tr} S^{(m)}\left(\partial_{z}+F_{1}(z)\right) & \ldots\left(\partial_{z}+F_{m}(z)\right): \\
& =f_{m 0}(z) \partial_{z}^{m}+f_{m 1}(z) \partial_{z}^{m-1}+\cdots+f_{m m}(z)
\end{aligned}
$$

All coefficients of the $f_{m a}(z)$ are Sugawara operators for $\widehat{\mathfrak{o}}_{N}$.

Expand into a polynomial in ∂_{z} :

$$
\begin{aligned}
: \operatorname{tr} S^{(m)}\left(\partial_{z}+F_{1}(z)\right) & \ldots\left(\partial_{z}+F_{m}(z)\right): \\
& =f_{m 0}(z) \partial_{z}^{m}+f_{m 1}(z) \partial_{z}^{m-1}+\cdots+f_{m m}(z)
\end{aligned}
$$

All coefficients of the $f_{m a}(z)$ are Sugawara operators for $\widehat{\mathfrak{o}}_{N}$.

Applying them to the vacuum vector, we get explicit generators of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{o}}_{N}\right)$, and hence, generators of the commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{o}_{N}\left[t^{-1}\right]\right)$.

Introduce the matrix $F(z)_{-}=\left[F_{i j}(z)_{-}\right]$and set $L(z)=\partial_{z}-F(z)_{-}$,

$$
F_{i j}(z)_{-}=\sum_{r=0}^{\infty} F_{i j}[r] z^{-r-1}
$$

Introduce the matrix $F(z)_{-}=\left[F_{i j}(z)_{-}\right]$and set $L(z)=\partial_{z}-F(z)_{-}$,

$$
F_{i j}(z)_{-}=\sum_{r=0}^{\infty} F_{i j}[r] z^{-r-1}
$$

Corollary. The coefficients of all series $l_{m a}(z)$ with $m=1,2, \ldots$ defined by the decompositions

$$
\operatorname{tr} S^{(m)} L_{1}(z) \ldots L_{m}(z)=l_{m 0}(z) \partial_{z}^{m}+l_{m 1}(z) \partial_{z}^{m-1}+\cdots+l_{m m}(z)
$$ generate a commutative subalgebra of $\mathrm{U}\left(\mathfrak{o}_{N}[t]\right)$.

Pfaffian-type Sugawara operators

Pfaffian-type Sugawara operators

In type D,

$$
Y: \operatorname{Pf} F[-1] \mapsto \operatorname{Pf} F(z)
$$

(no normal ordering).

Pfaffian-type Sugawara operators

In type D,

$$
Y: \operatorname{Pf} F[-1] \mapsto \operatorname{Pf} F(z)
$$

(no normal ordering).

Taking the coefficients of the powers of z we get Sugawara operators $S_{r}, r \in \mathbb{Z}$, of the form

$$
S_{r}=\sum_{r_{1}+\cdots+r_{n}=r} \sum_{\sigma} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)}\left[r_{1}\right] \ldots F_{\sigma(2 n-1) \sigma(2 n)}\left[r_{n}\right]
$$

Harmonic polynomials

Harmonic polynomials

The operator $S^{(m)}$ projects the vector space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_{N}.

Harmonic polynomials

The operator $S^{(m)}$ projects the vector space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_{N}.

Identify symmetric tensors with polynomials in variables
x_{1}, \ldots, x_{N}. Then the subspace $S^{(m)}\left(\mathbb{C}^{N}\right)^{\otimes m}$ is isomorphic to the space \mathcal{H}_{N}^{m} of harmonic polynomials of degree m.

Harmonic polynomials

The operator $S^{(m)}$ projects the vector space $\left(\mathbb{C}^{N}\right)^{\otimes m}$ to a subspace of the space of symmetric tensors, which carries an irreducible representation of the orthogonal group O_{N}.

Identify symmetric tensors with polynomials in variables
x_{1}, \ldots, x_{N}. Then the subspace $S^{(m)}\left(\mathbb{C}^{N}\right)^{\otimes m}$ is isomorphic to the space \mathcal{H}_{N}^{m} of harmonic polynomials of degree m.

These are polynomials annihilated by the Laplace operator
$\partial_{1}^{2}+\cdots+\partial_{N}^{2}$.

The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p: \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \rightarrow \mathcal{H}_{N}$ to the subspace of
homogeneous polynomials of degree m, where

The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p: \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \rightarrow \mathcal{H}_{N}$ to the subspace of homogeneous polynomials of degree m, where $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]=\mathcal{H}_{N} \oplus\left(x_{1}^{2}+\cdots+x_{N}^{2}\right) \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.

The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p: \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \rightarrow \mathcal{H}_{N}$ to the subspace of homogeneous polynomials of degree m, where
$\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]=\mathcal{H}_{N} \oplus\left(x_{1}^{2}+\cdots+x_{N}^{2}\right) \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.

Remark. The operator p is associated with the action of $\mathfrak{s l}_{2}$
commuting with that of O_{N} via the special case of Howe duality:

The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p: \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \rightarrow \mathcal{H}_{N}$ to the subspace of homogeneous polynomials of degree m, where
$\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]=\mathcal{H}_{N} \oplus\left(x_{1}^{2}+\cdots+x_{N}^{2}\right) \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.

Remark. The operator p is associated with the action of $\mathfrak{s l}_{2}$ commuting with that of O_{N} via the special case of Howe duality:

$$
e \mapsto-\frac{1}{2} \sum_{i=1}^{N} \partial_{i}^{2}, \quad f \mapsto \frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}, \quad h \mapsto-\frac{N}{2}-\sum_{i=1}^{N} x_{i} \partial_{i},
$$

The operator $S^{(m)}$ coincides with the restriction of the extremal projector $p: \mathbb{C}\left[x_{1}, \ldots, x_{N}\right] \rightarrow \mathcal{H}_{N}$ to the subspace of homogeneous polynomials of degree m, where
$\mathbb{C}\left[x_{1}, \ldots, x_{N}\right]=\mathcal{H}_{N} \oplus\left(x_{1}^{2}+\cdots+x_{N}^{2}\right) \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.

Remark. The operator p is associated with the action of $\mathfrak{s l}_{2}$ commuting with that of O_{N} via the special case of Howe duality:

$$
e \mapsto-\frac{1}{2} \sum_{i=1}^{N} \partial_{i}^{2}, \quad f \mapsto \frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}, \quad h \mapsto-\frac{N}{2}-\sum_{i=1}^{N} x_{i} \partial_{i},
$$

and p satisfies $e p=p f=0$.

Corollary. The Segal-Sugawara vectors $\phi_{m k}$ can be found from the expansion

$$
\left.\operatorname{tr} p \Phi^{(m)}\right|_{\mathcal{H}_{N}^{m}}=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
$$

with the trace taken over the subspace \mathcal{H}_{N}^{m},

Corollary. The Segal-Sugawara vectors $\phi_{m k}$ can be found from the expansion

$$
\left.\operatorname{tr} p \Phi^{(m)}\right|_{\mathcal{H}_{N}^{m}}=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
$$

with the trace taken over the subspace \mathcal{H}_{N}^{m},

$$
\Phi^{(m)}: x_{j_{1}} \ldots x_{j_{m}} \mapsto \sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}} \otimes \Phi_{j_{1}, \ldots, j_{m}}^{i_{1}, \ldots, i_{m}}
$$

Corollary. The Segal-Sugawara vectors $\phi_{m k}$ can be found from the expansion

$$
\left.\operatorname{tr} p \Phi^{(m)}\right|_{\mathcal{H}_{N}^{m}}=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
$$

with the trace taken over the subspace \mathcal{H}_{N}^{m},

$$
\Phi^{(m)}: x_{j_{1}} \ldots x_{j_{m}} \mapsto \sum_{i_{1} \leqslant \cdots \leqslant i_{m}} x_{i_{1}} \ldots x_{i_{m}} \otimes \Phi_{j_{1}, \ldots, j_{m}}^{i_{1}, \ldots, i_{m}}
$$

where

$$
\Phi_{j_{1}, \ldots, j_{m}}^{i_{1}, \ldots, i_{m}}=\frac{1}{\alpha_{1}!\ldots \alpha_{N}!m!} \sum_{\sigma, \pi \in \mathfrak{S}_{m}} \Phi_{i_{\sigma(1)} j_{\pi(1)}} \ldots \Phi_{i_{\sigma(m)} j_{\pi(m)}}
$$

and α_{i} is the multiplicity of i in the multiset $\left\{i_{1}, \ldots, i_{m}\right\}$.

