Center at the critical level and commutative subalgebras

Alexander Molev

University of Sydney

Invariants in symmetric algebra

Invariants in symmetric algebra

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Invariants in symmetric algebra

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}
$$

Invariants in symmetric algebra

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.
The adjoint action of \mathfrak{g} on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k} .
$$

The subalgebra of invariants is

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\{P \in \mathrm{~S}(\mathfrak{g}) \mid Y \cdot P=0 \quad \text { for all } \quad Y \in \mathfrak{g}\} .
$$

Let $n=\operatorname{rank} \mathfrak{g}$. Then

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right],
$$

for certain algebraically independent invariants P_{1}, \ldots, P_{n} of certain degrees d_{1}, \ldots, d_{n} depending on \mathfrak{g}.

Let $n=\operatorname{rank} \mathfrak{g}$. Then

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right],
$$

for certain algebraically independent invariants P_{1}, \ldots, P_{n} of certain degrees d_{1}, \ldots, d_{n} depending on \mathfrak{g}.

We have the Chevalley isomorphism

$$
\varsigma: S(\mathfrak{g})^{\mathfrak{g}} \rightarrow \mathrm{S}(\mathfrak{h})^{W},
$$

where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is its Weyl group.

Type A
For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Type A

For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}(u+E)=u^{N}+C_{1} u^{N-1}+\cdots+C_{N} .
$$

Type A

For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}(u+E)=u^{N}+C_{1} u^{N-1}+\cdots+C_{N} .
$$

Then $\quad \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[C_{1}, \ldots, C_{N}\right]$

Type A

For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}(u+E)=u^{N}+C_{1} u^{N-1}+\cdots+C_{N} .
$$

Then $\quad \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[C_{1}, \ldots, C_{N}\right] \quad$ and

$$
\varsigma: \operatorname{det}(u+E) \mapsto\left(u+\lambda_{1}\right) \ldots\left(u+\lambda_{N}\right), \quad \lambda_{i}=E_{i i} .
$$

We have

$$
T_{k}=\operatorname{tr} E^{k} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}
$$

for all $k \geqslant 0$,

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[T_{1}, \ldots, T_{N}\right]
$$

We have

$$
T_{k}=\operatorname{tr} E^{k} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}
$$

for all $k \geqslant 0$,

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[T_{1}, \ldots, T_{N}\right]
$$

and

$$
\varsigma: T_{k} \mapsto \lambda_{1}^{k}+\cdots+\lambda_{N}^{k} .
$$

We have

$$
T_{k}=\operatorname{tr} E^{k} \in \mathrm{~S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}
$$

for all $k \geqslant 0$,

$$
\mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[T_{1}, \ldots, T_{N}\right]
$$

and

$$
\varsigma: T_{k} \mapsto \lambda_{1}^{k}+\cdots+\lambda_{N}^{k} .
$$

The invariants C_{k} and T_{k} are related by the Newton formulas.

Types B, C and D

Define the orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ and $N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

Types B, C and D

Define the orthogonal Lie algebra \mathfrak{o}_{N} with $N=2 n$ and
$N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as
subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

We use the involution $i \mapsto i^{\prime}=N-i+1$ on the set $\{1, \ldots, N\}$, and in the symplectic case set

$$
\varepsilon_{i}=\left\{\begin{aligned}
1 & \text { for } \quad i=1, \ldots, n \\
-1 & \text { for } \quad i=n+1, \ldots, 2 n
\end{aligned}\right.
$$

The matrix $F=\left[F_{i j}\right]$ has the symmetry property $F+F^{\prime}=0$, where we use the transposition on matrices defined by

$$
\left(X^{\prime}\right)_{i j}=X_{j^{\prime} i^{\prime}} \quad \text { or } \quad\left(X^{\prime}\right)_{i j}=\varepsilon_{i} \varepsilon_{j} X_{j^{\prime} i^{\prime}} .
$$

The matrix $F=\left[F_{i j}\right]$ has the symmetry property $F+F^{\prime}=0$, where we use the transposition on matrices defined by

$$
\left(X^{\prime}\right)_{i j}=X_{j^{\prime} i^{\prime}} \quad \text { or } \quad\left(X^{\prime}\right)_{i j}=\varepsilon_{i} \varepsilon_{j} X_{j^{\prime} i^{\prime}} .
$$

Hence

$$
\operatorname{det}(u+F)=(-1)^{N} \operatorname{det}(-u+F)
$$

The matrix $F=\left[F_{i j}\right]$ has the symmetry property $F+F^{\prime}=0$, where we use the transposition on matrices defined by

$$
\left(X^{\prime}\right)_{i j}=X_{j^{\prime} i^{\prime}} \quad \text { or } \quad\left(X^{\prime}\right)_{i j}=\varepsilon_{i} \varepsilon_{j} X_{j^{\prime} i^{\prime}}
$$

Hence

$$
\operatorname{det}(u+F)=(-1)^{N} \operatorname{det}(-u+F)
$$

$$
\begin{array}{ll}
\text { and } & \operatorname{det}(u+F)=\left\{\begin{array}{ll}
u^{2 n}+C_{1} u^{2 n-2}+\cdots+C_{n} & \text { if } \\
u^{2 n+1}+C_{1} u^{2 n-1}+\cdots+C_{n} u & \text { if } \\
\quad N=2 n+1
\end{array} .\right.
\end{array}
$$

The matrix $F=\left[F_{i j}\right]$ has the symmetry property $F+F^{\prime}=0$, where we use the transposition on matrices defined by

$$
\left(X^{\prime}\right)_{i j}=X_{j^{\prime} i^{\prime}} \quad \text { or } \quad\left(X^{\prime}\right)_{i j}=\varepsilon_{i} \varepsilon_{j} X_{j^{\prime} i^{\prime}}
$$

Hence

$$
\operatorname{det}(u+F)=(-1)^{N} \operatorname{det}(-u+F)
$$

$$
\begin{array}{ll}
\text { and } & \operatorname{det}(u+F)=\left\{\begin{array}{ll}
u^{2 n}+C_{1} u^{2 n-2}+\cdots+C_{n} & \text { if } \\
u^{2 n+1}+C_{1} u^{2 n-1}+\cdots+C_{n} u & \text { if }
\end{array} \quad N=2 n+1\right.
\end{array}
$$

If $\mathfrak{g}=\mathfrak{o}_{2 n}$, then $C_{n}=\operatorname{det} F=(-1)^{n}(\operatorname{Pf} F)^{2}$ for the Pfaffian

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}
$$

The subalgebra of invariants is

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}= \begin{cases}\mathbb{C}\left[C_{1}, \ldots, C_{n}\right] & \text { for } \mathfrak{g}=\mathfrak{o}_{2 n+1}, \mathfrak{s p}_{2 n} \\ \mathbb{C}\left[C_{1}, \ldots, C_{n-1}, \operatorname{Pf} F\right] & \text { for } \mathfrak{g}=\mathfrak{o}_{2 n} .\end{cases}
$$

The subalgebra of invariants is

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}= \begin{cases}\mathbb{C}\left[C_{1}, \ldots, C_{n}\right] & \text { for } \mathfrak{g}=\mathfrak{o}_{2 n+1}, \mathfrak{s p}_{2 n} \\ \mathbb{C}\left[C_{1}, \ldots, C_{n-1}, \operatorname{Pf} F\right] & \text { for } \mathfrak{g}=\mathfrak{o}_{2 n} .\end{cases}
$$

Moreover, setting $\lambda_{i}=F_{i i}$ for $i=1, \ldots, n$, we have

$$
\varsigma: \operatorname{det}(u+F) \mapsto \begin{cases}\left(u-\lambda_{1}^{2}\right) \ldots\left(u-\lambda_{n}^{2}\right) & \text { if } \quad N=2 n \\ u\left(u-\lambda_{1}^{2}\right) \ldots\left(u-\lambda_{n}^{2}\right) & \text { if } \quad N=2 n+1\end{cases}
$$

The subalgebra of invariants is

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}= \begin{cases}\mathbb{C}\left[C_{1}, \ldots, C_{n}\right] & \text { for } \mathfrak{g}=\mathfrak{o}_{2 n+1}, \mathfrak{s p}_{2 n} \\ \mathbb{C}\left[C_{1}, \ldots, C_{n-1}, \operatorname{Pf} F\right] & \text { for } \mathfrak{g}=\mathfrak{o}_{2 n} .\end{cases}
$$

Moreover, setting $\lambda_{i}=F_{i i}$ for $i=1, \ldots, n$, we have

$$
\varsigma: \operatorname{det}(u+F) \mapsto \begin{cases}\left(u-\lambda_{1}^{2}\right) \ldots\left(u-\lambda_{n}^{2}\right) & \text { if } \quad N=2 n \\ u\left(u-\lambda_{1}^{2}\right) \ldots\left(u-\lambda_{n}^{2}\right) & \text { if } \quad N=2 n+1\end{cases}
$$

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$,

$$
\varsigma: \operatorname{Pf} F \mapsto \lambda_{1} \ldots \lambda_{n}
$$

Poisson commutative subalgebras

Poisson commutative subalgebras

The symmetric algebra $S(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits
the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

Poisson commutative subalgebras

The symmetric algebra $S(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits
the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

If \mathfrak{g} is a simple Lie algebra with $n=\operatorname{rank} \mathfrak{g}$ then the subalgebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$ is Poisson commutative.

Poisson commutative subalgebras

The symmetric algebra $S(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

If \mathfrak{g} is a simple Lie algebra with $n=\operatorname{rank} \mathfrak{g}$ then the subalgebra $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]$ is Poisson commutative.

Problem: Extend $\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}$ to a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and substitute

$$
X_{i} \mapsto X_{i} z^{-1}+\mu\left(X_{i}\right),
$$

where z is a variable:

$$
\begin{aligned}
& P\left(X_{1} z^{-1}+\mu\left(X_{1}\right), \ldots, X_{l} z^{-1}+\mu\left(X_{l}\right)\right) \\
&=P^{(0)} z^{-d}+\cdots+P^{(d-1)} z^{-1}+P^{(d)}
\end{aligned}
$$

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree d.
Fix any $\mu \in \mathfrak{g}^{*}$ and substitute

$$
X_{i} \mapsto X_{i} z^{-1}+\mu\left(X_{i}\right),
$$

where z is a variable:

$$
\begin{aligned}
& P\left(X_{1} z^{-1}+\mu\left(X_{1}\right), \ldots, X_{l} z^{-1}+\mu\left(X_{l}\right)\right) \\
& \quad=P^{(0)} z^{-d}+\cdots+P^{(d-1)} z^{-1}+P^{(d)}
\end{aligned}
$$

Denote by $\overline{\mathcal{A}}_{\mu}$ the subalgebra of $\mathrm{S}(\mathfrak{g})$ generated by all elements $P^{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$.
A. Mishchenko and A. Fomenko, 1978:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$.

A. Mishchenko and A. Fomenko, 1978:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$.
- If μ is a regular semi-simple element of $\mathfrak{g}^{*} \cong \mathfrak{g}$,
then the elements

$$
P_{k}^{(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1,
$$

are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$

A. Mishchenko and A. Fomenko, 1978:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$.
- If μ is a regular semi-simple element of $\mathfrak{g}^{*} \cong \mathfrak{g}$,
then the elements

$$
P_{k}^{(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$
so that $\overline{\mathcal{A}}_{\mu}$ has the maximal possible transcendence degree $(\operatorname{dim} \mathfrak{g}+\operatorname{rank} \mathfrak{g}) / 2$.
A. Tarasov, 2002:

If $\mu \in \mathfrak{g}^{*}$ is regular semi-simple then $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.
A. Tarasov, 2002:

If $\mu \in \mathfrak{g}^{*}$ is regular semi-simple then $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.
D. Panyushev and O. Yakimova, 2008:

This is true for any regular $\mu \in \mathfrak{g}^{*}$.
A. Tarasov, 2002:

If $\mu \in \mathfrak{g}^{*}$ is regular semi-simple then $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.
D. Panyushev and O. Yakimova, 2008:

This is true for any regular $\mu \in \mathfrak{g}^{*}$.
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010:

For any regular $\mu \in \mathfrak{g}^{*}$ the elements $P_{k}^{(i)}$ are free generators of $\overline{\mathcal{A}}_{\mu}$.

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right], \quad \mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right], \quad \mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}\left(u+\mu+E z^{-1}\right)=\sum_{0 \leqslant i \leqslant k \leqslant N} C_{k}^{(i)} z^{-k+i} u^{N-k} .
$$

Example. For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right], \quad \mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

and write

$$
\operatorname{det}\left(u+\mu+E z^{-1}\right)=\sum_{0 \leqslant i \leqslant k \leqslant N} C_{k}^{(i)} z^{-k+i} u^{N-k}
$$

The elements $C_{k}^{(i)}$ with $k=1, \ldots, N$ and $i=0,1, \ldots, k-1$ are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$ for regular μ.

Also write

$$
\operatorname{tr}\left(\mu+E z^{-1}\right)^{k}=\sum_{i=0}^{k} T_{k}^{(i)} z^{-k+i}
$$

Also write

$$
\operatorname{tr}\left(\mu+E z^{-1}\right)^{k}=\sum_{i=0}^{k} T_{k}^{(i)} z^{-k+i}
$$

All elements $T_{k}^{(i)}$ belong to the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.

Also write

$$
\operatorname{tr}\left(\mu+E z^{-1}\right)^{k}=\sum_{i=0}^{k} T_{k}^{(i)} z^{-k+i}
$$

All elements $T_{k}^{(i)}$ belong to the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.

The elements $T_{k}^{(i)}$ with $k=1, \ldots, N$ and $i=0,1, \ldots, k-1$ are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$ for regular μ.

The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$?

The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$?

We would like to find a (maximal) commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$ (together with its free generators) such that gr $\mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$?

We would like to find a (maximal) commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$ (together with its free generators) such that $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.
M. Nazarov and G. Olshanski, 1996:
\mathcal{A}_{μ} is produced for classical types, μ regular semi-simple.

Explicit free generators of \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{g l}_{N}$:
A. Tarasov, 2000,
A. Chervov and D. Talalaev, 2006 (preprint).

Explicit free generators of \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{g l}_{N}$:
A. Tarasov, 2000,
A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg's problem for any \mathfrak{g} :
L. Rybnikov, 2006, $\quad \mu$ regular semi-simple,

Explicit free generators of \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{g l}_{N}$:
A. Tarasov, 2000,
A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg's problem for any \mathfrak{g} :
L. Rybnikov, 2006, $\quad \mu$ regular semi-simple,
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010,
μ any regular element.

Explicit free generators of \mathcal{A}_{μ} for $\mathfrak{g}=\mathfrak{g l}_{N}$:
A. Tarasov, 2000,
A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg's problem for any \mathfrak{g} :
L. Rybnikov, 2006, $\quad \mu$ regular semi-simple,
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010,
μ any regular element.

The solution uses the Feigin-Frenkel center associated with $\widehat{\mathfrak{g}}$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\widehat{\mathfrak{g}})$ the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

The affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle K,
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\widehat{\mathfrak{g}})$ the quotient of $\mathrm{U}(\widehat{\mathfrak{g}})$ by the ideal generated by $K-\kappa$.

The value $\kappa=-h^{\vee}$ corresponds to the critical level.

Feigin-Frenkel center

Consider the left ideal $\mathrm{I}=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

$$
\operatorname{Norm} \mathrm{I}=\left\{v \in \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid \mathrm{I} v \subseteq \mathrm{I}\right\}
$$

be its normalizer.

Feigin-Frenkel center

Consider the left ideal $\mathrm{I}=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

$$
\text { Norm } \mathrm{I}=\left\{v \in \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid \mathrm{I} v \subseteq \mathrm{I}\right\}
$$

be its normalizer. This is a subalgebra of $U_{-h \vee}(\widehat{\mathfrak{g}})$, and
I is a two-sided ideal of Norm I.

Feigin-Frenkel center

Consider the left ideal $\mathrm{I}=\mathrm{U}_{-h^{\vee}}(\hat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

$$
\text { Norm } \mathrm{I}=\left\{v \in \mathrm{U}_{-h \vee}(\hat{\mathfrak{g}}) \mid \mathrm{I} v \subseteq \mathrm{I}\right\}
$$

be its normalizer. This is a subalgebra of $U_{-h \vee}(\widehat{\mathfrak{g}})$, and
I is a two-sided ideal of Norm I.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the associative algebra defined as the quotient

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\operatorname{Norm} \mathrm{I} / \mathrm{I} .
$$

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Then

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Then

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Equivalently, consider the vacuum module at the critical level

$$
V(\mathfrak{g})=\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}}) / \mathrm{I} .
$$

Then

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\{v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v=0\} .
$$

Note $\quad V(\mathfrak{g}) \cong \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Properties:

- The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is invariant with respect to the translation operator T defined as the derivation $T=-d / d t$.

Any element of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types $A, B, C ;$ V. Kac and D. Kazhdan, 1979.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types $A, B, C ;$ V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

Theorem (Feigin-Frenkel, 1992).

There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$, $n=\operatorname{rank} \mathfrak{g}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types $A, B, C ;$ V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Commutative subalgebras of $\mathrm{U}(\mathfrak{g})$

Commutative subalgebras of $\mathrm{U}(\mathfrak{g})$

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})
$$

Commutative subalgebras of $\mathrm{U}(\mathfrak{g})$

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})
$$

such that

$$
X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X), \quad X \in \mathfrak{g}, \quad r<0
$$

defines an algebra homomorphism.

Commutative subalgebras of $\mathrm{U}(\mathfrak{g})$

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})
$$

such that

$$
X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X), \quad X \in \mathfrak{g}, \quad r<0
$$

defines an algebra homomorphism.
Set $\mathcal{A}_{\mu}=\rho(\mathfrak{z}(\widehat{\mathfrak{g}}))$, the image of the Feigin-Frenkel center.

Commutative subalgebras of $\mathrm{U}(\mathfrak{g})$

Given any $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$ the mapping

$$
\rho: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g})
$$

such that

$$
X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X), \quad X \in \mathfrak{g}, \quad r<0
$$

defines an algebra homomorphism.
Set $\mathcal{A}_{\mu}=\rho(\mathfrak{z}(\widehat{\mathfrak{g}}))$, the image of the Feigin-Frenkel center.
\mathcal{A}_{μ} is a commutative subalgebra of $\mathrm{U}(\mathfrak{g})$.

Properties:

- The algebra \mathcal{A}_{μ} does not depend on z.

Properties:

- The algebra \mathcal{A}_{μ} does not depend on z.
- $\rho(T S)=-\partial_{z} \rho(S)$.

Properties:

- The algebra \mathcal{A}_{μ} does not depend on z.
- $\rho(T S)=-\partial_{z} \rho(S)$.

If S is a Segal-Sugawara vector of degree d, set

$$
\rho(S)=S^{(0)} z^{-d}+\cdots+S^{(d-1)} z^{-1}+S^{(d)} .
$$

Theorem (R., 2006; FFTL, 2010). Let $\mu \in \mathfrak{g}^{*}$ be regular.

Theorem (R., 2006; FFTL, 2010). Let $\mu \in \mathfrak{g}^{*}$ be regular.

- The subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$ is maximal commutative.

Theorem (R., 2006; FFTL, 2010). Let $\mu \in \mathfrak{g}^{*}$ be regular.

- The subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$ is maximal commutative.
- If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n} then the elements

$$
S_{k}^{(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are algebraically independent generators of \mathcal{A}_{μ}.

Theorem (R., 2006; FFTL, 2010). Let $\mu \in \mathfrak{g}^{*}$ be regular.

- The subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$ is maximal commutative.
- If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n} then the elements

$$
S_{k}^{(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are algebraically independent generators of \mathcal{A}_{μ}.

- $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Theorem (R., 2006; FFTL, 2010). Let $\mu \in \mathfrak{g}^{*}$ be regular.

- The subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$ is maximal commutative.
- If S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors of the respective degrees d_{1}, \ldots, d_{n} then the elements

$$
S_{k}^{(i)}, \quad k=1, \ldots, n, \quad i=0,1, \ldots, d_{k}-1
$$

are algebraically independent generators of \mathcal{A}_{μ}.

- $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

Conjecture (loc. cit.) The last claim holds for any $\mu \in \mathfrak{g}^{*}$.

Explicit construction of \mathcal{A}_{μ}

Use complete sets of Segal-Sugawara vectors S_{1}, \ldots, S_{n} produced in A. Chervov and D. Talalaev, 2006, and also A. Chervov and A. M., 2009 (in type A) and A. M., 2013 (types B, C and D).

For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right], \quad \mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right] .
$$

For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right], \quad \mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right] .
$$

Write

$$
\operatorname{cdet}\left(-\partial_{z}+\mu+E z^{-1}\right)=\sum_{0 \leqslant i \leqslant k \leqslant N} \widehat{C}_{k}^{(i)} z^{-k+i} \partial_{z}^{N-k}
$$

For $\mathfrak{g}=\mathfrak{g l}_{N}$ set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right], \quad \mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right] .
$$

Write

$$
\operatorname{cdet}\left(-\partial_{z}+\mu+E z^{-1}\right)=\sum_{0 \leqslant i \leqslant k \leqslant N} \widehat{C}_{k}^{(i)} z^{-k+i} \partial_{z}^{N-k}
$$

and

$$
\operatorname{tr}\left(-\partial_{z}+\mu+E z^{-1}\right)^{k} 1=\sum_{i=0}^{k} \widehat{T}_{k}^{(i)} z^{-k+i}
$$

Theorem. For any μ all elements $\widehat{C}_{k}^{(i)}$ and $\widehat{T}_{k}^{(i)}$ belong to the commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

Theorem. For any μ all elements $\widehat{C}_{k}^{(i)}$ and $\widehat{T}_{k}^{(i)}$ belong to the commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

If μ is regular, then the elements of each of these families with
$k=1, \ldots, N$ and $i=0,1, \ldots, k-1$ are algebraically independent generators of \mathcal{A}_{μ}.

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :

$$
\text { for } \quad \mathfrak{g}_{2}: \quad \operatorname{tr} E, \quad \operatorname{tr} \mu E, \quad \operatorname{tr} E^{2}
$$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :

$$
\begin{aligned}
& \text { for } \mathfrak{g l}_{2}: \quad \operatorname{tr} E, \quad \operatorname{tr} \mu E, \quad \operatorname{tr} E^{2} \\
& \text { for } \quad \mathfrak{g l}_{3}: \quad \operatorname{tr} E, \quad \operatorname{tr} \mu E, \quad \operatorname{tr} \mu^{2} E, \quad \operatorname{tr} E^{2}, \quad \operatorname{tr} \mu E^{2}, \quad \operatorname{tr} E^{3}
\end{aligned}
$$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :
for $\mathfrak{g h}_{2}: \quad \operatorname{tr} E, \quad \operatorname{tr} \mu E, \quad \operatorname{tr} E^{2}$
for $\quad \mathfrak{g l}_{3}: \quad \operatorname{tr} E, \quad \operatorname{tr} \mu E, \quad \operatorname{tr} \mu^{2} E, \quad \operatorname{tr} E^{2}, \quad \operatorname{tr} \mu E^{2}, \quad \operatorname{tr} E^{3}$
for $\quad \mathfrak{g l}_{4}: \quad \operatorname{tr} E, \quad \operatorname{tr} \mu E, \quad \operatorname{tr} \mu^{2} E, \quad \operatorname{tr} \mu^{3} E, \quad \operatorname{tr} E^{2}, \quad \operatorname{tr} \mu E^{2}$,

$$
2 \operatorname{tr} \mu^{2} E^{2}+\operatorname{tr}(\mu E)^{2}, \quad \operatorname{tr} E^{3}, \quad \operatorname{tr} \mu E^{3}, \quad \operatorname{tr} E^{4}
$$

Types B, C and D

The symmetric group \mathfrak{S}_{m} acts on the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

Types B, C and D

The symmetric group \mathfrak{S}_{m} acts on the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by

$$
(a, b) \mapsto P_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

Types B, C and D

The symmetric group \mathfrak{S}_{m} acts on the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by

$$
(a, b) \mapsto P_{a b}, \quad 1 \leqslant a<b \leqslant m
$$

where

$$
P_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{j i} \otimes 1^{\otimes(m-b)}
$$

Introduce the projection operators $Q_{a b}$ on the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

Introduce the projection operators $Q_{a b}$ on the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by

$$
Q_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

in the orthogonal case,

Introduce the projection operators $Q_{a b}$ on the tensor space

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

by

$$
Q_{a b}=\sum_{i, j=1}^{N} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

in the orthogonal case, and

$$
Q_{a b}=\sum_{i, j=1}^{N} \varepsilon_{i} \varepsilon_{j} 1^{\otimes(a-1)} \otimes e_{i j} \otimes 1^{\otimes(b-a-1)} \otimes e_{i^{\prime} j^{\prime}} \otimes 1^{\otimes(m-b)}
$$

in the symplectic case, where $i^{\prime}=N-i+1$.

Define the respective symmetrizer as the operator

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right),
$$

Define the respective symmetrizer as the operator

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right)
$$

Define the respective symmetrizer as the operator

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1+\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{N / 2+b-a-1}\right)
$$

and

$$
S^{(m)}=\frac{1}{m!} \prod_{1 \leqslant a<b \leqslant m}\left(1-\frac{P_{a b}}{b-a}-\frac{Q_{a b}}{n-b+a+1}\right)
$$

Set

$$
\gamma_{m}(\omega)=\frac{\omega+m-2}{\omega+2 m-2}, \quad \omega=\left\{\begin{array}{cl}
N & \text { for } \mathfrak{g}=\mathfrak{o}_{N} \\
-2 n & \text { for } \\
\mathfrak{g}=\mathfrak{s p}_{2 n}
\end{array}\right.
$$

Combine the generators of $\mathfrak{g}=\mathfrak{o}_{N}, \quad \mathfrak{s p}_{N}$ into the matrix

$$
F=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{g})
$$

Combine the generators of $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ into the matrix

$$
F=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{g})
$$

Consider the tensor product algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}(\mathfrak{g}) .
$$

Combine the generators of $\mathfrak{g}=\mathfrak{o}_{N}, \mathfrak{s p}_{N}$ into the matrix

$$
F=\sum_{i, j=1}^{N} e_{i j} \otimes F_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(\mathfrak{g})
$$

Consider the tensor product algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}(\mathfrak{g}) .
$$

For any $\mu \in \mathfrak{g}^{*}$ write

$$
\begin{aligned}
\gamma_{m}(\omega) \operatorname{tr} S^{(m)}\left(-\partial_{z}+\mu_{1}+F_{1} z^{-1}\right) \ldots & \left(-\partial_{z}+\mu_{m}+F_{m} z^{-1}\right) 1 \\
& =\sum_{i=0}^{m} L_{m}^{(i)} z^{-m+i}
\end{aligned}
$$

In the case of $\mathfrak{o}_{2 n}$ consider the Pfaffian

$$
\begin{aligned}
\operatorname{Pf} & \left(\mu+F z^{-1}\right) \\
& =\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot\left(\mu+F z^{-1}\right)_{\sigma(1) \sigma(2)^{\prime}} \cdots\left(\mu+F z^{-1}\right)_{\sigma(2 n-1) \sigma(2 n)^{\prime}} \\
& =P^{(n)}+P^{(n-1)} z^{-1}+\cdots+P^{(0)} z^{-n} .
\end{aligned}
$$

In the case of $\mathfrak{o}_{2 n}$ consider the Pfaffian

$$
\begin{aligned}
\operatorname{Pf} & \left(\mu+F z^{-1}\right) \\
& =\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot\left(\mu+F z^{-1}\right)_{\sigma(1) \sigma(2)^{\prime}} \cdots\left(\mu+F z^{-1}\right)_{\sigma(2 n-1) \sigma(2 n)^{\prime}} \\
& =P^{(n)}+P^{(n-1)} z^{-1}+\cdots+P^{(0)} z^{-n} .
\end{aligned}
$$

Theorem. For any $\mu \in \mathfrak{g}^{*}$ all elements $L_{m}^{(i)}$
(together with the $P^{(i)}$ in type D)
belong to the commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$.

Theorem. Suppose $\mu \in \mathfrak{g}^{*}$ is regular.

Theorem. Suppose $\mu \in \mathfrak{g}^{*}$ is regular.

In types B and C the elements $L_{m}^{(0)}, \ldots, L_{m}^{(m-1)}$ with
$m=2,4, \ldots, 2 n$ are algebraically independent generators of the maximal commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}\left(\mathfrak{o}_{2 n+1}\right)$ and $\mathrm{U}\left(\mathfrak{s p}_{2 n}\right)$.

Theorem. Suppose $\mu \in \mathfrak{g}^{*}$ is regular.

In types B and C the elements $L_{m}^{(0)}, \ldots, L_{m}^{(m-1)}$ with
$m=2,4, \ldots, 2 n$ are algebraically independent generators of the maximal commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}\left(\mathfrak{o}_{2 n+1}\right)$ and $\mathrm{U}\left(\mathfrak{s p}_{2 n}\right)$.

In type D the elements $L_{m}^{(0)}, \ldots, L_{m}^{(m-1)}$ with $m=2,4, \ldots, 2 n-2$
and $P^{(0)}, \ldots, P^{(n-1)}$ are algebraically independent generators of the maximal commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}\left(\mathfrak{o}_{2 n}\right)$.

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :

$$
\text { for } \mathfrak{o}_{3}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}
$$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :
for $\mathfrak{o}_{3}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}$
for $\mathfrak{o}_{4}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}, \quad P^{(0)}, \quad P^{(1)}$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :
for $\mathfrak{o}_{3}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}$
for $\quad \mathfrak{o}_{4}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}, \quad P^{(0)}, \quad P^{(1)}$
for $\quad \mathfrak{o}_{5}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}, \quad \operatorname{tr} \mu^{3} F, \quad 2 \operatorname{tr} \mu^{2} F^{2}+\operatorname{tr}(\mu F)^{2}$,

$$
\operatorname{tr} \mu F^{3}, \quad \operatorname{tr} F^{4}
$$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :
for $\quad \mathfrak{o}_{3}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}$
for $\quad \mathfrak{o}_{4}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}, \quad P^{(0)}, \quad P^{(1)}$
for $\quad \mathfrak{o}_{5}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}, \quad \operatorname{tr} \mu^{3} F, \quad 2 \operatorname{tr} \mu^{2} F^{2}+\operatorname{tr}(\mu F)^{2}$,

$$
\operatorname{tr} \mu F^{3}, \quad \operatorname{tr} F^{4}
$$

for $\quad \mathfrak{o}_{6}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}, \quad \operatorname{tr} \mu^{3} F, \quad 2 \operatorname{tr} \mu^{2} F^{2}+\operatorname{tr}(\mu F)^{2}$,

$$
\operatorname{tr} \mu F^{3}, \quad \operatorname{tr} F^{4}, \quad P^{(0)}, \quad P^{(1)}, \quad P^{(2)}
$$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :

$$
\text { for } \mathfrak{s p}_{2}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}
$$

Examples. We get the following algebraically independent generators of the algebra \mathcal{A}_{μ} for regular μ :
for $\mathfrak{s p}_{2}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}$
for $\mathfrak{s p}_{4}: \quad \operatorname{tr} \mu F, \quad \operatorname{tr} F^{2}$,

$$
\operatorname{tr} \mu^{3} F, \quad 2 \operatorname{tr} \mu^{2} F^{2}+\operatorname{tr}(\mu F)^{2}, \quad \operatorname{tr} \mu F^{3}, \quad \operatorname{tr} F^{4}
$$

