Combinatorial bases for representations of the Lie superalgebra $\mathfrak{gl}_{m|n}$

Alexander Molev

University of Sydney

Gelfand–Tsetlin bases for \mathfrak{gl}_n

Gelfand–Tsetlin bases for \mathfrak{gl}_n

Finite-dimensional irreducible representations $L(\lambda)$ of \mathfrak{gl}_n are in

a one-to-one correspondence with *n*-tuples of complex

numbers $\lambda = (\lambda_1, \ldots, \lambda_n)$ such that

 $\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+$ for $i = 1, \ldots, n-1$.

Gelfand–Tsetlin bases for \mathfrak{gl}_n

Finite-dimensional irreducible representations $L(\lambda)$ of \mathfrak{gl}_n are in

a one-to-one correspondence with *n*-tuples of complex

numbers $\lambda = (\lambda_1, \ldots, \lambda_n)$ such that

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+$$
 for $i = 1, \ldots, n-1$.

 $L(\lambda)$ contains a highest vector $\zeta \neq 0$ such that

$$E_{ii} \zeta = \lambda_i \zeta$$
 for $i = 1, ..., n$ and
 $E_{ij} \zeta = 0$ for $1 \leq i < j \leq n$.

Suppose that λ is a partition, $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$.

Suppose that λ is a partition, $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$.

Depict it as a Young diagram.

Example. The diagram $\lambda = (5, 5, 3, 0, 0)$ is

Suppose that λ is a partition, $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$.

Depict it as a Young diagram.

Example. The diagram $\lambda = (5, 5, 3, 0, 0)$ is

The number of nonzero rows is the length of λ , denoted $\ell(\lambda)$.

Given a diagram λ , a column-strict λ -tableau T is obtained by filling in the boxes of λ with the numbers 1, 2, ..., n in such a way that the entries weakly increase along the rows and strictly increase down the columns.

Given a diagram λ , a column-strict λ -tableau T is obtained by filling in the boxes of λ with the numbers 1, 2, ..., n in such a way that the entries weakly increase along the rows and strictly increase down the columns.

Example. A column-strict λ -tableau for $\lambda = (5, 5, 3, 0, 0)$:

1	1	2	4	4
2	3	4	5	5
4	5	5		

Theorem (Gelfand and Tsetlin, 1950). $L(\lambda)$ admits a basis ζ_T parameterized by all column-strict λ -tableaux T such that the action of generators of \mathfrak{gl}_n is given by the formulas

 $E_{ss} \zeta_T = \omega_s \zeta_T,$ $E_{s,s+1} \zeta_T = \sum_{T'} c_{TT'} \zeta_{T'},$ $E_{s+1,s} \zeta_T = \sum_{T'} d_{TT'} \zeta_{T'}.$ Theorem (Gelfand and Tsetlin, 1950). $L(\lambda)$ admits a basis ζ_T parameterized by all column-strict λ -tableaux T such that the action of generators of \mathfrak{gl}_n is given by the formulas

$$E_{ss} \zeta_T = \omega_s \zeta_T,$$

$$E_{s,s+1} \zeta_T = \sum_{T'} c_{TT'} \zeta_{T'},$$

$$E_{s+1,s} \zeta_T = \sum_{T'} d_{TT'} \zeta_{T'}.$$

Here ω_s is the number of entries in *T* equal to *s*, and the sums are taken over column-strict tableaux *T'* obtained from *T* respectively by replacing an entry *s* + 1 by *s* and *s* by *s* + 1.

For any $1 \le j \le s \le n$ denote by λ_{sj} the number of entries in row *j* which do not exceed *s* and set

$$I_{sj} = \lambda_{sj} - j + \mathbf{1}.$$

For any $1 \le j \le s \le n$ denote by λ_{sj} the number of entries in row *j* which do not exceed *s* and set

$$I_{sj} = \lambda_{sj} - j + 1.$$

if the replacement occurs in row i.

Equivalent parametrization of the basis vectors by

the Gelfand-Tsetlin patterns:

Equivalent parametrization of the basis vectors by

the Gelfand-Tsetlin patterns:

Equivalent parametrization of the basis vectors by

the Gelfand–Tsetlin patterns:

The top row coincides with λ and the entries satisfy the betweenness conditions $\lambda_{ki} \ge \lambda_{k-1,i} \ge \lambda_{k,i+1}$. Example. The column-strict tableau with $\lambda = (5, 5, 3, 0, 0)$

1	1	2	4	4
2	3	4	5	5
4	5	5		

Example. The column-strict tableau with $\lambda = (5, 5, 3, 0, 0)$

1	1	2	4	4
2	3	4	5	5
4	5	5		

corresponds to the pattern

Given $\omega = (\omega_1, \dots, \omega_n) \in \mathbb{Z}_+^n$, consider the weight subspace

$$L(\lambda)_{\omega} = \{\eta \in L(\lambda) \mid E_{ss}\eta = \omega_s\eta \text{ for all } s\}.$$

Given $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{Z}_+^n$, consider the weight subspace

$$L(\lambda)_{\omega} = \{\eta \in L(\lambda) \mid E_{ss}\eta = \omega_s\eta \text{ for all } s\}.$$

The character of $L(\lambda)$ is the polynomial in variables x_1, \ldots, x_n defined by

$$\operatorname{ch} L(\lambda) = \sum_{\omega} \dim L(\lambda)_{\omega} \, x_1^{\omega_1} \dots x_n^{\omega_n}.$$

Given $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{Z}_+^n$, consider the weight subspace

$$L(\lambda)_{\omega} = \{\eta \in L(\lambda) \mid E_{ss}\eta = \omega_s\eta \text{ for all } s\}.$$

The character of $L(\lambda)$ is the polynomial in variables x_1, \ldots, x_n defined by

$$\operatorname{ch} L(\lambda) = \sum_{\omega} \dim L(\lambda)_{\omega} \, x_1^{\omega_1} \dots x_n^{\omega_n}.$$

Corollary. ch $L(\lambda) = s_{\lambda}(x_1, \dots, x_n)$, the Schur polynomial.

Basis elements of $\mathfrak{gl}_{m|n}$ are E_{ij} with $1 \leq i, j \leq m + n$.

Basis elements of $\mathfrak{gl}_{m|n}$ are E_{ij} with $1 \leq i, j \leq m + n$.

The \mathbb{Z}_2 -degree (or parity) is given by

 $\deg(E_{ij})=\bar{\imath}+\bar{\jmath},$

where $\overline{i} = 0$ for $1 \leq i \leq m$ and $\overline{i} = 1$ for $m + 1 \leq i \leq m + n$.

Basis elements of $\mathfrak{gl}_{m|n}$ are E_{ij} with $1 \leq i, j \leq m + n$.

The \mathbb{Z}_2 -degree (or parity) is given by

 $\deg(E_{ij})=\bar{\imath}+\bar{\jmath},$

where $\overline{i} = 0$ for $1 \leq i \leq m$ and $\overline{i} = 1$ for $m + 1 \leq i \leq m + n$.

The commutation relations in $\mathfrak{gl}_{m|n}$ have the form

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{ll} - \delta_{ll} E_{kl} (-1)^{(\overline{\imath} + \overline{\jmath})(\overline{k} + \overline{l})},$$

where the square brackets denote the super-commutator.

The span of $\{E_{ij} \mid 1 \leq i, j \leq m\}$

is a Lie subalgebra isomorphic to \mathfrak{gl}_m ,

The span of $\{E_{ij} \mid 1 \leq i, j \leq m\}$

is a Lie subalgebra isomorphic to \mathfrak{gl}_m ,

the span of $\{E_{ij} \mid m+1 \leq i, j \leq m+n\}$

is a Lie subalgebra of isomorphic to \mathfrak{gl}_n ,

The span of $\{E_{ij} \mid 1 \leq i, j \leq m\}$

is a Lie subalgebra isomorphic to \mathfrak{gl}_m ,

the span of $\{E_{ij} \mid m+1 \leq i, j \leq m+n\}$

is a Lie subalgebra of isomorphic to \mathfrak{gl}_n ,

the Lie subalgebra of even elements of $\mathfrak{gl}_{m|n}$ is isomorphic to $\mathfrak{gl}_m \oplus \mathfrak{gl}_n$.

Finite-dimensional irreducible representations of $\mathfrak{gl}_{m|n}$ are parameterized by their highest weights λ of the form

 $\lambda = (\lambda_1, \ldots, \lambda_m \,|\, \lambda_{m+1}, \ldots, \lambda_{m+n}),$

Finite-dimensional irreducible representations of $\mathfrak{gl}_{m|n}$ are parameterized by their highest weights λ of the form $\lambda = (\lambda_1, \dots, \lambda_m | \lambda_{m+1}, \dots, \lambda_{m+n})$, where

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+,$$
 for $i = 1, \dots, m+n-1, i \neq m.$

Finite-dimensional irreducible representations of $\mathfrak{gl}_{m|n}$ are parameterized by their highest weights λ of the form $\lambda = (\lambda_1, \dots, \lambda_m | \lambda_{m+1}, \dots, \lambda_{m+n})$, where

$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+,$$
 for $i = 1, \dots, m+n-1, i \neq m.$

The corresponding representation $L(\lambda)$ contains a highest vector $\zeta \neq 0$ such that

$$E_{ii} \zeta = \lambda_i \zeta$$
 for $i = 1, ..., m + n$ and
 $E_{ij} \zeta = 0$ for $1 \leq i < j \leq m + n$.

These are the irreducible components of the representations

$$\underbrace{\mathbb{C}^{m|n}\otimes\ldots\otimes\mathbb{C}^{m|n}}_{k}$$

These are the irreducible components of the representations

$$\underbrace{\mathbb{C}^{m|n}\otimes\ldots\otimes\mathbb{C}^{m|n}}_{k}$$

They are distinguished by the conditions:

▶ all components $\lambda_1, \ldots, \lambda_{m+n}$ of λ are nonnegative integers;

These are the irreducible components of the representations

$$\underbrace{\mathbb{C}^{m|n}\otimes\ldots\otimes\mathbb{C}^{m|n}}_{k}$$

They are distinguished by the conditions:

- ▶ all components $\lambda_1, \ldots, \lambda_{m+n}$ of λ are nonnegative integers;
- the number ℓ of nonzero components among

 $\lambda_{m+1}, \ldots, \lambda_{m+n}$ is at most λ_m .

To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_1 + \cdots + \lambda_{m+n}$ boxes.
To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_1 + \cdots + \lambda_{m+n}$ boxes.

It is determined by the conditions that the first *m* rows of Γ_{λ} are $\lambda_1, \ldots, \lambda_m$ while the first ℓ columns are $\lambda_{m+1} + m, \ldots, \lambda_{m+\ell} + m$.

To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_1 + \cdots + \lambda_{m+n}$ boxes.

It is determined by the conditions that the first *m* rows of Γ_{λ} are $\lambda_1, \ldots, \lambda_m$ while the first ℓ columns are $\lambda_{m+1} + m, \ldots, \lambda_{m+\ell} + m$.

The condition $\ell \leq \lambda_m$ ensures that Γ_{λ} is the diagram of a partition.

Example. The following is the diagram Γ_{λ} associated with the highest weight $\lambda = (10, 7, 4, 3 | 3, 1, 0, 0, 0)$ of $\mathfrak{gl}_{4|5}$:

 the entries weakly increase from left to right along each row and down each column;

- the entries weakly increase from left to right along each row and down each column;
- ► the entries in {1,..., m} strictly increase down each column;

- the entries weakly increase from left to right along each row and down each column;
- ► the entries in {1,..., m} strictly increase down each column;
- ► the entries in {m + 1,...,m + n} strictly increase from left to right along each row.

Example. The following is a supertableau of shape Γ_{λ} associated with the highest weight $\lambda = (10, 7, 4, 3 | 3, 1, 0, 0, 0)$ of $\mathfrak{gl}_{4|5}$:

Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ admits a

basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_{λ} .

Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_{λ} . The action of the generators of the Lie superalgebra $\mathfrak{gl}_{m|n}$ in this basis is given by the formulas

 $E_{ss} \zeta_{\Lambda} = \omega_{s} \zeta_{\Lambda},$ $E_{s,s+1} \zeta_{\Lambda} = \sum_{\Lambda'} c_{\Lambda\Lambda'} \zeta_{\Lambda'},$ $E_{s+1,s} \zeta_{\Lambda} = \sum_{\Lambda'} d_{\Lambda\Lambda'} \zeta_{\Lambda'}.$

Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{gl}_{m|n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_{λ} . The action of the generators of the Lie superalgebra $\mathfrak{gl}_{m|n}$ in this basis is given by the formulas

 $E_{ss} \zeta_{\Lambda} = \omega_{s} \zeta_{\Lambda},$ $E_{s,s+1} \zeta_{\Lambda} = \sum_{\Lambda'} c_{\Lambda\Lambda'} \zeta_{\Lambda'},$ $E_{s+1,s} \zeta_{\Lambda} = \sum_{\Lambda'} d_{\Lambda\Lambda'} \zeta_{\Lambda'}.$

The sums are over supertableaux Λ' obtained from Λ by

replacing an entry s + 1 by s and an entry s by s + 1, resp.

Here ω_s denotes the number of entries in Λ equal to s.

Here ω_s denotes the number of entries in Λ equal to s.

Corollary (Sergeev 1985, Berele and Regev 1987). The character ch $L(\lambda)$ coincides with the supersymmetric Schur polynomial $s_{\Gamma_{\lambda}}(x_1, \ldots, x_m \mid x_{m+1}, \ldots, x_{m+n})$ associated with the Young diagram Γ_{λ} .

Given such a supertableau Λ , for any $1 \leq i \leq s \leq m$ denote by

 λ_{si} the number of entries in row *i* which do not exceed *s*.

Given such a supertableau Λ , for any $1 \le i \le s \le m$ denote by λ_{si} the number of entries in row *i* which do not exceed *s*.

Set $r = \lambda_{m1}$ and for any $0 \le p \le n$ and $1 \le j \le r + p$ denote by $\lambda'_{r+p,j}$ the number of entries in column *j* which do not exceed m + p.

Example. The supertableau with $\lambda = (7, 5, 2 \mid 2, 1)$

Example. The supertableau with $\lambda = (7, 5, 2 \mid 2, 1)$

corresponds to the patterns \mathcal{U} and \mathcal{V} :

5	;	3		1		5		4		2		2		2		1		1
	5		1				5		2		2		2		1		1	
		2						3		2		2		1		1		

Set $I_i = \lambda_i - i + 1$,

$$I_{si} = \lambda_{si} - i + 1, \qquad I'_{r+p,j} = \lambda'_{r+p,j} - j + 1.$$

Set $l_i = \lambda_i - i + 1$,

$$I_{si} = \lambda_{si} - i + 1, \qquad I'_{r+p,j} = \lambda'_{r+p,j} - j + 1.$$

The coefficients in the expansions of $E_{s,s+1} \zeta_{\Lambda}$ and $E_{s+1,s} \zeta_{\Lambda}$ are given by

Set $l_i = \lambda_i - i + 1$,

$$I_{si} = \lambda_{si} - i + 1, \qquad I'_{r+p,j} = \lambda'_{r+p,j} - j + 1.$$

The coefficients in the expansions of $E_{s,s+1} \zeta_{\Lambda}$ and $E_{s+1,s} \zeta_{\Lambda}$ are given by

$$c_{\Lambda\Lambda'} = -\frac{(l_{si} - l_{s+1,1}) \dots (l_{si} - l_{s+1,s+1})}{(l_{si} - l_{s1}) \dots \wedge \dots (l_{si} - l_{ss})},$$

$$d_{\Lambda\Lambda'} = \frac{(l_{si} - l_{s-1,1}) \dots (l_{si} - l_{s-1,s-1})}{(l_{si} - l_{s1}) \dots \wedge \dots (l_{si} - l_{ss})},$$

if $1 \leq s \leq m - 1$ and the replacement occurs in row *i*,

and by

$$\begin{aligned} \mathbf{C}_{\Lambda\Lambda'} &= -\frac{(l'_{r+p,j} - l'_{r+p+1,1}) \cdots (l'_{r+p,j} - l'_{r+p+1,r+p+1})}{(l'_{r+p,j} - l'_{r+p,1}) \cdots \wedge \cdots (l'_{r+p,j} - l'_{r+p,r+p})},\\ \mathbf{d}_{\Lambda\Lambda'} &= \frac{(l'_{r+p,j} - l'_{r+p-1,1}) \cdots (l'_{r+p,j} - l'_{r+p-1,r+p-1})}{(l'_{r+p,j} - l'_{r+p,1}) \cdots \wedge \cdots (l'_{r+p,j} - l'_{r+p,r+p})},\end{aligned}$$

if s = m + p for $1 \leq p \leq n - 1$ and the replacement

occurs in column *j*.

Formulas for the expansions of $E_{m,m+1} \zeta_{\Lambda}$ and $E_{m+1,m} \zeta_{\Lambda}$

are also available.

Formulas for the expansions of $E_{m,m+1} \zeta_{\Lambda}$ and $E_{m+1,m} \zeta_{\Lambda}$ are also available.

Example (Palev 1989). The basis ζ_{Λ} of the $\mathfrak{gl}_{m|1}$ -module $L(\lambda_1, \ldots, \lambda_m | \lambda_{m+1})$ is parameterized by the patterns

The top row runs over partitions $(\lambda_{m1}, \ldots, \lambda_{mm})$ such that

either $\lambda_{mj} = \lambda_j$ or $\lambda_{mj} = \lambda_j - 1$ for each $j = 1, \dots, m$.

The top row runs over partitions $(\lambda_{m1}, \ldots, \lambda_{mm})$ such that

either $\lambda_{mj} = \lambda_j$ or $\lambda_{mj} = \lambda_j - 1$ for each $j = 1, \dots, m$.

$$E_{m,m+1} \zeta_{\mathcal{U}} = \sum_{i=1}^{m} (I_{mi} + \lambda_{m+1} + m) \\ \times \prod_{j=1}^{i-1} (-1)^{\lambda_j - \lambda_{mj}} \frac{I_{mi} - I_j}{I_{mi} - I_{mj}} \prod_{\substack{j=i+1 \\ \lambda_j - \lambda_{mj} = 1}}^{m} \frac{I_{mi} - I_{mj} + 1}{I_{mi} - I_j + 1} \zeta_{\mathcal{U} + \delta_{mi}},$$

$$E_{m+1,m}\zeta_{\mathcal{U}} = \sum_{i=1}^{m} \frac{(I_{mi} - I_{m-1,1}) \dots (I_{mi} - I_{m-1,m-1})}{(I_{mi} - I_{m1}) \dots \wedge \dots (I_{mi} - I_{mm})} \\ \times \prod_{j=1}^{i-1} (-1)^{\lambda_{j} - \lambda_{mj}} \frac{I_{mi} - I_{mj} - 1}{I_{mi} - I_{j} - 1} \prod_{\substack{j=1\\\lambda_{j} - \lambda_{mj} = 1}}^{i-1} \frac{I_{mi} - I_{mj}}{I_{mi} - I_{j}} \zeta_{\mathcal{U} - \delta_{mi}}.$$

Example. The basis ζ_{Λ} of the $\mathfrak{gl}_{1|n}$ -module $L(\lambda_1 | \lambda_2, \dots, \lambda_{n+1})$ is parameterized by the trapezium patterns

Example. The basis ζ_{Λ} of the $\mathfrak{gl}_{1|n}$ -module $L(\lambda_1 | \lambda_2, \dots, \lambda_{n+1})$ is parameterized by the trapezium patterns

The number *r* of 1's in the bottom row is nonnegative and varies between $\lambda_1 - n$ and λ_1 . The top row coincides with $(\lambda'_1, \ldots, \lambda'_p, 0, \ldots, 0)$, where $p = \lambda_1$.

Yangian $Y(\mathfrak{gl}_n)$

Yangian $Y(\mathfrak{gl}_n)$

The Yangian $Y(\mathfrak{gl}_n)$ is a unital associative algebra with generators $t_{ij}^{(1)}$, $t_{ij}^{(2)}$,... where *i* and *j* run over the set $\{1, \ldots, n\}$.

Yangian $Y(\mathfrak{gl}_n)$

The Yangian $Y(\mathfrak{gl}_n)$ is a unital associative algebra with generators $t_{ij}^{(1)}$, $t_{ij}^{(2)}$,... where *i* and *j* run over the set $\{1, \ldots, n\}$. The defining relations are given by

$$[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where $r, s \ge 0$ and $t_{ij}^{(0)} := \delta_{ij}$.

Using the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots$$

Using the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots$$

the defining relations can be written in the equivalent form

$$(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u).$$

Using the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots$$

the defining relations can be written in the equivalent form

$$(u-v)[t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u).$$

A natural analogue of the Poincaré–Birkhoff–Witt theorem holds for the Yangian $Y(\mathfrak{gl}_n)$. Every finite-dimensional irreducible representation *L* of $Y(\mathfrak{gl}_n)$ contains a highest vector ζ such that

 $t_{ij}(u) \zeta = 0$ for $1 \le i < j \le n$, and $t_{ij}(u) \zeta = \lambda_j(u) \zeta$ for $1 \le i \le n$, Every finite-dimensional irreducible representation *L* of $Y(\mathfrak{gl}_n)$ contains a highest vector ζ such that

 $t_{ij}(u) \zeta = 0$ for $1 \le i < j \le n$, and $t_{ii}(u) \zeta = \lambda_i(u) \zeta$ for $1 \le i \le n$,

for some formal series

 $\lambda_i(u) = 1 + \lambda_i^{(1)} u^{-1} + \lambda_i^{(2)} u^{-2} + \dots, \qquad \lambda_i^{(r)} \in \mathbb{C}.$

Every finite-dimensional irreducible representation *L* of $Y(\mathfrak{gl}_n)$ contains a highest vector ζ such that

 $t_{ij}(u) \zeta = 0$ for $1 \le i < j \le n$, and $t_{ii}(u) \zeta = \lambda_i(u) \zeta$ for $1 \le i \le n$,

for some formal series

$$\lambda_i(u) = 1 + \lambda_i^{(1)} u^{-1} + \lambda_i^{(2)} u^{-2} + \dots, \qquad \lambda_i^{(r)} \in \mathbb{C}.$$

The *n*-tuple of formal series $\lambda(u) = (\lambda_1(u), \dots, \lambda_n(u))$ is the highest weight of *L*.
Moreover, there exist monic polynomials $P_1(u), \ldots, P_{n-1}(u)$

in *u* (the Drinfeld polynomials) such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}$$

for i = 1, ..., n - 1.

Moreover, there exist monic polynomials $P_1(u), \ldots, P_{n-1}(u)$

in *u* (the Drinfeld polynomials) such that

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}$$

for i = 1, ..., n - 1.

Refs: Drinfeld (1988), Tarasov (1985).

consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^+_{\mu},$$

consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^+_{\mu},$$

where $L'(\mu)$ denotes the irreducible representation of the Lie

algebra \mathfrak{gl}_m with the highest weight $\mu = (\mu_1, \ldots, \mu_m)$,

consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^+_{\mu},$$

where $L'(\mu)$ denotes the irreducible representation of the Lie algebra \mathfrak{gl}_m with the highest weight $\mu = (\mu_1, \dots, \mu_m)$, and

 $L(\lambda)^+_{\mu}$ is the multiplicity space spanned by the \mathfrak{gl}_m -highest vectors in $L(\lambda)$ of weight μ ,

consider the vector space isomorphism

$$L(\lambda) \cong \bigoplus_{\mu} L'(\mu) \otimes L(\lambda)^+_{\mu},$$

where $L'(\mu)$ denotes the irreducible representation of the Lie algebra \mathfrak{gl}_m with the highest weight $\mu = (\mu_1, \dots, \mu_m)$, and

 $L(\lambda)^+_{\mu}$ is the multiplicity space spanned by the \mathfrak{gl}_m -highest vectors in $L(\lambda)$ of weight μ ,

 $L(\lambda)^+_{\mu} \cong \operatorname{Hom}_{\mathfrak{gl}_m}(L'(\mu), L(\lambda)).$

Olshanski homomorphism

Olshanski homomorphism

Set $E = [E_{ij}]_{i,j=1}^{m}$. The mapping $\psi : Y(\mathfrak{gl}_n) \to U(\mathfrak{gl}_{m|n})$ given by $t_{ij}^{(1)} \mapsto E_{m+i,m+j},$ $t_{ij}^{(r)} \mapsto \sum_{m=1}^{m} E_{m+i,k}(E^{r-2})_{kl}E_{l,m+j}, \quad r \ge 2,$

defines an algebra homomorphism.

k l - 1

Olshanski homomorphism

Set $E = [E_{ij}]_{i,j=1}^m$. The mapping $\psi : \mathbf{Y}(\mathfrak{gl}_n) \to \mathbf{U}(\mathfrak{gl}_{m|n})$ given by

$$t_{ij}^{(1)} \mapsto E_{m+i,m+j},$$

 $t_{ij}^{(r)} \mapsto \sum_{k,l=1}^{m} E_{m+i,k}(E^{r-2})_{kl}E_{l,m+j}, \qquad r \ge 2,$

defines an algebra homomorphism.

The image of ψ is contained in the centralizer $U(\mathfrak{gl}_{m|n})^{\mathfrak{gl}_m}$.

Theorem. The representation of $Y(\mathfrak{gl}_n)$ in $L(\lambda)^+_{\mu}$ defined via the homomorphism ψ is irreducible.

Theorem. The representation of $Y(\mathfrak{gl}_n)$ in $L(\lambda)^+_{\mu}$ defined via the homomorphism ψ is irreducible.

Proof.

L(λ)⁺_μ is an irreducible representation of the centralizer
 U(gl_{m|n})^{gl_m}.

Theorem. The representation of $Y(\mathfrak{gl}_n)$ in $L(\lambda)^+_{\mu}$ defined via the homomorphism ψ is irreducible.

Proof.

- L(λ)⁺_μ is an irreducible representation of the centralizer
 U(gl_{m|n})^{gl_m}.
- The centralizer U(gl_{m|n})^{gl_m} is generated by the image of the homomorphism Y(gl_n) → U(gl_{m|n})^{gl_m} and the center of U(gl_{m|n}).

Twist the Yangian action on $L(\lambda)^+_{\mu}$ by the automorphism

 $t_{ij}(u) \rightarrow t_{ij}(u+m).$

Twist the Yangian action on $L(\lambda)^+_{\mu}$ by the automorphism

 $t_{ij}(u) \rightarrow t_{ij}(u+m).$

For each box $\alpha = (i, j)$ of a Young diagram define its content by

 $c(\alpha) = j - i.$

Twist the Yangian action on $L(\lambda)^+_{\mu}$ by the automorphism

 $t_{ij}(u) \rightarrow t_{ij}(u+m).$

For each box $\alpha = (i, j)$ of a Young diagram define its content by

 $c(\alpha) = j - i.$

Theorem. Suppose that $L(\lambda)$ is a covariant representation. The Drinfeld polynomials for the $Y(\mathfrak{gl}_n)$ -module $L(\lambda)^+_{\mu}$ are given by

$$P_k(u) = \prod_{\alpha} (u - c(\alpha)), \qquad k = 1, \dots, n-1,$$

where α runs over the leftmost boxes of the rows of length *k* in the diagram Γ_{λ}/μ .

 $P_1(u) = (u+1)(u+4)(u+5),$

$$P_1(u) = (u+1)(u+4)(u+5),$$

 $P_2(u) = u+3,$

$$P_1(u) = (u+1)(u+4)(u+5),$$

 $P_2(u) = u+3,$
 $P_3(u) = (u-4)(u-1).$

Introduce parameters of the diagram conjugate to Γ_{λ}/μ . Set $r = \mu_1$ and let $\mu' = (\mu'_1, \dots, \mu'_r)$ be the diagram conjugate to μ so that μ'_i equals the number of boxes in column *j* of μ .

Introduce parameters of the diagram conjugate to Γ_{λ}/μ . Set $r = \mu_1$ and let $\mu' = (\mu'_1, \dots, \mu'_r)$ be the diagram conjugate to μ so that μ'_i equals the number of boxes in column *j* of μ .

Set $\lambda' = (\lambda'_1, \dots, \lambda'_{r+n})$, where λ'_j equals the number of boxes in column *j* of the diagram Γ_{λ} .

Introduce parameters of the diagram conjugate to Γ_{λ}/μ . Set $r = \mu_1$ and let $\mu' = (\mu'_1, \dots, \mu'_r)$ be the diagram conjugate to μ so that μ'_i equals the number of boxes in column *j* of μ .

Set $\lambda' = (\lambda'_1, \dots, \lambda'_{r+n})$, where λ'_j equals the number of boxes in column *j* of the diagram Γ_{λ} .

Corollary. The $Y(\mathfrak{gl}_n)$ -module $L(\lambda)^+_{\mu}$ is isomorphic to $\overline{L}(\lambda')^+_{\mu'}$, the skew representation associated with \mathfrak{gl}_{r+n} -module $\overline{L}(\lambda')$ and the \mathfrak{gl}_r -highest weight μ' .

▶ produce the highest vector of the $Y(\mathfrak{gl}_n)$ -module $L(\lambda)^+_{\mu}$,

- ▶ produce the highest vector of the $Y(\mathfrak{gl}_n)$ -module $L(\lambda)^+_{\mu}$,
- ► use the isomorphism L(λ)⁺_µ ≃ L(λ')⁺_{µ'} to get the vectors of the trapezium Gelfand–Tsetlin basis of L(λ')⁺_{µ'} in terms of the Yangian generators,

- ▶ produce the highest vector of the $Y(\mathfrak{gl}_n)$ -module $L(\lambda)^+_{\mu}$,
- ► use the isomorphism L(λ)⁺_µ ≃ L(λ')⁺_{µ'} to get the vectors of the trapezium Gelfand–Tsetlin basis of L(λ')⁺_{µ'} in terms of the Yangian generators,

• combine with the Gelfand–Tsetlin basis of $L'(\mu)$.

The extremal projector p for \mathfrak{gl}_m is given by

$$p = \prod_{i < j} \sum_{k=0}^{\infty} (E_{ji})^k (E_{ij})^k \frac{(-1)^k}{k! (h_i - h_j + 1) \dots (h_i - h_j + k)},$$

where $h_i = E_{ii} - i + 1$. The product is taken in a normal order.

The extremal projector p for \mathfrak{gl}_m is given by

$$onumber
ho = \prod_{i < j} \sum_{k=0}^{\infty} (E_{ji})^k (E_{ij})^k \, rac{(-1)^k}{k! \, (h_i - h_j + 1) \dots (h_i - h_j + k)},$$

where $h_i = E_{ii} - i + 1$. The product is taken in a normal order.

The projector satisfies

$$E_{ij} p = p E_{ji} = 0$$
 for $1 \leq i < j \leq m$.

The extremal projector p for \mathfrak{gl}_m is given by

$$onumber
ho = \prod_{i < j} \sum_{k=0}^{\infty} (E_{ji})^k (E_{ij})^k \, rac{(-1)^k}{k! \, (h_i - h_j + 1) \dots (h_i - h_j + k)},$$

where $h_i = E_{ii} - i + 1$. The product is taken in a normal order.

The projector satisfies

$$E_{ij} p = p E_{ji} = 0$$
 for $1 \leq i < j \leq m$.

Ref: Asherova, Smirnov and Tolstoy, 1971.

For i = 1, ..., m and a = m + 1, ..., m + n set

$$z_{ia} = p E_{ia}(h_i - h_1) \dots (h_i - h_{i-1}),$$

$$z_{ai} = p E_{ai}(h_i - h_{i+1}) \dots (h_i - h_m).$$

For i = 1, ..., m and a = m + 1, ..., m + n set

$$z_{ia} = p E_{ia}(h_i - h_1) \dots (h_i - h_{i-1}),$$
$$z_{ai} = p E_{ai}(h_i - h_{i+1}) \dots (h_i - h_m).$$

 z_{ia} and z_{ai} can be regarded as elements of $U(\mathfrak{gl}_{m|n})$

modulo the left ideal generated by E_{ij} with $1 \le i < j \le m$.

For i = 1, ..., m and a = m + 1, ..., m + n set

$$z_{ia} = p E_{ia}(h_i - h_1) \dots (h_i - h_{i-1}),$$
$$z_{ai} = p E_{ai}(h_i - h_{i+1}) \dots (h_i - h_m).$$

 z_{ia} and z_{ai} can be regarded as elements of $U(\mathfrak{gl}_{m|n})$ modulo the left ideal generated by E_{ii} with $1 \leq i < j \leq m$.

Example.

 $z_{1a} = E_{1a},$ $z_{2a} = E_{2a}(h_2 - h_1) + E_{21}E_{1a},$ $z_{am} = E_{am},$ $z_{a,m-1} = E_{a,m-1}(h_{m-1} - h_m) + E_{m,m-1}E_{am}.$ The elements z_{ia} and z_{ai} are odd; together with the even elements E_{ab} with $a, b \in \{m + 1, ..., m + n\}$ they generate the Mickelsson–Zhelobenko superalgebra $Z(\mathfrak{gl}_{m|n}, \mathfrak{gl}_m)$

associated with the pair $\mathfrak{gl}_m \subseteq \mathfrak{gl}_{m|n}$.

The elements z_{ia} and z_{ai} are odd; together with the even elements E_{ab} with $a, b \in \{m + 1, ..., m + n\}$ they generate the Mickelsson–Zhelobenko superalgebra $Z(\mathfrak{gl}_{m|n}, \mathfrak{gl}_m)$ associated with the pair $\mathfrak{gl}_m \subseteq \mathfrak{gl}_{m|n}$.

The generators satisfy quadratic relations that can be written in an explicit form.

They preserve the subspace of \mathfrak{gl}_m -highest vectors in $L(\lambda)$,

$$z_{ia}: L(\lambda)^+_{\mu} \to L(\lambda)^+_{\mu+\delta_i}, \qquad z_{ai}: L(\lambda)^+_{\mu} \to L(\lambda)^+_{\mu-\delta_i},$$

where $\mu \pm \delta_i$ is obtained from μ by replacing μ_i by $\mu_i \pm 1$.

They preserve the subspace of \mathfrak{gl}_m -highest vectors in $L(\lambda)$,

$$z_{ia}: L(\lambda)^+_{\mu} \to L(\lambda)^+_{\mu+\delta_i}, \qquad z_{ai}: L(\lambda)^+_{\mu} \to L(\lambda)^+_{\mu-\delta_i},$$

where $\mu \pm \delta_i$ is obtained from μ by replacing μ_i by $\mu_i \pm 1$.

Proposition. The element

$$\zeta_{\mu} = \prod_{j=1}^{m} \left(z_{m+\lambda_j-\mu_j,j} \dots z_{m+2,j} z_{m+1,j} \right) \zeta$$

with the product taken in the increasing order of *j* is the highest

vector of the $Y(\mathfrak{gl}_n)$ -module $L(\lambda)^+_{\mu}$.