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Gelfand–Tsetlin bases for gln

Finite-dimensional irreducible representations L(λ) of gln are in

a one-to-one correspondence with n-tuples of complex

numbers λ = (λ1, . . . , λn) such that

λi − λi+1 ∈ Z+ for i = 1, . . . ,n − 1.

L(λ) contains a highest vector ζ 6= 0 such that

Ei i ζ = λi ζ for i = 1, . . . ,n and

Ei j ζ = 0 for 1 6 i < j 6 n.
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Suppose that λ is a partition, λ1 > · · · > λn > 0.

Depict it as a Young diagram.

Example. The diagram λ = (5,5,3,0,0) is

`(λ) = 3

The number of nonzero rows is the length of λ, denoted `(λ).
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Given a diagram λ, a column-strict λ-tableau T is obtained by

filling in the boxes of λ with the numbers 1,2, . . . ,n in such a

way that the entries weakly increase along the rows and strictly

increase down the columns.
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Theorem (Gelfand and Tsetlin, 1950). L(λ) admits a basis ζT

parameterized by all column-strict λ-tableaux T such that the

action of generators of gln is given by the formulas

Ess ζT = ωs ζT ,

Es,s+1 ζT =
∑
T ′

cTT ′ ζT ′ ,

Es+1,s ζT =
∑
T ′

dTT ′ ζT ′ .

Here ωs is the number of entries in T equal to s, and the sums

are taken over column-strict tableaux T ′ obtained from T

respectively by replacing an entry s + 1 by s and s by s + 1.
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For any 1 6 j 6 s 6 n denote by λs j the number of entries in

row j which do not exceed s and set

ls j = λs j − j + 1.

Then

cTT ′ = −
(ls i − ls+1,1) . . . (ls i − ls+1,s+1)

(ls i − ls1) . . . ∧ . . . (ls i − ls s)
,

dTT ′ =
(ls i − ls−1,1) . . . (ls i − ls−1,s−1)

(ls i − ls 1) . . . ∧ . . . (ls i − ls s)
,

if the replacement occurs in row i .
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Equivalent parametrization of the basis vectors by

the Gelfand–Tsetlin patterns:

λn 1 λn 2 · · · λn n

λn−1,1 · · · λn−1,n−1

T −→ · · · · · · · · ·

λ21 λ22

λ11

The top row coincides with λ and the entries satisfy

the betweenness conditions λk i > λk−1, i > λk , i+1.
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Given ω = (ω1, . . . , ωn) ∈ Zn
+, consider the weight subspace

L(λ)ω = {η ∈ L(λ) | Essη = ωsη for all s}.

The character of L(λ) is the polynomial in variables x1, . . . , xn

defined by

ch L(λ) =
∑
ω

dim L(λ)ω xω1
1 . . . xωn

n .

Corollary. ch L(λ) = sλ(x1, . . . , xn), the Schur polynomial.
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Lie superalgebra glm|n

Basis elements of glm|n are Ei j with 1 6 i , j 6 m + n.

The Z2-degree (or parity) is given by

deg(Ei j) = ı̄+ ̄,

where ı̄ = 0 for 1 6 i 6 m and ı̄ = 1 for m + 1 6 i 6 m + n.

The commutation relations in glm|n have the form

[Ei j ,Ek l ] = δk jEi l − δi lEk j(−1)(ı̄+̄)(k̄+l̄),

where the square brackets denote the super-commutator.
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The span of {Ei j | 1 6 i , j 6 m}

is a Lie subalgebra isomorphic to glm,

the span of {Ei j | m + 1 6 i , j 6 m + n}

is a Lie subalgebra of isomorphic to gln,

the Lie subalgebra of even elements of glm|n is isomorphic to

glm ⊕ gln.
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Finite-dimensional irreducible representations of glm|n are

parameterized by their highest weights λ of the form

λ = (λ1, . . . , λm |λm+1, . . . , λm+n),

where

λi − λi+1 ∈ Z+, for i = 1, . . . ,m + n − 1, i 6= m.

The corresponding representation L(λ) contains a highest

vector ζ 6= 0 such that

Ei i ζ = λi ζ for i = 1, . . . ,m + n and

Ei j ζ = 0 for 1 6 i < j 6 m + n.
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Covariant representations L(λ)

These are the irreducible components of the representations

Cm|n ⊗ . . .⊗ Cm|n︸ ︷︷ ︸
k

They are distinguished by the conditions:

I all components λ1, . . . , λm+n of λ are nonnegative integers;

I the number ` of nonzero components among

λm+1, . . . , λm+n is at most λm.
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To each highest weight λ satisfying these conditions, associate

the Young diagram Γλ containing λ1 + · · ·+ λm+n boxes.

It is determined by the conditions that the first m rows of Γλ are

λ1, . . . , λm while the first ` columns are λm+1 + m, . . . , λm+` + m.

The condition ` 6 λm ensures that Γλ is the diagram of a

partition.
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Example. The following is the diagram Γλ associated with the

highest weight λ = (10,7,4,3 |3,1,0,0,0) of gl4|5:



A supertableau Λ of shape Γλ is obtained by filling in the boxes

of the diagram Γλ with the numbers 1, . . . ,m + n in such a way

that

I the entries weakly increase from left to right along each

row and down each column;

I the entries in {1, . . . ,m} strictly increase down each

column;

I the entries in {m + 1, . . . ,m + n} strictly increase from left

to right along each row.
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Example. The following is a supertableau of shape Γλ

associated with the highest weight λ = (10,7,4,3 |3,1,0,0,0)

of gl4|5:

1 1 1 2 2 3 5 6 7 9
2 2 3 3 4 4 5
3 4 7 9
4 6 8
5 6
7
7



Theorem. The covariant representation L(λ) of glm|n admits a

basis ζΛ parameterized by all supertableaux Λ of shape Γλ.

The action of the generators of the Lie superalgebra glm|n in

this basis is given by the formulas

Ess ζΛ = ωs ζΛ,

Es,s+1 ζΛ =
∑
Λ′

cΛΛ′ ζΛ′ ,

Es+1,s ζΛ =
∑
Λ′

dΛΛ′ ζΛ′ .

The sums are over supertableaux Λ′ obtained from Λ by

replacing an entry s + 1 by s and an entry s by s + 1, resp.
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Here ωs denotes the number of entries in Λ equal to s.

Corollary (Sergeev 1985, Berele and Regev 1987). The

character ch L(λ) coincides with the supersymmetric Schur

polynomial s Γλ
(x1, . . . , xm | xm+1, . . . , xm+n) associated with the

Young diagram Γλ.
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Given such a supertableau Λ, for any 1 6 i 6 s 6 m denote by

λs i the number of entries in row i which do not exceed s.

Set r = λm1 and for any 0 6 p 6 n and 1 6 j 6 r + p denote by

λ′r+p, j the number of entries in column j

which do not exceed m + p.
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Example. The supertableau with λ = (7,5,2 | 2,1)
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Set li = λi − i + 1,

ls i = λs i − i + 1, l ′r+p, j = λ′r+p, j − j + 1.

The coefficients in the expansions of Es,s+1 ζΛ and Es+1,s ζΛ are

given by

cΛΛ′ = −
(ls i − ls+1,1) . . . (ls i − ls+1,s+1)
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(ls i − ls−1,1) . . . (ls i − ls−1,s−1)

(ls i − ls 1) . . . ∧ . . . (ls i − ls s)
,

if 1 6 s 6 m − 1 and the replacement occurs in row i ,
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and by

cΛΛ′ = −
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′
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Formulas for the expansions of Em,m+1 ζΛ and Em+1,m ζΛ

are also available.

Example (Palev 1989). The basis ζΛ of the glm|1-module

L(λ1, . . . , λm |λm+1) is parameterized by the patterns
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The top row runs over partitions (λm 1, . . . , λm m) such that

either λm j = λj or λm j = λj − 1 for each j = 1, . . . ,m.

Em,m+1 ζU =
m∑

i=1

(lmi + λm+1 + m)

×
i−1∏
j=1

(−1)λj−λm j
lm i − lj

lm i − lm j

m∏
j=i+1

λj−λm j=1

lm i − lm j + 1
lm i − lj + 1

ζU+δm i
,

Em+1,m ζU =
m∑

i=1

(lm i − lm−1,1) . . . (lm i − lm−1,m−1)

(lm i − lm 1) . . . ∧ . . . (lm i − lm m)

×
i−1∏
j=1

(−1)λj−λm j
lm i − lm j − 1
lm i − lj − 1

i−1∏
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Example. The basis ζΛ of the gl1|n-module L(λ1 |λ2, . . . , λn+1)

is parameterized by the trapezium patterns

λ′r+n,1 λ′r+n,2 · · · · · · λ′r+n, r+n

V =
· · ·

· · · · · · · · · ···

λ′r+1,1 λ′r+1,2 · · · λ′r+1, r+1

1 1 · · · 1

The number r of 1’s in the bottom row is nonnegative and

varies between λ1 − n and λ1. The top row coincides with

(λ′1, . . . , λ
′
p,0, . . . ,0), where p = λ1.
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Yangian Y(gln)

The Yangian Y(gln) is a unital associative algebra with

generators t(1)
i j , t(2)

i j , . . . where i and j run over the set

{1, . . . ,n}. The defining relations are given by

[t(r+1)
i j , t(s)

k l ]− [t(r)i j , t
(s+1)
k l ] = t(r)k j t(s)

i l − t(s)
k j t(r)i l ,

where r , s > 0 and t(0)
i j := δi j .
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Using the formal generating series

ti j(u) = δi j + t(1)
i j u−1 + t(2)

i j u−2 + . . .

the defining relations can be written in the equivalent form

(u − v) [ti j (u), tk l (v)] = tk j (u) ti l (v)− tk j (v) ti l (u).

A natural analogue of the Poincaré–Birkhoff–Witt theorem

holds for the Yangian Y(gln).
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Every finite-dimensional irreducible representation L of Y(gln)

contains a highest vector ζ such that

ti j(u) ζ = 0 for 1 6 i < j 6 n, and

ti i(u) ζ = λi(u) ζ for 1 6 i 6 n,

for some formal series

λi(u) = 1 + λ
(1)
i u−1 + λ

(2)
i u−2 + . . . , λ

(r)
i ∈ C .

The n-tuple of formal series λ(u) =
(
λ1(u), . . . , λn(u)

)
is the

highest weight of L.
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Moreover, there exist monic polynomials P1(u), . . . ,Pn−1(u)

in u (the Drinfeld polynomials) such that

λi(u)

λi+1(u)
=

Pi(u + 1)

Pi(u)

for i = 1, . . . ,n − 1.

Refs: Drinfeld (1988), Tarasov (1985).
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For an arbitrary representation L(λ) of glm|n

consider the vector space isomorphism

L(λ) ∼=
⊕

µ

L′(µ)⊗ L(λ)+µ ,

where L′(µ) denotes the irreducible representation of the Lie

algebra glm with the highest weight µ = (µ1, . . . , µm), and

L(λ)+µ is the multiplicity space spanned by the glm-highest

vectors in L(λ) of weight µ,

L(λ)+µ
∼= Homglm(L′(µ),L(λ)).
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Olshanski homomorphism

Set E =
[
Ei j

]m
i,j=1. The mapping ψ : Y(gln) → U(glm|n) given by

t(1)
i j 7→ Em+i,m+j ,

t(r)i j 7→
m∑

k ,l=1

Em+i,k (E r−2)k lEl,m+j , r > 2,

defines an algebra homomorphism.

The image of ψ is contained in the centralizer U(glm|n)
glm .
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Theorem. The representation of Y(gln) in L(λ)+µ defined via the

homomorphism ψ is irreducible.

Proof.

I L(λ)+µ is an irreducible representation of the centralizer

U(glm|n)
glm .

I The centralizer U(glm|n)
glm is generated by the image of the

homomorphism Y(gln) → U(glm|n)
glm and the center of

U(glm|n).
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Twist the Yangian action on L(λ)+µ by the automorphism

ti j(u) → ti j(u + m).

For each box α = (i , j) of a Young diagram define its content by

c(α) = j − i .

Theorem. Suppose that L(λ) is a covariant representation. The

Drinfeld polynomials for the Y(gln)-module L(λ)+µ are given by

Pk (u) =
∏
α

(
u − c(α)

)
, k = 1, . . . ,n − 1,

where α runs over the leftmost boxes of the rows of length k in

the diagram Γλ/µ.



Twist the Yangian action on L(λ)+µ by the automorphism

ti j(u) → ti j(u + m).

For each box α = (i , j) of a Young diagram define its content by

c(α) = j − i .

Theorem. Suppose that L(λ) is a covariant representation. The

Drinfeld polynomials for the Y(gln)-module L(λ)+µ are given by

Pk (u) =
∏
α

(
u − c(α)

)
, k = 1, . . . ,n − 1,

where α runs over the leftmost boxes of the rows of length k in

the diagram Γλ/µ.



Twist the Yangian action on L(λ)+µ by the automorphism

ti j(u) → ti j(u + m).

For each box α = (i , j) of a Young diagram define its content by

c(α) = j − i .

Theorem. Suppose that L(λ) is a covariant representation. The

Drinfeld polynomials for the Y(gln)-module L(λ)+µ are given by

Pk (u) =
∏
α

(
u − c(α)

)
, k = 1, . . . ,n − 1,

where α runs over the leftmost boxes of the rows of length k in

the diagram Γλ/µ.



Example. For λ = (7,5,2 | 3,1,0,0) and µ = (4,2,1) we have

P1(u) = (u + 1)(u + 4)(u + 5),

P2(u) = u + 3,

P3(u) = (u − 4)(u − 1).
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Introduce parameters of the diagram conjugate to Γλ/µ. Set

r = µ1 and let µ′ = (µ′1, . . . , µ
′
r ) be the diagram conjugate to µ

so that µ′j equals the number of boxes in column j of µ.

Set λ′ = (λ′1, . . . , λ
′
r+n), where λ′j equals the number of boxes in

column j of the diagram Γλ.

Corollary. The Y(gln)-module L(λ)+µ is isomorphic to L(λ′)+µ′ ,

the skew representation associated with glr+n-module L(λ′)

and the glr -highest weight µ′.
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Construction of basis vectors

I produce the highest vector of the Y(gln)-module L(λ)+µ ,

I use the isomorphism L(λ)+µ
∼= L(λ′)+µ′ to get the vectors of

the trapezium Gelfand–Tsetlin basis of L(λ′)+µ′ in terms of

the Yangian generators,

I combine with the Gelfand–Tsetlin basis of L′(µ).
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The extremal projector p for glm is given by

p =
∏
i<j

∞∑
k=0

(Ej i)
k (Ei j)

k (−1)k

k ! (hi − hj + 1) . . . (hi − hj + k)
,

where hi = Ei i − i + 1. The product is taken in a normal order.

The projector satisfies

Ei j p = pEj i = 0 for 1 6 i < j 6 m.

Ref: Asherova, Smirnov and Tolstoy, 1971.
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For i = 1, . . . ,m and a = m + 1, . . . ,m + n set

zi a = pEi a(hi − h1) . . . (hi − hi−1),

za i = pEa i(hi − hi+1) . . . (hi − hm).

zi a and za i can be regarded as elements of U(glm|n)

modulo the left ideal generated by Ei j with 1 6 i < j 6 m.

Example.

z1a = E1a, z2a = E2a (h2 − h1) + E21E1a,

zam = Eam, za,m−1 = Ea,m−1 (hm−1 − hm) + Em,m−1Eam.
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The elements zi a and za i are odd; together with the even

elements Eab with a,b ∈ {m + 1, . . . ,m + n} they generate the

Mickelsson–Zhelobenko superalgebra Z(glm|n, glm)

associated with the pair glm ⊆ glm|n.

The generators satisfy quadratic relations that can be written in

an explicit form.
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They preserve the subspace of glm-highest vectors in L(λ),

zi a : L(λ)+µ → L(λ)+µ+δi
, za i : L(λ)+µ → L(λ)+µ−δi

,

where µ± δi is obtained from µ by replacing µi by µi ± 1.

Proposition. The element

ζµ =
m∏

j=1

(
zm+λj−µj , j . . . zm+2, j zm+1, j

)
ζ

with the product taken in the increasing order of j is the highest

vector of the Y(gln)-module L(λ)+µ .
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