Combinatorial bases for representations

of the Lie superalgebra $\mathfrak{g l}_{m \mid n}$

Alexander Molev

University of Sydney

Gelfand-Tsetlin bases for $\mathfrak{g l}_{n}$

Gelfand-Tsetlin bases for $\mathfrak{g l}_{n}$

Finite-dimensional irreducible representations $L(\lambda)$ of $\mathfrak{g l}_{n}$ are in a one-to-one correspondence with n-tuples of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that

$$
\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+} \quad \text { for } \quad i=1, \ldots, n-1
$$

Gelfand-Tsetlin bases for $\mathfrak{g l}_{n}$

Finite-dimensional irreducible representations $L(\lambda)$ of $\mathfrak{g l}_{n}$ are in a one-to-one correspondence with n-tuples of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that

$$
\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+} \quad \text { for } \quad i=1, \ldots, n-1 .
$$

$L(\lambda)$ contains a highest vector $\zeta \neq 0$ such that

$$
\begin{array}{ll}
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } i=1, \ldots, n \text { and } \\
E_{i j} \zeta=0 & \text { for } \\
1 \leqslant i<j \leqslant n .
\end{array}
$$

Suppose that λ is a partition, $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.

Suppose that λ is a partition, $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.
Depict it as a Young diagram.
Example. The diagram $\lambda=(5,5,3,0,0)$ is

$$
\ell(\lambda)=3
$$

Suppose that λ is a partition, $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$.
Depict it as a Young diagram.
Example. The diagram $\lambda=(5,5,3,0,0)$ is

$$
\ell(\lambda)=3
$$

The number of nonzero rows is the length of λ, denoted $\ell(\lambda)$.

Given a diagram λ, a column-strict λ-tableau T is obtained by filling in the boxes of λ with the numbers $1,2, \ldots, n$ in such a way that the entries weakly increase along the rows and strictly increase down the columns.

Given a diagram λ, a column-strict λ-tableau T is obtained by filling in the boxes of λ with the numbers $1,2, \ldots, n$ in such a way that the entries weakly increase along the rows and strictly increase down the columns.

Example. A column-strict λ-tableau for $\lambda=(5,5,3,0,0)$:

1	1	2	4	4
2	3	4	5	5
4	5	5		

Theorem (Gelfand and Tsetlin, 1950). $L(\lambda)$ admits a basis ζ_{T}

 parameterized by all column-strict λ-tableaux T such that the action of generators of $\mathfrak{g l} l_{n}$ is given by the formulas$$
\begin{aligned}
E_{s s} \zeta_{T} & =\omega_{s} \zeta_{T} \\
E_{s, s+1} \zeta_{T} & =\sum_{T^{\prime}} c_{T T^{\prime}} \zeta_{T^{\prime}} \\
E_{S+1, s} \zeta_{T} & =\sum_{T^{\prime}} d_{T T^{\prime}} \zeta_{T^{\prime}}
\end{aligned}
$$

Theorem (Gelfand and Tsetlin, 1950). $L(\lambda)$ admits a basis ζ_{T}

 parameterized by all column-strict λ-tableaux T such that the action of generators of $\mathfrak{g l} l_{n}$ is given by the formulas$$
\begin{aligned}
E_{s s} \zeta_{T} & =\omega_{s} \zeta_{T}, \\
E_{s, s+1} \zeta_{T} & =\sum_{T^{\prime}} c_{T T^{\prime}} \zeta_{T^{\prime}}, \\
E_{S+1, s} \zeta_{T} & =\sum_{T^{\prime}} d_{T T^{\prime}} \zeta_{T^{\prime}}
\end{aligned}
$$

Here ω_{s} is the number of entries in T equal to s, and the sums are taken over column-strict tableaux T^{\prime} obtained from T respectively by replacing an entry $s+1$ by s and s by $s+1$.

For any $1 \leqslant j \leqslant s \leqslant n$ denote by $\lambda_{s j}$ the number of entries in row j which do not exceed s and set

$$
I_{s j}=\lambda_{s j}-j+1
$$

For any $1 \leqslant j \leqslant s \leqslant n$ denote by $\lambda_{s j}$ the number of entries in row j which do not exceed s and set

$$
I_{s j}=\lambda_{s j}-j+1
$$

Then

$$
\begin{aligned}
& c_{T T^{\prime}}=-\frac{\left(l_{s i}-l_{s+1,1}\right) \ldots\left(l_{s i}-l_{s+1, s+1}\right)}{\left(l_{s i}-l_{s 1}\right) \ldots \wedge \ldots\left(l_{s i}-l_{s s}\right)} \\
& d_{T T^{\prime}}=\frac{\left(l_{s i}-l_{s-1,1}\right) \ldots\left(l_{s i}-l_{s-1, s-1}\right)}{\left(l_{s i}-l_{s 1}\right) \ldots \wedge \ldots\left(l_{s i}-l_{s s}\right)}
\end{aligned}
$$

if the replacement occurs in row i.

Equivalent parametrization of the basis vectors by

 the Gelfand-Tsetlin patterns:Equivalent parametrization of the basis vectors by the Gelfand-Tsetlin patterns:

$$
\left.\begin{array}{rrrr}
\lambda_{n 1} & \lambda_{n 2} & & \cdots
\end{array}\right) \quad \lambda_{n n}
$$

$$
T \longrightarrow
$$

$$
\begin{array}{ll}
\lambda_{21} & \lambda_{22}
\end{array}
$$

$$
\lambda_{11}
$$

Equivalent parametrization of the basis vectors by the Gelfand-Tsetlin patterns:

$$
T \longrightarrow
$$

$$
\begin{array}{ccccc}
\lambda_{n 1} & \lambda_{n 2} & & \cdots & \lambda_{n n} \\
& & & & \\
\lambda_{n-1,1} & & \cdots & & \lambda_{n-1, n-1} \\
& \cdots & \cdots & \cdots & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & &
\end{array}
$$

The top row coincides with λ and the entries satisfy the betweenness conditions $\lambda_{k i} \geqslant \lambda_{k-1, i} \geqslant \lambda_{k, i+1}$.

Example. The column-strict tableau with $\lambda=(5,5,3,0,0)$

1	1	2	4	4
2	3	4	5	5
4	5	5		
$y y n n n$				

Example. The column-strict tableau with $\lambda=(5,5,3,0,0)$

1	1	2	4	4
2	3	4	5	5
4	5	5		
$y y n n n$				

corresponds to the pattern

$$
\begin{array}{lllllll}
5 & 5 & 3 & 0 & 0 \\
& 5 & 3 & & 1 & & 0
\end{array}
$$

$$
2
$$

Given $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{Z}_{+}^{n}$, consider the weight subspace

$$
L(\lambda)_{\omega}=\left\{\eta \in L(\lambda) \mid E_{s s} \eta=\omega_{s} \eta \quad \text { for all } \quad s\right\}
$$

Given $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{Z}_{+}^{n}$, consider the weight subspace

$$
L(\lambda)_{\omega}=\left\{\eta \in L(\lambda) \mid E_{s s} \eta=\omega_{s} \eta \quad \text { for all } \quad s\right\}
$$

The character of $L(\lambda)$ is the polynomial in variables x_{1}, \ldots, x_{n} defined by

$$
\operatorname{ch} L(\lambda)=\sum_{\omega} \operatorname{dim} L(\lambda)_{\omega} x_{1}^{\omega_{1}} \ldots x_{n}^{\omega_{n}}
$$

Given $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{Z}_{+}^{n}$, consider the weight subspace

$$
L(\lambda)_{\omega}=\left\{\eta \in L(\lambda) \mid E_{s s} \eta=\omega_{s} \eta \quad \text { for all } \quad s\right\}
$$

The character of $L(\lambda)$ is the polynomial in variables x_{1}, \ldots, x_{n} defined by

$$
\operatorname{ch} L(\lambda)=\sum_{\omega} \operatorname{dim} L(\lambda)_{\omega} x_{1}^{\omega_{1}} \ldots x_{n}^{\omega_{n}}
$$

Corollary. ch $L(\lambda)=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$, the Schur polynomial.

Lie superalgebra $\mathfrak{g l}_{m \mid n}$

Lie superalgebra $\mathfrak{g l}_{m \mid n}$

Basis elements of $\mathfrak{g l}_{m \mid n}$ are $E_{i j}$ with $1 \leqslant i, j \leqslant m+n$.

Lie superalgebra $\mathfrak{g l}_{m \mid n}$

Basis elements of $\mathfrak{g l}_{m \mid n}$ are $E_{i j}$ with $1 \leqslant i, j \leqslant m+n$.
The \mathbb{Z}_{2}-degree (or parity) is given by

$$
\operatorname{deg}\left(E_{i j}\right)=\bar{\imath}+\bar{\jmath}
$$

where $\bar{\imath}=0$ for $1 \leqslant i \leqslant m$ and $\bar{\imath}=1$ for $m+1 \leqslant i \leqslant m+n$.

Lie superalgebra $\mathfrak{g l}_{m \mid n}$

Basis elements of $\mathfrak{g l}_{m \mid n}$ are $E_{i j}$ with $1 \leqslant i, j \leqslant m+n$.
The \mathbb{Z}_{2}-degree (or parity) is given by

$$
\operatorname{deg}\left(E_{i j}\right)=\bar{\imath}+\bar{\jmath}
$$

where $\bar{\imath}=0$ for $1 \leqslant i \leqslant m$ and $\bar{\imath}=1$ for $m+1 \leqslant i \leqslant m+n$.
The commutation relations in $\mathfrak{g l}_{m \mid n}$ have the form

$$
\left[E_{i j}, E_{k I}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

where the square brackets denote the super-commutator.

The span of $\left\{E_{i j} \mid 1 \leqslant i, j \leqslant m\right\}$
is a Lie subalgebra isomorphic to $\mathfrak{g l}_{m}$,

The span of $\left\{E_{i j} \mid 1 \leqslant i, j \leqslant m\right\}$
is a Lie subalgebra isomorphic to $\mathfrak{g l}_{m}$,
the span of $\left\{E_{i j} \mid m+1 \leqslant i, j \leqslant m+n\right\}$
is a Lie subalgebra of isomorphic to $\mathfrak{g l}_{n}$,

The span of $\left\{E_{i j} \mid 1 \leqslant i, j \leqslant m\right\}$
is a Lie subalgebra isomorphic to $\mathfrak{g l}_{m}$,
the span of $\left\{E_{i j} \mid m+1 \leqslant i, j \leqslant m+n\right\}$
is a Lie subalgebra of isomorphic to $\mathfrak{g l}_{n}$,
the Lie subalgebra of even elements of $\mathfrak{g l} l_{m \mid n}$ is isomorphic to
$\mathfrak{g l}_{m} \oplus \mathfrak{g l}_{n}$.

Finite-dimensional irreducible representations of $\mathfrak{g l}_{m \mid n}$ are parameterized by their highest weights λ of the form

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{m} \mid \lambda_{m+1}, \ldots, \lambda_{m+n}\right)
$$

Finite-dimensional irreducible representations of $\mathfrak{g l}_{m \mid n}$ are parameterized by their highest weights λ of the form

$$
\begin{aligned}
\lambda= & \left(\lambda_{1}, \ldots, \lambda_{m} \mid \lambda_{m+1}, \ldots, \lambda_{m+n}\right) \text {, where } \\
& \lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}, \quad \text { for } \quad i=1, \ldots, m+n-1, \quad i \neq m .
\end{aligned}
$$

Finite-dimensional irreducible representations of $\mathfrak{g l}_{m \mid n}$ are parameterized by their highest weights λ of the form
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{m} \mid \lambda_{m+1}, \ldots, \lambda_{m+n}\right)$, where

$$
\lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+}, \quad \text { for } \quad i=1, \ldots, m+n-1, \quad i \neq m .
$$

The corresponding representation $L(\lambda)$ contains a highest
vector $\zeta \neq 0$ such that

$$
\begin{array}{lll}
E_{i j} \zeta=\lambda_{i} \zeta & \text { for } & i=1, \ldots, m+n \text { and } \\
E_{i j} \zeta=0 & \text { for } & 1 \leqslant i<j \leqslant m+n .
\end{array}
$$

Covariant representations $L(\lambda)$

Covariant representations $L(\lambda)$

These are the irreducible components of the representations

Covariant representations $L(\lambda)$

These are the irreducible components of the representations

They are distinguished by the conditions:

- all components $\lambda_{1}, \ldots, \lambda_{m+n}$ of λ are nonnegative integers;

Covariant representations $L(\lambda)$

These are the irreducible components of the representations

They are distinguished by the conditions:

- all components $\lambda_{1}, \ldots, \lambda_{m+n}$ of λ are nonnegative integers;
- the number ℓ of nonzero components among

$$
\lambda_{m+1}, \ldots, \lambda_{m+n} \text { is at most } \lambda_{m} .
$$

To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_{1}+\cdots+\lambda_{m+n}$ boxes.

To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_{1}+\cdots+\lambda_{m+n}$ boxes.

It is determined by the conditions that the first m rows of Γ_{λ} are
$\lambda_{1}, \ldots, \lambda_{m}$ while the first ℓ columns are $\lambda_{m+1}+m, \ldots, \lambda_{m+\ell}+m$.

To each highest weight λ satisfying these conditions, associate the Young diagram Γ_{λ} containing $\lambda_{1}+\cdots+\lambda_{m+n}$ boxes.

It is determined by the conditions that the first m rows of Γ_{λ} are
$\lambda_{1}, \ldots, \lambda_{m}$ while the first ℓ columns are $\lambda_{m+1}+m, \ldots, \lambda_{m+\ell}+m$.

The condition $\ell \leqslant \lambda_{m}$ ensures that Γ_{λ} is the diagram of a partition.

Example. The following is the diagram Γ_{λ} associated with the highest weight $\lambda=(10,7,4,3 \mid 3,1,0,0,0)$ of $\mathfrak{g l}_{4 \mid 5}$:

A supertableau Λ of shape Γ_{λ} is obtained by filling in the boxes of the diagram Γ_{λ} with the numbers $1, \ldots, m+n$ in such a way that

A supertableau Λ of shape Γ_{λ} is obtained by filling in the boxes of the diagram Γ_{λ} with the numbers $1, \ldots, m+n$ in such a way that

- the entries weakly increase from left to right along each row and down each column;

A supertableau Λ of shape Γ_{λ} is obtained by filling in the boxes of the diagram Γ_{λ} with the numbers $1, \ldots, m+n$ in such a way that

- the entries weakly increase from left to right along each row and down each column;
- the entries in $\{1, \ldots, m\}$ strictly increase down each column;

A supertableau Λ of shape Γ_{λ} is obtained by filling in the boxes of the diagram Γ_{λ} with the numbers $1, \ldots, m+n$ in such a way that

- the entries weakly increase from left to right along each row and down each column;
- the entries in $\{1, \ldots, m\}$ strictly increase down each column;
- the entries in $\{m+1, \ldots, m+n\}$ strictly increase from left to right along each row.

Example. The following is a supertableau of shape Γ_{λ} associated with the highest weight $\lambda=(10,7,4,3 \mid 3,1,0,0,0)$ of $\mathfrak{g l}_{4 \mid 5}$:

1	1	1		2	2	3	5	6	7	9	
2	2	3		3	4	4	5				
3	4	7		9							
4	6										
5	6										
7											
7											

Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_{λ}.

Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_{λ}.

The action of the generators of the Lie superalgebra $\mathfrak{g l}_{m \mid n}$ in this basis is given by the formulas

$$
\begin{aligned}
E_{s s} \zeta_{\Lambda} & =\omega_{s} \zeta_{\Lambda}, \\
E_{s, s+1} \zeta_{\Lambda} & =\sum_{\Lambda^{\prime}} c_{\Lambda \Lambda^{\prime}} \zeta_{\Lambda^{\prime}}, \\
E_{S+1, s} \zeta_{\Lambda} & =\sum_{\Lambda^{\prime}} d_{\Lambda \Lambda^{\prime}} \zeta_{\Lambda^{\prime}}
\end{aligned}
$$

Theorem. The covariant representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ admits a basis ζ_{Λ} parameterized by all supertableaux Λ of shape Γ_{λ}.

The action of the generators of the Lie superalgebra $\mathfrak{g l}_{m \mid n}$ in this basis is given by the formulas

$$
\begin{aligned}
E_{s s} \zeta_{\Lambda} & =\omega_{s} \zeta_{\Lambda}, \\
E_{s, s+1} \zeta_{\Lambda} & =\sum_{\Lambda^{\prime}} c_{\Lambda \Lambda^{\prime}} \zeta_{\Lambda^{\prime}}, \\
E_{S+1, s} \zeta_{\Lambda} & =\sum_{\Lambda^{\prime}} d_{\Lambda \Lambda^{\prime}} \zeta_{\Lambda^{\prime}}
\end{aligned}
$$

The sums are over supertableaux Λ^{\prime} obtained from Λ by replacing an entry $s+1$ by s and an entry s by $s+1$, resp.

Here ω_{s} denotes the number of entries in Λ equal to s.

Here ω_{s} denotes the number of entries in Λ equal to s.

Corollary (Sergeev 1985, Berele and Regev 1987). The character $\operatorname{ch} L(\lambda)$ coincides with the supersymmetric Schur polynomial $s_{\Gamma_{\lambda}}\left(x_{1}, \ldots, x_{m} \mid x_{m+1}, \ldots, x_{m+n}\right)$ associated with the Young diagram Γ_{λ}.

Given such a supertableau Λ, for any $1 \leqslant i \leqslant s \leqslant m$ denote by
$\lambda_{s i}$ the number of entries in row i which do not exceed s.

Given such a supertableau Λ, for any $1 \leqslant i \leqslant s \leqslant m$ denote by
$\lambda_{s i}$ the number of entries in row i which do not exceed s.

Set $r=\lambda_{m 1}$ and for any $0 \leqslant p \leqslant n$ and $1 \leqslant j \leqslant r+p$ denote by
$\lambda_{r+p, j}^{\prime}$ the number of entries in column j
which do not exceed $m+p$.

Example. The supertableau with $\lambda=(7,5,2 \mid 2,1)$

1	1	2	2	2		4	5
2	3	3	4	5			
3	5						
4	5						
4							

Example. The supertableau with $\lambda=(7,5,2 \mid 2,1)$

1	1	2	2		2	4	5
2	3	3	4		5		
3	5						
4	5						
4							

corresponds to the patterns \mathcal{U} and \mathcal{V} :
$\left.\begin{array}{lllllllllll}5 & 3 & 1 & 5 & 4 & 2 & 2 & 2 & 1 & 1 \\ 5 & 1 & & 5 & 2 & 2 & 2 & 1 & 1\end{array}\right]$

Set $\quad l_{i}=\lambda_{i}-i+1$,

$$
I_{s i}=\lambda_{s i}-i+1, \quad I_{r+p, j}^{\prime}=\lambda_{r+p, j}^{\prime}-j+1 .
$$

Set $\quad l_{i}=\lambda_{i}-i+1$,

$$
I_{s i}=\lambda_{s i}-i+1, \quad I_{r+p, j}^{\prime}=\lambda_{r+p, j}^{\prime}-j+1 .
$$

The coefficients in the expansions of $E_{s, s+1} \zeta_{\Lambda}$ and $E_{s+1, s} \zeta_{\Lambda}$ are given by

Set $\quad l_{i}=\lambda_{i}-i+1$,

$$
I_{s i}=\lambda_{s i}-i+1, \quad I_{r+p, j}^{\prime}=\lambda_{r+p, j}^{\prime}-j+1
$$

The coefficients in the expansions of $E_{s, s+1} \zeta_{\Lambda}$ and $E_{s+1, s} \zeta_{\Lambda}$ are given by

$$
\begin{aligned}
& c_{\Lambda \Lambda^{\prime}}=-\frac{\left(l_{s i}-l_{s+1,1}\right) \ldots\left(l_{s i}-l_{s+1, s+1}\right)}{\left(l_{s i}-l_{s 1}\right) \ldots \wedge \ldots\left(l_{s i}-l_{s s}\right)} \\
& d_{\Lambda \Lambda^{\prime}}=\frac{\left(l_{s i}-l_{s-1,1}\right) \ldots\left(l_{s i}-l_{s-1, s-1}\right)}{\left(l_{s i}-l_{s 1}\right) \ldots \wedge \ldots\left(l_{s i}-l_{s s}\right)}
\end{aligned}
$$

if $1 \leqslant s \leqslant m-1$ and the replacement occurs in row i,
and by

$$
\begin{aligned}
& c_{\Lambda \Lambda^{\prime}}=-\frac{\left(I_{r+p, j}^{\prime}-I_{r+p+1,1}^{\prime}\right) \ldots\left(I_{r+p, j}^{\prime}-I_{r+p+1, r+p+1}^{\prime}\right)}{\left(I_{r+p, j}^{\prime}-I_{r+p, 1}^{\prime}\right) \ldots \wedge \ldots\left(I_{r+p, j}^{\prime}-I_{r+p, r+p}^{\prime}\right)}, \\
& d_{\Lambda \Lambda^{\prime}}=\frac{\left(I_{r+p, j}^{\prime}-I_{r+p-1,1}^{\prime}\right) \ldots\left(I_{r+p, j}^{\prime}-I_{r+p-1, r+p-1}^{\prime}\right)}{\left(I_{r+p, j}^{\prime}-I_{r+p, 1}^{\prime}\right) \ldots \wedge \ldots\left(I_{r+p, j}^{\prime}-I_{r+p, r+p}^{\prime}\right)},
\end{aligned}
$$

if $s=m+p$ for $1 \leqslant p \leqslant n-1$ and the replacement occurs in column j.

Formulas for the expansions of $E_{m, m+1} \zeta_{\Lambda}$ and $E_{m+1, m} \zeta_{\Lambda}$ are also available.

Formulas for the expansions of $E_{m, m+1} \zeta_{\Lambda}$ and $E_{m+1, m} \zeta_{\Lambda}$ are also available.

Example (Palev 1989). The basis ζ_{Λ} of the $\mathfrak{g l}_{m \mid 1}$-module $L\left(\lambda_{1}, \ldots, \lambda_{m} \mid \lambda_{m+1}\right)$ is parameterized by the patterns

$$
\left.\begin{array}{rrrr}
\lambda_{m 1} & \lambda_{m 2} & & \cdots
\end{array}\right) \quad \lambda_{m m}
$$

$\mathcal{U}=$
$\lambda_{21} \quad \lambda_{22}$
λ_{11}

The top row runs over partitions $\left(\lambda_{m 1}, \ldots, \lambda_{m m}\right)$ such that either $\lambda_{m j}=\lambda_{j}$ or $\lambda_{m j}=\lambda_{j}-1$ for each $j=1, \ldots, m$.

The top row runs over partitions $\left(\lambda_{m 1}, \ldots, \lambda_{m m}\right)$ such that either $\lambda_{m j}=\lambda_{j}$ or $\lambda_{m j}=\lambda_{j}-1$ for each $j=1, \ldots, m$.

$$
\begin{aligned}
E_{m, m+1} \zeta_{\mathcal{U}} & =\sum_{i=1}^{m}\left(I_{m i}+\lambda_{m+1}+m\right) \\
& \times \prod_{j=1}^{i-1}(-1)^{\lambda_{j}-\lambda_{m j}} \frac{I_{m i}-I_{j}}{I_{m i}-I_{m j}} \prod_{\substack{j=i+1 \\
\lambda_{j}-\lambda_{m j}=1}}^{m} \frac{I_{m i}-I_{m j}+1}{I_{m i}-I_{j}+1} \zeta_{\mathcal{U}+\delta_{m i}}, \\
E_{m+1, m} \zeta_{\mathcal{U}} & =\sum_{i=1}^{m} \frac{\left(I_{m i}-I_{m-1,1}\right) \ldots\left(I_{m i}-I_{m-1, m-1}\right)}{\left(I_{m i}-I_{m 1}\right) \ldots \wedge \ldots\left(I_{m i}-I_{m m}\right)} \\
& \times \prod_{j=1}^{i-1}(-1)^{\lambda_{j}-\lambda_{m j}} \frac{I_{m i}-I_{m j}-1}{I_{m i}-I_{j}-1} \prod_{\substack{j=1 \\
\lambda_{j}-\lambda_{m j}=1}}^{i-1} \frac{I_{m i}-I_{m j}}{I_{m i}-I_{j}} \zeta_{\mathcal{U}-\delta_{m i}} .
\end{aligned}
$$

Example. The basis ζ_{Λ} of the $\mathfrak{g l}_{1 \mid n}$-module $L\left(\lambda_{1} \mid \lambda_{2}, \ldots, \lambda_{n+1}\right)$
is parameterized by the trapezium patterns

$$
\begin{array}{lllll}
\lambda_{r+n, 1}^{\prime} & \lambda_{r+n, 2}^{\prime} & \cdots & \cdots & \lambda_{r+n, r+n}^{\prime}
\end{array}
$$

$\mathcal{V}=$

$$
\begin{array}{llll}
\lambda_{r+1,1}^{\prime} & \lambda_{r+1,2}^{\prime} & \cdots & \lambda_{r+1, r+1}^{\prime}
\end{array}
$$

$1 \quad 1$
1

Example. The basis ζ_{\wedge} of the $\mathfrak{g l}_{1 \mid n}$-module $L\left(\lambda_{1} \mid \lambda_{2}, \ldots, \lambda_{n+1}\right)$
is parameterized by the trapezium patterns

$$
\begin{array}{lllll}
\lambda_{r+n, 1}^{\prime} & \lambda_{r+n, 2}^{\prime} & \cdots & \cdots & \lambda_{r+n, r+n}^{\prime}
\end{array}
$$

$\mathcal{V}=$

$$
\begin{array}{rrlll}
\lambda_{r+1,1}^{\prime} & \lambda_{r+1,2}^{\prime} & \cdots & & \lambda_{r+1, r+1}^{\prime} \\
1 & 1 & \cdots & 1
\end{array}
$$

The number r of 1 's in the bottom row is nonnegative and
varies between $\lambda_{1}-n$ and λ_{1}. The top row coincides with
$\left(\lambda_{1}^{\prime}, \ldots, \lambda_{p}^{\prime}, 0, \ldots, 0\right)$, where $p=\lambda_{1}$.

Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$

Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$

The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ is a unital associative algebra with generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where i and j run over the set $\{1, \ldots, n\}$.

Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$

The Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ is a unital associative algebra with generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where i and j run over the set $\{1, \ldots, n\}$. The defining relations are given by

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)}
$$

where $r, s \geqslant 0$ and $t_{i j}^{(0)}:=\delta_{i j}$.

Using the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\ldots
$$

Using the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\ldots
$$

the defining relations can be written in the equivalent form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

Using the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\ldots
$$

the defining relations can be written in the equivalent form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

A natural analogue of the Poincaré-Birkhoff-Witt theorem holds for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$.

Every finite-dimensional irreducible representation L of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ contains a highest vector ζ such that

$$
\begin{array}{ll}
t_{i j}(u) \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant n, \quad \text { and } \\
t_{i j}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } \quad 1 \leqslant i \leqslant n,
\end{array}
$$

Every finite-dimensional irreducible representation L of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ contains a highest vector ζ such that

$$
\begin{array}{ll}
t_{i j}(u) \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant n, \quad \text { and } \\
t_{i j}(u) \zeta=\lambda_{i}(u) \zeta & \text { for } \quad 1 \leqslant i \leqslant n,
\end{array}
$$

for some formal series

$$
\lambda_{i}(u)=1+\lambda_{i}^{(1)} u^{-1}+\lambda_{i}^{(2)} u^{-2}+\ldots, \quad \lambda_{i}^{(r)} \in \mathbb{C} .
$$

Every finite-dimensional irreducible representation L of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ contains a highest vector ζ such that

$$
\begin{aligned}
& t_{i j}(u) \zeta=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant n, \quad \text { and } \\
& t_{i j}(u) \zeta=\lambda_{i}(u) \zeta \quad \text { for } \quad 1 \leqslant i \leqslant n,
\end{aligned}
$$

for some formal series

$$
\lambda_{i}(u)=1+\lambda_{i}^{(1)} u^{-1}+\lambda_{i}^{(2)} u^{-2}+\ldots, \quad \lambda_{i}^{(r)} \in \mathbb{C} .
$$

The n-tuple of formal series $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{n}(u)\right)$ is the highest weight of L.

Moreover, there exist monic polynomials $P_{1}(u), \ldots, P_{n-1}(u)$ in u (the Drinfeld polynomials) such that

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}
$$

for $i=1, \ldots, n-1$.

Moreover, there exist monic polynomials $P_{1}(u), \ldots, P_{n-1}(u)$ in u (the Drinfeld polynomials) such that

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}
$$

for $i=1, \ldots, n-1$.

Refs: Drinfeld (1988), Tarasov (1985).

For an arbitrary representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ consider the vector space isomorphism

$$
L(\lambda) \cong \bigoplus_{\mu} L^{\prime}(\mu) \otimes L(\lambda)_{\mu}^{+},
$$

For an arbitrary representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ consider the vector space isomorphism

$$
L(\lambda) \cong \bigoplus_{\mu} L^{\prime}(\mu) \otimes L(\lambda)_{\mu}^{+}
$$

where $L^{\prime}(\mu)$ denotes the irreducible representation of the Lie algebra $\mathfrak{g l}_{m}$ with the highest weight $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$,

For an arbitrary representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ consider the vector space isomorphism

$$
L(\lambda) \cong \bigoplus_{\mu} L^{\prime}(\mu) \otimes L(\lambda)_{\mu}^{+}
$$

where $L^{\prime}(\mu)$ denotes the irreducible representation of the Lie algebra $\mathfrak{g l}_{m}$ with the highest weight $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$, and
$L(\lambda)_{\mu}^{+}$is the multiplicity space spanned by the $\mathfrak{g l}_{m}$-highest
vectors in $L(\lambda)$ of weight μ,

For an arbitrary representation $L(\lambda)$ of $\mathfrak{g l}_{m \mid n}$ consider the vector space isomorphism

$$
L(\lambda) \cong \bigoplus L^{\prime}(\mu) \otimes L(\lambda)_{\mu}^{+}
$$

where $L^{\prime}(\mu)$ denotes the irreducible representation of the Lie algebra $\mathfrak{g l}_{m}$ with the highest weight $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$, and
$L(\lambda)_{\mu}^{+}$is the multiplicity space spanned by the $\mathfrak{g l}_{m}$-highest
vectors in $L(\lambda)$ of weight μ,

$$
L(\lambda)_{\mu}^{+} \cong \operatorname{Hom}_{\mathfrak{g l}_{m}}\left(L^{\prime}(\mu), L(\lambda)\right)
$$

Olshanski homomorphism

Olshanski homomorphism

Set $E=\left[E_{i j}\right]_{i, j=1}^{m}$. The mapping $\psi: \mathrm{Y}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)$ given by

$$
\begin{aligned}
& t_{i j}^{(1)} \mapsto E_{m+i, m+j}, \\
& t_{i j}^{(r)} \mapsto \sum_{k, l=1}^{m} E_{m+i, k}\left(E^{r-2}\right)_{k l} E_{l, m+j}, \quad r \geqslant 2,
\end{aligned}
$$

defines an algebra homomorphism.

Olshanski homomorphism

Set $E=\left[E_{i j}\right]_{i, j=1}^{m}$. The mapping $\psi: \mathrm{Y}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)$ given by

$$
\begin{aligned}
& t_{i j}^{(1)} \mapsto E_{m+i, m+j}, \\
& t_{i j}^{(r)} \mapsto \sum_{k, l=1}^{m} E_{m+i, k}\left(E^{r-2}\right)_{k l} E_{l, m+j}, \quad r \geqslant 2,
\end{aligned}
$$

defines an algebra homomorphism.

The image of ψ is contained in the centralizer $\mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)^{\mathfrak{g r}_{m}}$.

Theorem. The representation of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ in $L(\lambda)_{\mu}^{+}$defined via the homomorphism ψ is irreducible.

Theorem. The representation of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ in $L(\lambda)_{\mu}^{+}$defined via the homomorphism ψ is irreducible.

Proof.

- $L(\lambda)_{\mu}^{+}$is an irreducible representation of the centralizer

$$
\mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)^{\mathfrak{g l}_{m}} .
$$

Theorem. The representation of $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$ in $L(\lambda)_{\mu}^{+}$defined via the homomorphism ψ is irreducible.

Proof.

- $L(\lambda)_{\mu}^{+}$is an irreducible representation of the centralizer $\mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)^{\mathfrak{g r}_{m}}$.
- The centralizer $\mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)^{\mathfrak{g l}_{m}}$ is generated by the image of the homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{n}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)^{\mathfrak{g l}_{m}}$ and the center of $\mathrm{U}\left(\mathfrak{g r}_{m \mid n}\right)$.

Twist the Yangian action on $L(\lambda)_{\mu}^{+}$by the automorphism $t_{i j}(u) \rightarrow t_{i j}(u+m)$.

Twist the Yangian action on $L(\lambda)_{\mu}^{+}$by the automorphism
$t_{i j}(u) \rightarrow t_{i j}(u+m)$.
For each box $\alpha=(i, j)$ of a Young diagram define its content by $c(\alpha)=j-i$.

Twist the Yangian action on $L(\lambda)_{\mu}^{+}$by the automorphism
$t_{i j}(u) \rightarrow t_{i j}(u+m)$.
For each box $\alpha=(i, j)$ of a Young diagram define its content by $c(\alpha)=j-i$.

Theorem. Suppose that $L(\lambda)$ is a covariant representation. The Drinfeld polynomials for the $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-module $L(\lambda)_{\mu}^{+}$are given by

$$
P_{k}(u)=\prod_{\alpha}(u-c(\alpha)), \quad k=1, \ldots, n-1,
$$

where α runs over the leftmost boxes of the rows of length k in the diagram Γ_{λ} / μ.

Example. For $\lambda=(7,5,2 \mid 3,1,0,0)$ and $\mu=(4,2,1)$ we have

Example. For $\lambda=(7,5,2 \mid 3,1,0,0)$ and $\mu=(4,2,1)$ we have

$$
P_{1}(u)=(u+1)(u+4)(u+5),
$$

Example. For $\lambda=(7,5,2 \mid 3,1,0,0)$ and $\mu=(4,2,1)$ we have

$$
\begin{aligned}
& P_{1}(u)=(u+1)(u+4)(u+5), \\
& P_{2}(u)=u+3,
\end{aligned}
$$

Example. For $\lambda=(7,5,2 \mid 3,1,0,0)$ and $\mu=(4,2,1)$ we have

$$
\begin{aligned}
& P_{1}(u)=(u+1)(u+4)(u+5), \\
& P_{2}(u)=u+3 \\
& P_{3}(u)=(u-4)(u-1)
\end{aligned}
$$

Introduce parameters of the diagram conjugate to Γ_{λ} / μ. Set $r=\mu_{1}$ and let $\mu^{\prime}=\left(\mu_{1}^{\prime}, \ldots, \mu_{r}^{\prime}\right)$ be the diagram conjugate to μ so that μ_{j}^{\prime} equals the number of boxes in column j of μ.

Introduce parameters of the diagram conjugate to Γ_{λ} / μ. Set
$r=\mu_{1}$ and let $\mu^{\prime}=\left(\mu_{1}^{\prime}, \ldots, \mu_{r}^{\prime}\right)$ be the diagram conjugate to μ
so that μ_{j}^{\prime} equals the number of boxes in column j of μ.

Set $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{r+n}^{\prime}\right)$, where λ_{j}^{\prime} equals the number of boxes in column j of the diagram Γ_{λ}.

Introduce parameters of the diagram conjugate to Γ_{λ} / μ. Set
$r=\mu_{1}$ and let $\mu^{\prime}=\left(\mu_{1}^{\prime}, \ldots, \mu_{r}^{\prime}\right)$ be the diagram conjugate to μ
so that μ_{j}^{\prime} equals the number of boxes in column j of μ.

Set $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{r+n}^{\prime}\right)$, where λ_{j}^{\prime} equals the number of boxes in column j of the diagram Γ_{λ}.

Corollary. The $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-module $L(\lambda)_{\mu}^{+}$is isomorphic to $\bar{L}\left(\lambda^{\prime}\right)_{\mu^{\prime}}^{+}$, the skew representation associated with $\mathfrak{g l}_{r+n}$-module $\bar{L}\left(\lambda^{\prime}\right)$ and the $\mathfrak{g l}_{r}$-highest weight μ^{\prime}.

Construction of basis vectors

Construction of basis vectors

- produce the highest vector of the $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-module $L(\lambda)_{\mu}^{+}$,

Construction of basis vectors

- produce the highest vector of the $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-module $L(\lambda)_{\mu}^{+}$,
- use the isomorphism $L(\lambda)_{\mu}^{+} \cong \bar{L}\left(\lambda^{\prime}\right)_{\mu^{\prime}}^{+}$to get the vectors of the trapezium Gelfand-Tsetlin basis of $\bar{L}\left(\lambda^{\prime}\right)_{\mu^{\prime}}^{+}$in terms of the Yangian generators,

Construction of basis vectors

- produce the highest vector of the $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-module $L(\lambda)_{\mu}^{+}$,
- use the isomorphism $L(\lambda)_{\mu}^{+} \cong \bar{L}\left(\lambda^{\prime}\right)_{\mu^{\prime}}^{+}$to get the vectors of the trapezium Gelfand-Tsetlin basis of $\bar{L}\left(\lambda^{\prime}\right)_{\mu^{\prime}}^{+}$in terms of the Yangian generators,
- combine with the Gelfand-Tsetlin basis of $L^{\prime}(\mu)$.

The extremal projector p for $\mathfrak{g l}_{m}$ is given by

$$
p=\prod_{i<j} \sum_{k=0}^{\infty}\left(E_{j i}\right)^{k}\left(E_{i j}\right)^{k} \frac{(-1)^{k}}{k!\left(h_{i}-h_{j}+1\right) \ldots\left(h_{i}-h_{j}+k\right)},
$$

where $h_{i}=E_{i i}-i+1$. The product is taken in a normal order.

The extremal projector p for $\mathfrak{g l}_{m}$ is given by

$$
p=\prod_{i<j} \sum_{k=0}^{\infty}\left(E_{j i}\right)^{k}\left(E_{i j}\right)^{k} \frac{(-1)^{k}}{k!\left(h_{i}-h_{j}+1\right) \ldots\left(h_{i}-h_{j}+k\right)},
$$

where $h_{i}=E_{i i}-i+1$. The product is taken in a normal order.

The projector satisfies

$$
E_{i j} p=p E_{j i}=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant m .
$$

The extremal projector p for $\mathfrak{g l}_{m}$ is given by

$$
p=\prod_{i<j} \sum_{k=0}^{\infty}\left(E_{j i}\right)^{k}\left(E_{i j}\right)^{k} \frac{(-1)^{k}}{k!\left(h_{i}-h_{j}+1\right) \ldots\left(h_{i}-h_{j}+k\right)},
$$

where $h_{i}=E_{i i}-i+1$. The product is taken in a normal order.

The projector satisfies

$$
E_{i j} p=p E_{j i}=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant m .
$$

Ref: Asherova, Smirnov and Tolstoy, 1971.

For $i=1, \ldots, m$ and $a=m+1, \ldots, m+n$ set

$$
\begin{aligned}
& z_{i a}=p E_{i a}\left(h_{i}-h_{1}\right) \ldots\left(h_{i}-h_{i-1}\right) \\
& z_{a i}=p E_{a i}\left(h_{i}-h_{i+1}\right) \ldots\left(h_{i}-h_{m}\right)
\end{aligned}
$$

For $i=1, \ldots, m$ and $a=m+1, \ldots, m+n$ set

$$
\begin{aligned}
& z_{i a}=p E_{i a}\left(h_{i}-h_{1}\right) \ldots\left(h_{i}-h_{i-1}\right) \\
& z_{a i}=p E_{a i}\left(h_{i}-h_{i+1}\right) \ldots\left(h_{i}-h_{m}\right)
\end{aligned}
$$

$z_{i a}$ and $z_{a i}$ can be regarded as elements of $\mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)$ modulo the left ideal generated by $E_{i j}$ with $1 \leqslant i<j \leqslant m$.

For $i=1, \ldots, m$ and $a=m+1, \ldots, m+n$ set

$$
\begin{aligned}
& z_{i a}=p E_{i a}\left(h_{i}-h_{1}\right) \ldots\left(h_{i}-h_{i-1}\right), \\
& z_{a i}=p E_{a i}\left(h_{i}-h_{i+1}\right) \ldots\left(h_{i}-h_{m}\right) .
\end{aligned}
$$

$z_{i a}$ and $z_{a i}$ can be regarded as elements of $\mathrm{U}\left(\mathfrak{g l}_{m \mid n}\right)$ modulo the left ideal generated by $E_{i j}$ with $1 \leqslant i<j \leqslant m$.

Example.

$$
\begin{array}{ll}
z_{1 a}=E_{1 a}, & z_{2 a}=E_{2 a}\left(h_{2}-h_{1}\right)+E_{21} E_{1 a} \\
z_{a m}=E_{a m}, & z_{a, m-1}=E_{a, m-1}\left(h_{m-1}-h_{m}\right)+E_{m, m-1} E_{a m}
\end{array}
$$

The elements $z_{i a}$ and $z_{a i}$ are odd; together with the even elements $E_{a b}$ with $a, b \in\{m+1, \ldots, m+n\}$ they generate the Mickelsson-Zhelobenko superalgebra $\mathrm{Z}\left(\mathfrak{g l}_{m \mid n}, \mathfrak{g l}_{m}\right)$ associated with the pair $\mathfrak{g l}_{m} \subseteq \mathfrak{g l}_{m \mid n}$.

The elements $z_{i a}$ and $z_{a i}$ are odd; together with the even elements $E_{a b}$ with $a, b \in\{m+1, \ldots, m+n\}$ they generate the Mickelsson-Zhelobenko superalgebra $\mathrm{Z}\left(\mathfrak{g l}_{m \mid n}, \mathfrak{g l}_{m}\right)$ associated with the pair $\mathfrak{g l}_{m} \subseteq \mathfrak{g l}_{m \mid n}$.

The generators satisfy quadratic relations that can be written in an explicit form.

They preserve the subspace of $\mathfrak{g l}_{m}$-highest vectors in $L(\lambda)$,

$$
z_{i a}: L(\lambda)_{\mu}^{+} \rightarrow L(\lambda)_{\mu+\delta_{i}}^{+}, \quad z_{a i}: L(\lambda)_{\mu}^{+} \rightarrow L(\lambda)_{\mu-\delta_{i}}^{+}
$$

where $\mu \pm \delta_{i}$ is obtained from μ by replacing μ_{i} by $\mu_{i} \pm 1$.

They preserve the subspace of $\mathfrak{g l}_{m}$-highest vectors in $L(\lambda)$,

$$
z_{i a}: L(\lambda)_{\mu}^{+} \rightarrow L(\lambda)_{\mu+\delta_{i}}^{+}, \quad z_{a i}: L(\lambda)_{\mu}^{+} \rightarrow L(\lambda)_{\mu-\delta_{i}}^{+}
$$

where $\mu \pm \delta_{i}$ is obtained from μ by replacing μ_{i} by $\mu_{i} \pm 1$.

Proposition. The element

$$
\zeta_{\mu}=\prod_{j=1}^{m}\left(z_{m+\lambda_{j}-\mu_{j}, j} \ldots z_{m+2, j} z_{m+1, j}\right) \zeta
$$

with the product taken in the increasing order of j is the highest
vector of the $\mathrm{Y}\left(\mathfrak{g l}_{n}\right)$-module $L(\lambda)_{\mu}^{+}$.

