Center at the critical level for centralizers

in type A

Alexander Molev

University of Sydney

Plan

Plan

- Invariants of the vacuum modules over affine Kac-Moody algebras.

Plan

- Invariants of the vacuum modules over affine Kac-Moody algebras.
- Feigin-Frenkel theorem for simple Lie algebras (1992).

Plan

- Invariants of the vacuum modules over affine Kac-Moody algebras.
- Feigin-Frenkel theorem for simple Lie algebras (1992).
- Arakawa-Premet generalization for centralizers (2017).

Plan

- Invariants of the vacuum modules over affine Kac-Moody algebras.
- Feigin-Frenkel theorem for simple Lie algebras (1992).
- Arakawa-Premet generalization for centralizers (2017).
- Explicit generators for $\mathfrak{g l}_{N}$.

Plan

- Invariants of the vacuum modules over affine Kac-Moody algebras.
- Feigin-Frenkel theorem for simple Lie algebras (1992).
- Arakawa-Premet generalization for centralizers (2017).
- Explicit generators for $\mathfrak{g l}_{N}$.
- Applications: Casimir elements for centralizers.

Affine Kac-Moody algebras

Affine Kac-Moody algebras

Let \mathfrak{a} be a finite-dimensional Lie algebra over \mathbb{C},

Affine Kac-Moody algebras

Let \mathfrak{a} be a finite-dimensional Lie algebra over \mathbb{C}, equipped with an invariant symmetric bilinear form \langle,$\rangle .$

Affine Kac-Moody algebras

Let \mathfrak{a} be a finite-dimensional Lie algebra over \mathbb{C}, equipped with an invariant symmetric bilinear form \langle,$\rangle .$

The affine Kac-Moody algebra $\widehat{\mathfrak{a}}$ is the central extension

$$
\widehat{\mathfrak{a}}=\mathfrak{a}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{1}
$$

Affine Kac-Moody algebras

Let \mathfrak{a} be a finite-dimensional Lie algebra over \mathbb{C}, equipped with an invariant symmetric bilinear form \langle,$\rangle .$

The affine Kac-Moody algebra $\widehat{\mathfrak{a}}$ is the central extension

$$
\widehat{\mathfrak{a}}=\mathfrak{a}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{1}
$$

with the commutation relations

$$
[X[r], Y[s]]=[X, Y][r+s]+r \delta_{r,-s}\langle X, Y\rangle \mathbf{1}
$$

where $X[r]=X t^{r}$ for any $X \in \mathfrak{a}$ and $r \in \mathbb{Z}$.

Invariants of the vacuum module

Invariants of the vacuum module

The vacuum module $V(\mathfrak{a})$ over $\widehat{\mathfrak{a}}$ is generated by a vector $|0\rangle$,

$$
\mathfrak{a}[t]|0\rangle=0, \quad \mathbf{1}|0\rangle=|0\rangle .
$$

Invariants of the vacuum module

The vacuum module $V(\mathfrak{a})$ over $\widehat{\mathfrak{a}}$ is generated by a vector $|0\rangle$,

$$
\mathfrak{a}[t]|0\rangle=0, \quad \mathbf{1}|0\rangle=|0\rangle .
$$

The algebra of $\mathfrak{a}[t]$-invariants is

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\{v \in V(\mathfrak{a}) \mid \mathfrak{a}[t] v=0\} .
$$

Invariants of the vacuum module

The vacuum module $V(\mathfrak{a})$ over $\widehat{\mathfrak{a}}$ is generated by a vector $|0\rangle$,

$$
\mathfrak{a}[t]|0\rangle=0, \quad \mathbf{1}|0\rangle=|0\rangle .
$$

The algebra of $\mathfrak{a}[t]$-invariants is

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\{v \in V(\mathfrak{a}) \mid \mathfrak{a}[t] v=0\} .
$$

Note $\quad V(\mathfrak{a}) \cong \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$ as a vector space.

Invariants of the vacuum module

The vacuum module $V(\mathfrak{a})$ over $\widehat{\mathfrak{a}}$ is generated by a vector $|0\rangle$,

$$
\mathfrak{a}[t]|0\rangle=0, \quad \mathbf{1}|0\rangle=|0\rangle .
$$

The algebra of $\mathfrak{a}[t]$-invariants is

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\{v \in V(\mathfrak{a}) \mid \mathfrak{a}[t] v=0\} .
$$

Note $\quad V(\mathfrak{a}) \cong \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \quad$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{a}})$ is a subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$.

Properties:

- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{a}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$ is commutative.

Properties:

- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{a}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$ is commutative.
- It is invariant with respect to the translation operator T defined as the derivation $T=-\frac{d}{d t}$.

Properties:

- The subalgebra $\mathfrak{z}(\widehat{\mathfrak{a}})$ of $\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$ is commutative.
- It is invariant with respect to the translation operator T defined as the derivation $T=-\frac{d}{d t}$.

Any element of $\mathfrak{z}(\widehat{\mathfrak{a}})$ is called a Segal-Sugawara vector.

Feigin-Frenkel theorem

Feigin-Frenkel theorem

Suppose \mathfrak{a} is a simple Lie algebra and
the form \langle,$\rangle is normalized to correspond to the critical level.$

Feigin-Frenkel theorem

Suppose \mathfrak{a} is a simple Lie algebra and
the form \langle,$\rangle is normalized to correspond to the critical level.$

Theorem [Feigin-Frenkel 1992, Frenkel 2007].
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$,
$n=\operatorname{rank} \mathfrak{a}$, such that

Feigin-Frenkel theorem

Suppose \mathfrak{a} is a simple Lie algebra and
the form \langle,$\rangle is normalized to correspond to the critical level.$

Theorem [Feigin-Frenkel 1992, Frenkel 2007].
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$,
$n=\operatorname{rank} \mathfrak{a}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

Feigin-Frenkel theorem

Suppose \mathfrak{a} is a simple Lie algebra and
the form \langle,$\rangle is normalized to correspond to the critical level.$

Theorem [Feigin-Frenkel 1992, Frenkel 2007].
There exist Segal-Sugawara vectors $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$,
$n=\operatorname{rank} \mathfrak{a}$, such that

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\mathbb{C}\left[T^{k} S_{l} \mid l=1, \ldots, n, \quad k \geqslant 0\right] .
$$

We call S_{1}, \ldots, S_{n} a complete set of Segal-Sugawara vectors.

Explicit constructions of such sets and a new proof of the theorem for the classical types A, B, C, D :
[Chervov-Talalaev 2006, Chervov-M. 2009, M. 2013],
[Yakimova 2019].

Explicit constructions of such sets and a new proof of the theorem for the classical types A, B, C, D :
[Chervov-Talalaev 2006, Chervov-M. 2009, M. 2013],
[Yakimova 2019].

For the exceptional Lie algebra G_{2} :
[M.-Ragoucy-Rozhkovskaya 2016, Yakimova 2019].

Explicit constructions of such sets and a new proof of the theorem for the classical types A, B, C, D :
[Chervov-Talalaev 2006, Chervov-M. 2009, M. 2013],
[Yakimova 2019].

For the exceptional Lie algebra G_{2} :
[M.-Ragoucy-Rozhkovskaya 2016, Yakimova 2019].

For quantum vertex algebras in types A, B, C, D :
[Jing-Kožić-M.-Yang 2018, Butorac-Jing-Kožić 2019].

Example: $\mathfrak{a}=\mathfrak{g l}_{n}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{n}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{i j} \delta_{k l}-n \delta_{k j} \delta_{i l}\right) \mathbf{1}
\end{aligned}
$$

Example: $\mathfrak{a}=\mathfrak{g l}_{n}$. Defining relations for $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{n}\right)$:

$$
\begin{aligned}
& E_{i j}[r] E_{k l}[s]-E_{k l}[s] E_{i j}[r] \\
& \quad=\delta_{k j} E_{i l}[r+s]-\delta_{i l} E_{k j}[r+s]+r \delta_{r,-s}\left(\delta_{i j} \delta_{k l}-n \delta_{k j} \delta_{i l}\right) \mathbf{1} .
\end{aligned}
$$

For a variable x introduce the $n \times n$ matrix
$\mathcal{E}=\left[\begin{array}{cccc}x+T+E_{11}[-1] & E_{12}[-1] & \ldots & E_{1 n}[-1] \\ E_{21}[-1] & x+T+E_{22}[-1] & \ldots & E_{2 n}[-1] \\ \vdots & \vdots & \ddots & \vdots \\ E_{n 1}[-1] & E_{n 2}[-1] & \ldots & x+T+E_{n n}[-1]\end{array}\right]$

The column-determinant of \mathcal{E} is a polynomial

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1} x^{n-1}+\cdots+\phi_{n-1} x+\phi_{n} .
$$

The column-determinant of \mathcal{E} is a polynomial

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1} x^{n-1}+\cdots+\phi_{n-1} x+\phi_{n} .
$$

Theorem [CT 2006, CM 2009]. The coefficients $\phi_{1}, \ldots, \phi_{n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{n}$.

The column-determinant of \mathcal{E} is a polynomial

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1} x^{n-1}+\cdots+\phi_{n-1} x+\phi_{n} .
$$

Theorem [CT 2006, CM 2009]. The coefficients $\phi_{1}, \ldots, \phi_{n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{n}$.

A new property: The derivation $\Delta=t^{2} \frac{d}{d t}$ acts by the rule

The column-determinant of \mathcal{E} is a polynomial

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1} x^{n-1}+\cdots+\phi_{n-1} x+\phi_{n} .
$$

Theorem [CT 2006, CM 2009]. The coefficients $\phi_{1}, \ldots, \phi_{n}$ form a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{n}$.

A new property: The derivation $\Delta=t^{2} \frac{d}{d t}$ acts by the rule

$$
\Delta: \phi_{k} \mapsto-(k-1)(n-k+1) \phi_{k-1}
$$

for $k=1, \ldots, n$.

For $n=2$ the column-determinant $\operatorname{cdet} \mathcal{E}$ equals

$$
\begin{aligned}
& \left(x+T+E_{11}[-1]\right)\left(x+T+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =x^{2}+\phi_{1} x+\phi_{2}
\end{aligned}
$$

For $n=2$ the column-determinant $\operatorname{cdet} \mathcal{E}$ equals

$$
\begin{aligned}
& \left(x+T+E_{11}[-1]\right)\left(x+T+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =x^{2}+\phi_{1} x+\phi_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& \phi_{1}=E_{11}[-1]+E_{22}[-1] \\
& \phi_{2}=E_{11}[-1] E_{22}[-1]-E_{21}[-1] E_{12}[-1]+E_{22}[-2] .
\end{aligned}
$$

Applications

Applications

- Higher Gaudin Hamiltonians, Bethe eigenvalues:
[Feigin-Frenkel-Reshetikhin 1994],
[Rybnikov 2006, Talalaev 2006, M.-Mukhin 2014].

Applications

- Higher Gaudin Hamiltonians, Bethe eigenvalues:
[Feigin-Frenkel-Reshetikhin 1994],
[Rybnikov 2006, Talalaev 2006, M.-Mukhin 2014].
- Explicit solution of Vinberg's quantization problem:
[Futorny-M. 2010, M.-Yakimova 2017].

Applications

- Higher Gaudin Hamiltonians, Bethe eigenvalues:
[Feigin-Frenkel-Reshetikhin 1994],
[Rybnikov 2006, Talalaev 2006, M.-Mukhin 2014].
- Explicit solution of Vinberg's quantization problem:
[Futorny-M. 2010, M.-Yakimova 2017].
- Affine Harish-Chandra isomorphism, classical \mathcal{W}-algebras:
[M.-Mukhin 2014].

Proving the Feigin-Frenkel theorem:

Proving the Feigin-Frenkel theorem:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.

Proving the Feigin-Frenkel theorem:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{a}})$.

Proving the Feigin-Frenkel theorem:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{a}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)
$$

Proving the Feigin-Frenkel theorem:

- Produce Segal-Sugawara vectors S_{1}, \ldots, S_{n} explicitly.
- Show that all elements $T^{k} S_{l}$ with $l=1, \ldots, n$ and $k \geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{a}})$.

Use the classical limit:

$$
\operatorname{gr} \mathbf{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \cong \mathbf{S}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)
$$

which yields an $\mathfrak{a}[t]$-module structure on the symmetric algebra $\mathrm{S}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \cong \mathrm{S}\left(\mathfrak{a}\left[t, t^{-1}\right] / \mathfrak{a}[t]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{a} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be an \mathfrak{a}-invariant in the symmetric algebra $S(\mathfrak{a})$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{a} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be an \mathfrak{a}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{a})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is an $\mathfrak{a}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$.

Let X_{1}, \ldots, X_{d} be a basis of \mathfrak{a} and let $P=P\left(X_{1}, \ldots, X_{d}\right)$ be an \mathfrak{a}-invariant in the symmetric algebra $\mathrm{S}(\mathfrak{a})$. Then each element

$$
P_{(r)}=T^{r} P\left(X_{1}[-1], \ldots, X_{d}[-1]\right), \quad r \geqslant 0
$$

is an $\mathfrak{a}[t]$-invariant in the symmetric algebra $\quad \mathrm{S}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$.

Theorem [Raïs-Tauvel 1992, Beilinson-Drinfeld 1997].
If P_{1}, \ldots, P_{n} are algebraically independent generators of $\mathrm{S}(\mathfrak{a})^{\mathfrak{a}}$,
then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \geqslant 0$ are algebraically independent generators of $S\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)^{\mathfrak{a}[t]}$.

Premet's conjecture

Premet's conjecture

Suppose that \mathfrak{g} is a reductive Lie algebra of rank ℓ and $e \in \mathfrak{g}$ is an arbitrary element. Set $\mathfrak{a}=\mathfrak{g}^{e}$, the centralizer of e in \mathfrak{g}.

Premet's conjecture

Suppose that \mathfrak{g} is a reductive Lie algebra of rank ℓ and $e \in \mathfrak{g}$ is an arbitrary element. Set $\mathfrak{a}=\mathfrak{g}^{e}$, the centralizer of e in \mathfrak{g}.

Conjecture [A. Premet]. The invariant algebra $S(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in ℓ variables.

Premet's conjecture

Suppose that \mathfrak{g} is a reductive Lie algebra of rank ℓ and $e \in \mathfrak{g}$ is an arbitrary element. Set $\mathfrak{a}=\mathfrak{g}^{e}$, the centralizer of e in \mathfrak{g}.

Conjecture [A. Premet]. The invariant algebra $S(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in ℓ variables. Counterexamples: D_{7}, E_{8}.

Premet's conjecture

Suppose that \mathfrak{g} is a reductive Lie algebra of rank ℓ and $e \in \mathfrak{g}$ is an arbitrary element. Set $\mathfrak{a}=\mathfrak{g}^{e}$, the centralizer of e in \mathfrak{g}.

Conjecture [A. Premet]. The invariant algebra $S(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in ℓ variables. Counterexamples: D_{7}, E_{8}.

Theorem [Panyushev-Premet-Yakimova 2007].
The conjecture holds for types A and C.

Premet's conjecture

Suppose that \mathfrak{g} is a reductive Lie algebra of rank ℓ and $e \in \mathfrak{g}$ is an arbitrary element. Set $\mathfrak{a}=\mathfrak{g}^{e}$, the centralizer of e in \mathfrak{g}.

Conjecture [A. Premet]. The invariant algebra $S(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in ℓ variables. Counterexamples: D_{7}, E_{8}.

Theorem [Panyushev-Premet-Yakimova 2007].
The conjecture holds for types A and C.

Another proof in type A : [Brown-Brundan 2009].

Invariants in type A

Invariants in type A

Suppose that $e \in \mathfrak{g}=\mathfrak{g l}_{N}$ is a nilpotent matrix with Jordan blocks of sizes $\lambda_{1}, \ldots, \lambda_{n}$, where $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ and
$\lambda_{1}+\cdots+\lambda_{n}=N$.

Invariants in type A

Suppose that $e \in \mathfrak{g}=\mathfrak{g l}_{N}$ is a nilpotent matrix with Jordan blocks of sizes $\lambda_{1}, \ldots, \lambda_{n}$, where $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ and
$\lambda_{1}+\cdots+\lambda_{n}=N$.

The associated pyramid is a left-justified array of rows of unit boxes;

Invariants in type A

Suppose that $e \in \mathfrak{g}=\mathfrak{g l}_{N}$ is a nilpotent matrix with Jordan blocks of sizes $\lambda_{1}, \ldots, \lambda_{n}$, where $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ and
$\lambda_{1}+\cdots+\lambda_{n}=N$.

The associated pyramid is a left-justified array of rows of unit boxes; for the blocks $2,3,4$ and $N=9$ the pyramid is

The corresponding row-tableau takes the form

1	2	
3	4	5
6	7	8

The corresponding row-tableau takes the form

1	2	
3	4	5

Let $e_{a b}$ with $a, b=1, \ldots, N$ be the standard basis of \mathfrak{g}.

The corresponding row-tableau takes the form

1	2	
3	4	5
6	7	8

Let $e_{a b}$ with $a, b=1, \ldots, N$ be the standard basis of \mathfrak{g}.
For any $1 \leqslant i, j \leqslant n$ and $\lambda_{j}-\min \left(\lambda_{i}, \lambda_{j}\right) \leqslant r<\lambda_{j}$ set

$$
E_{i j}^{(r)}=\sum_{\substack{\operatorname{row}(a)=i, \operatorname{row}(b)=j \\ \operatorname{col}(b)-\operatorname{col}(a)=r}} e_{a b}
$$

summed over $a, b \in\{1, \ldots, N\}$.

The corresponding row-tableau takes the form

\left.| 1 | 2 | |
| :--- | :--- | :--- |
| 3 | 4 | 5 |
| | | |
| 6 | 7 | 8 |$\right)$

Let $e_{a b}$ with $a, b=1, \ldots, N$ be the standard basis of \mathfrak{g}.
For any $1 \leqslant i, j \leqslant n$ and $\lambda_{j}-\min \left(\lambda_{i}, \lambda_{j}\right) \leqslant r<\lambda_{j}$ set

$$
E_{i j}^{(r)}=\sum_{\substack{\operatorname{row}(a)=i, \operatorname{row}(b)=j \\ \operatorname{col}(b)-\operatorname{col}(a)=r}} e_{a b}
$$

summed over $a, b \in\{1, \ldots, N\}$.
The elements $E_{i j}^{(r)}$ form a basis of the Lie algebra $\mathfrak{a}=\mathfrak{g}^{e}$.

Commutation relations for the Lie algebra \mathfrak{a} :

$$
\left[E_{i j}^{(r)}, E_{k l}^{(s)}\right]=\delta_{k j} E_{i l}^{(r+s)}-\delta_{i l} E_{k j}^{(r+s)}
$$

assuming that $E_{i j}^{(r)}=0$ for $r \geqslant \lambda_{j}$.

Commutation relations for the Lie algebra \mathfrak{a} :

$$
\left[E_{i j}^{(r)}, E_{k l}^{(s)}\right]=\delta_{k j} E_{i l}^{(r+s)}-\delta_{i l} E_{k j}^{(r+s)}
$$

assuming that $E_{i j}^{(r)}=0$ for $r \geqslant \lambda_{j}$.

Particular case of rectangular pyramid $\lambda_{1}=\cdots=\lambda_{n}=p$.

Commutation relations for the Lie algebra \mathfrak{a} :

$$
\left[E_{i j}^{(r)}, E_{k l}^{(s)}\right]=\delta_{k j} E_{i l}^{(r+s)}-\delta_{i l} E_{k j}^{(r+s)}
$$

assuming that $E_{i j}^{(r)}=0$ for $r \geqslant \lambda_{j}$.

Particular case of rectangular pyramid $\lambda_{1}=\cdots=\lambda_{n}=p$.

The Lie algebra \mathfrak{a} is isomorphic to the Takiff algebra
(truncated polynomial current algebra): $\mathfrak{g l}_{n}[v] /\left(v^{p}=0\right)$,

Commutation relations for the Lie algebra \mathfrak{a} :

$$
\left[E_{i j}^{(r)}, E_{k l}^{(s)}\right]=\delta_{k j} E_{i l}^{(r+s)}-\delta_{i l} E_{k j}^{(r+s)}
$$

assuming that $E_{i j}^{(r)}=0$ for $r \geqslant \lambda_{j}$.

Particular case of rectangular pyramid $\lambda_{1}=\cdots=\lambda_{n}=p$.

The Lie algebra \mathfrak{a} is isomorphic to the Takiff algebra
(truncated polynomial current algebra): $\mathfrak{g l}_{n}[v] /\left(v^{p}=0\right)$,

$$
E_{i j}^{(r)} \mapsto e_{i j} v^{r}, \quad r=0, \ldots, p-1, \quad 1 \leqslant i, j \leqslant n
$$

The invariant algebra $\mathrm{S}(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in N variables of the respective degrees of the form [PPY 2007]:

The invariant algebra $\mathrm{S}(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in N variables of the respective degrees of the form [PPY 2007]:

$$
\underbrace{1, \ldots, 1}_{\lambda_{n}}, \underbrace{2, \ldots, 2}_{\lambda_{n-1}}, \ldots, \underbrace{n, \ldots, n}_{\lambda_{1}} .
$$

The invariant algebra $\mathrm{S}(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in N variables of the respective degrees of the form [PPY 2007]:

For the Takiff algebra this is due to [Raïs-Tauvel 1992].

The invariant algebra $\mathrm{S}(\mathfrak{a})^{\mathfrak{a}}$ is a graded polynomial algebra in N variables of the respective degrees of the form [PPY 2007]:

For the Takiff algebra this is due to [Raïs-Tauvel 1992].

Explicit generators for an arbitrary nilpotent $e \in \mathfrak{g}$:
[Brown-Brundan 2009].

Segal-Sugawara vectors for centralizers

Segal-Sugawara vectors for centralizers

Equip the Lie algebra \mathfrak{a} with the invariant symmetric bilinear form \langle,$\rangle defined by the formulas$

Segal-Sugawara vectors for centralizers

Equip the Lie algebra \mathfrak{a} with the invariant symmetric bilinear form \langle,$\rangle defined by the formulas$

$$
\left\langle E_{i i}^{(0)}, E_{j j}^{(0)}\right\rangle=\min \left(\lambda_{i}, \lambda_{j}\right)-\delta_{i j}\left(\lambda_{1}+\cdots+\lambda_{i-1}+(n-i+1) \lambda_{i}\right)
$$

Segal-Sugawara vectors for centralizers

Equip the Lie algebra \mathfrak{a} with the invariant symmetric bilinear form \langle,$\rangle defined by the formulas$

$$
\left\langle E_{i i}^{(0)}, E_{j j}^{(0)}\right\rangle=\min \left(\lambda_{i}, \lambda_{j}\right)-\delta_{i j}\left(\lambda_{1}+\cdots+\lambda_{i-1}+(n-i+1) \lambda_{i}\right),
$$

and if $\lambda_{i}=\lambda_{j}$ for some $i \neq j$ then

$$
\left\langle E_{i j}^{(0)}, E_{j i}^{(0)}\right\rangle=-\left(\lambda_{1}+\cdots+\lambda_{i-1}+(n-i+1) \lambda_{i}\right) .
$$

Consider the vacuum module $V(\mathfrak{a})$ over the Kac-Moody algebra $\widehat{\mathfrak{a}}$ and the algebra of $\mathfrak{a}[t]$-invariants $\mathfrak{z}(\widehat{\mathfrak{a}})$ in $V(\mathfrak{a})$.

Consider the vacuum module $V(\mathfrak{a})$ over the Kac-Moody algebra $\widehat{\mathfrak{a}}$ and the algebra of $\mathfrak{a}[t]$-invariants $\mathfrak{z}(\widehat{\mathfrak{a}})$ in $V(\mathfrak{a})$.

Theorem [Arakawa-Premet 2017]. There exists a complete set of Segal-Sugawara vectors $S_{1}, \ldots, S_{N} \in \mathfrak{z}(\widehat{\mathfrak{a}})$ so that

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, N, \quad r \geqslant 0\right], \quad T=-\frac{d}{d t} .
$$

Consider the vacuum module $V(\mathfrak{a})$ over the Kac-Moody algebra $\widehat{\mathfrak{a}}$ and the algebra of $\mathfrak{a}[t]$-invariants $\mathfrak{z}(\widehat{\mathfrak{a}})$ in $V(\mathfrak{a})$.

Theorem [Arakawa-Premet 2017]. There exists a complete set of Segal-Sugawara vectors $S_{1}, \ldots, S_{N} \in \mathfrak{z}(\widehat{\mathfrak{a}})$ so that

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, N, \quad r \geqslant 0\right], \quad T=-\frac{d}{d t} .
$$

In the case $e=0$ this is the Feigin-Frenkel theorem.

Consider the vacuum module $V(\mathfrak{a})$ over the Kac-Moody algebra $\widehat{\mathfrak{a}}$ and the algebra of $\mathfrak{a}[t]$-invariants $\mathfrak{z}(\widehat{\mathfrak{a}})$ in $V(\mathfrak{a})$.

Theorem [Arakawa-Premet 2017]. There exists a complete set of Segal-Sugawara vectors $S_{1}, \ldots, S_{N} \in \mathfrak{z}(\widehat{\mathfrak{a}})$ so that

$$
\mathfrak{z}(\widehat{\mathfrak{a}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, N, \quad r \geqslant 0\right], \quad T=-\frac{d}{d t} .
$$

In the case $e=0$ this is the Feigin-Frenkel theorem.
[AP 2017]: explicit formulas for the S_{k} in the minimal nilpotent case $\lambda_{1}=\cdots=\lambda_{n-1}=1, \quad \lambda_{n}=2$.

Introduce polynomials in u with coefficients in $t^{-1} \mathfrak{a}\left[t^{-1}\right]$ by

Introduce polynomials in u with coefficients in $t^{-1} \mathfrak{a}\left[t^{-1}\right]$ by

$$
E_{i j}(u)= \begin{cases}E_{i j}^{(0)}[-1]+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)}[-1] u^{\lambda_{j}-1} & \text { if } \quad i \geqslant j, \\ E_{i j}^{\left(\lambda_{j}-\lambda_{i}\right)}[-1] u^{\lambda_{j}-\lambda_{i}}+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)}[-1] u^{\lambda_{j}-1} & \text { if } \quad i<j .\end{cases}
$$

Introduce polynomials in u with coefficients in $t^{-1} \mathfrak{a}\left[t^{-1}\right]$ by

$$
E_{i j}(u)= \begin{cases}E_{i j}^{(0)}[-1]+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)}[-1] u^{\lambda_{j}-1} & \text { if } \quad i \geqslant j, \\ E_{i j}^{\left(\lambda_{j}-\lambda_{i}\right)}[-1] u^{\lambda_{j}-\lambda_{i}}+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)}[-1] u^{\lambda_{j}-1} & \text { if } \quad i<j .\end{cases}
$$

Consider the $n \times n$ matrix \mathcal{E} given by

$$
\left[\begin{array}{cccc}
x+\lambda_{1} T+E_{11}(u) & E_{12}(u) & \ldots & E_{1 n}(u) \\
E_{21}(u) & x+\lambda_{2} T+E_{22}(u) & \ldots & E_{2 n}(u) \\
\vdots & \vdots & \ddots & \vdots \\
E_{n 1}(u) & E_{n 2}(u) & \ldots & x+\lambda_{n} T+E_{n n}(u)
\end{array}\right]
$$

Expand the column-determinant as a polynomial in x,

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1}(u) x^{n-1}+\cdots+\phi_{n}(u)
$$

Expand the column-determinant as a polynomial in x,

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1}(u) x^{n-1}+\cdots+\phi_{n}(u)
$$

and write

$$
\phi_{k}(u)=\sum_{a} \phi_{k}^{(a)} u^{a}
$$

Expand the column-determinant as a polynomial in x,

$$
\operatorname{cdet} \mathcal{E}=x^{n}+\phi_{1}(u) x^{n-1}+\cdots+\phi_{n}(u)
$$

and write

$$
\phi_{k}(u)=\sum_{a} \phi_{k}^{(a)} u^{a} .
$$

Theorem. The coefficients $\phi_{k}^{(a)}$ with $k=1, \ldots, n$ and

$$
\lambda_{n-k+2}+\cdots+\lambda_{n}<a+k \leqslant \lambda_{n-k+1}+\cdots+\lambda_{n}
$$

form a complete set of Segal-Sugawara vectors for \mathfrak{a}.

Example. For $n=2$ we have

Example. For $n=2$ we have
$\operatorname{cdet}\left[\begin{array}{cc}x+\lambda_{1} T+E_{11}(u) & E_{12}(u) \\ E_{21}(u) & x+\lambda_{2} T+E_{22}(u)\end{array}\right]=x^{2}+\phi_{1}(u) x+\phi_{2}(u)$

Example. For $n=2$ we have
$\operatorname{cdet}\left[\begin{array}{cc}x+\lambda_{1} T+E_{11}(u) & E_{12}(u) \\ E_{21}(u) & x+\lambda_{2} T+E_{22}(u)\end{array}\right]=x^{2}+\phi_{1}(u) x+\phi_{2}(u)$
with

$$
\begin{aligned}
& \phi_{1}(u)=E_{11}(u)+E_{22}(u), \\
& \phi_{2}(u)=E_{11}(u) E_{22}(u)-E_{21}(u) E_{12}(u)+\lambda_{1} T E_{22}(u) .
\end{aligned}
$$

Hence, a complete set of Segal-Sugawara vectors for \mathfrak{a} is
given by

Hence, a complete set of Segal-Sugawara vectors for \mathfrak{a} is given by

$$
\phi_{1}^{(a)}=E_{11}^{(a)}[-1]+E_{22}^{(a)}[-1], \quad a=0,1, \ldots, \lambda_{2}-1,
$$

Hence, a complete set of Segal-Sugawara vectors for \mathfrak{a} is given by

$$
\begin{aligned}
& \phi_{1}^{(a)}=E_{11}^{(a)}[-1]+E_{22}^{(a)}[-1], \quad a=0,1, \ldots, \lambda_{2}-1, \\
& \phi_{2}^{(b)}=\sum_{r+s=b}\left|\begin{array}{ll}
E_{11}^{(r)}[-1] & E_{12}^{(s)}[-1] \\
E_{21}^{(r)}[-1] & E_{22}^{(s)}[-1]
\end{array}\right|+\lambda_{1} E_{22}^{(b)}[-2],
\end{aligned}
$$

with $\quad b=\lambda_{2}-1, \ldots, \lambda_{1}+\lambda_{2}-2$.

Proof of the theorem

Proof of the theorem

Verify that $X[r] \phi_{k}^{(a)}=0$ for all $r \geqslant 0$ and $X \in \mathfrak{a}$.

Proof of the theorem

Verify that $X[r] \phi_{k}^{(a)}=0$ for all $r \geqslant 0$ and $X \in \mathfrak{a}$.
Use the relations $r X[r+1]=[\Delta, X[r]]$ for $\Delta=t^{2} \frac{d}{d t}$.

Proof of the theorem

Verify that $X[r] \phi_{k}^{(a)}=0$ for all $r \geqslant 0$ and $X \in \mathfrak{a}$.
Use the relations $r X[r+1]=[\Delta, X[r]]$ for $\Delta=t^{2} \frac{d}{d t}$.

Lemma. Under the action of Δ we have

$$
\Delta: \phi_{k}^{(a)} \mapsto-(k-1)\left(\lambda_{1}+\cdots+\lambda_{n-k+1}\right) \phi_{k-1}^{(a)}
$$

for $a=\lambda_{n-k+2}+\cdots+\lambda_{n}-k+1$

Proof of the theorem

Verify that $X[r] \phi_{k}^{(a)}=0$ for all $r \geqslant 0$ and $X \in \mathfrak{a}$.
Use the relations $r X[r+1]=[\Delta, X[r]]$ for $\Delta=t^{2} \frac{d}{d t}$.

Lemma. Under the action of Δ we have

$$
\Delta: \phi_{k}^{(a)} \mapsto-(k-1)\left(\lambda_{1}+\cdots+\lambda_{n-k+1}\right) \phi_{k-1}^{(a)}
$$

for $a=\lambda_{n-k+2}+\cdots+\lambda_{n}-k+1$
and $\Delta: \phi_{k}^{(a)} \mapsto 0$ otherwise.

Applications: Casimir elements for \mathfrak{a}

Applications: Casimir elements for \mathfrak{a}

For any nonzero $z \in \mathbb{C}$ consider the evaluation homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{a}), \quad X[r] \mapsto X z^{r}, \quad X \in \mathfrak{a}, \quad r<0
$$

Applications: Casimir elements for \mathfrak{a}

For any nonzero $z \in \mathbb{C}$ consider the evaluation homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{a}), \quad X[r] \mapsto X z^{r}, \quad X \in \mathfrak{a}, \quad r<0
$$

The image of the subalgebra $\mathfrak{z}(\widehat{\mathfrak{a}})$ is the center of $U(\mathfrak{a})$.

Applications: Casimir elements for \mathfrak{a}

For any nonzero $z \in \mathbb{C}$ consider the evaluation homomorphism

$$
\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{a}), \quad X[r] \mapsto X z^{r}, \quad X \in \mathfrak{a}, \quad r<0
$$

The image of the subalgebra $\mathfrak{z}(\widehat{\mathfrak{a}})$ is the center of $U(\mathfrak{a})$.

The images of the complete set of Segal-Sugawara vectors are algebraically independent generators of the center.

Introduce polynomials in u with coefficients in $\mathrm{U}(\mathfrak{a})$ by

Introduce polynomials in u with coefficients in $\mathrm{U}(\mathfrak{a})$ by

$$
\mathcal{E}_{i j}(u)= \begin{cases}\delta_{i j}(n-i) \lambda_{i}+E_{i j}^{(0)}+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)} u^{\lambda_{j}-1} & \text { if } \quad i \geqslant j, \\ E_{i j}^{\left(\lambda_{j}-\lambda_{i}\right)} u^{\lambda_{j}-\lambda_{i}}+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)} u^{\lambda_{j}-1} & \text { if } \\ i<j .\end{cases}
$$

Introduce polynomials in u with coefficients in $\mathrm{U}(\mathfrak{a})$ by

$$
\mathcal{E}_{i j}(u)= \begin{cases}\delta_{i j}(n-i) \lambda_{i}+E_{i j}^{(0)}+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)} u^{\lambda_{j}-1} & \text { if } \quad i \geqslant j, \\ E_{i j}^{\left(\lambda_{j}-\lambda_{i}\right)} u^{\lambda_{j}-\lambda_{i}}+\cdots+E_{i j}^{\left(\lambda_{j}-1\right)} u^{\lambda_{j}-1} & \text { if } \quad i<j .\end{cases}
$$

Combine them into the $n \times n$ matrix

$$
x+\mathcal{E}(u)=\left[\begin{array}{cccc}
x+\mathcal{E}_{11}(u) & \mathcal{E}_{12}(u) & \ldots & \mathcal{E}_{1 n}(u) \\
\mathcal{E}_{21}(u) & x+\mathcal{E}_{22}(u) & \ldots & \mathcal{E}_{2 n}(u) \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{E}_{n 1}(u) & \mathcal{E}_{n 2}(u) & \ldots & x+\mathcal{E}_{n n}(u)
\end{array}\right]
$$

Expand the column-determinant

$$
\operatorname{cdet}(x+\mathcal{E}(u))=x^{n}+\Phi_{1}(u) x^{n-1}+\cdots+\Phi_{n}(u)
$$

Expand the column-determinant

$$
\operatorname{cdet}(x+\mathcal{E}(u))=x^{n}+\Phi_{1}(u) x^{n-1}+\cdots+\Phi_{n}(u)
$$

Write

$$
\Phi_{k}(u)=\sum_{a} \Phi_{k}^{(a)} u^{a}
$$

Expand the column-determinant

$$
\operatorname{cdet}(x+\mathcal{E}(u))=x^{n}+\Phi_{1}(u) x^{n-1}+\cdots+\Phi_{n}(u) .
$$

Write

$$
\Phi_{k}(u)=\sum_{a} \Phi_{k}^{(a)} u^{a} .
$$

Corollary. The coefficients $\Phi_{k}^{(a)}$ with $k=1, \ldots, n$ and

$$
\lambda_{n-k+2}+\cdots+\lambda_{n}<a+k \leqslant \lambda_{n-k+1}+\cdots+\lambda_{n}
$$

are free generators of the center of $U(\mathfrak{a})$.

Expand the column-determinant

$$
\operatorname{cdet}(x+\mathcal{E}(u))=x^{n}+\Phi_{1}(u) x^{n-1}+\cdots+\Phi_{n}(u)
$$

Write

$$
\Phi_{k}(u)=\sum_{a} \Phi_{k}^{(a)} u^{a}
$$

Corollary. The coefficients $\Phi_{k}^{(a)}$ with $k=1, \ldots, n$ and

$$
\lambda_{n-k+2}+\cdots+\lambda_{n}<a+k \leqslant \lambda_{n-k+1}+\cdots+\lambda_{n}
$$

are free generators of the center of $U(\mathfrak{a})$.
[Brown-Brundan 2009], Takiff case: [M. 1997], [Capelli 1890].

Vinberg's quantization problem

Vinberg's quantization problem

Given any $\chi \in \mathfrak{a}^{*}$, the Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\chi}$ of $S(\mathfrak{a})$ is a Poisson-commutative subalgebra.

Vinberg's quantization problem

Given any $\chi \in \mathfrak{a}^{*}$, the Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\chi}$ of $S(\mathfrak{a})$ is a Poisson-commutative subalgebra.

Vinberg's problem: construct a commutative subalgebra
$\mathcal{A}_{\chi} \subset \mathrm{U}(\mathfrak{a})$ such that $\operatorname{gr} \mathcal{A}_{\chi}=\overline{\mathcal{A}}_{\chi}$.

Vinberg's quantization problem

Given any $\chi \in \mathfrak{a}^{*}$, the Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\chi}$ of $S(\mathfrak{a})$ is a Poisson-commutative subalgebra.

Vinberg's problem: construct a commutative subalgebra
$\mathcal{A}_{\chi} \subset \mathrm{U}(\mathfrak{a})$ such that $\operatorname{gr} \mathcal{A}_{\chi}=\overline{\mathcal{A}}_{\chi}$.

A general solution: [Arakawa-Premet 2017]
following the approach of [Rybnikov 2006].

For $\chi \in \mathfrak{a}^{*}$ and any nonzero $z \in \mathbb{C}$ consider the homomorphism

$$
\rho: \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathbf{U}(\mathfrak{a})
$$

For $\chi \in \mathfrak{a}^{*}$ and any nonzero $z \in \mathbb{C}$ consider the homomorphism

$$
\begin{aligned}
\rho: \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{a}), \\
X[-1] \mapsto X z^{-1}+\chi(X), \quad X[r] \mapsto X z^{r}, \quad r<-1 .
\end{aligned}
$$

For $\chi \in \mathfrak{a}^{*}$ and any nonzero $z \in \mathbb{C}$ consider the homomorphism

$$
\begin{aligned}
\rho: \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{a}), \\
X[-1] \mapsto X z^{-1}+\chi(X), \quad X[r] \mapsto X z^{r}, \quad r<-1 .
\end{aligned}
$$

Since $\mathfrak{z}(\widehat{\mathfrak{a}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$, its image is a commutative subalgebra \mathcal{A}_{χ} of $\mathrm{U}(\mathfrak{a})$.

For $\chi \in \mathfrak{a}^{*}$ and any nonzero $z \in \mathbb{C}$ consider the homomorphism

$$
\begin{aligned}
\rho: \mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{a}), \\
X[-1] \mapsto X z^{-1}+\chi(X), \quad X[r] \mapsto X z^{r}, \quad r<-1 .
\end{aligned}
$$

Since $\mathfrak{z}(\widehat{\mathfrak{a}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{a}\left[t^{-1}\right]\right)$, its image is a commutative subalgebra \mathcal{A}_{χ} of $\mathrm{U}(\mathfrak{a})$.

It does not depend on z.

Apply the homomorphism ρ to the complete set $\phi_{k}^{(a)}$ of Segal-Sugawara vectors:

Apply the homomorphism ρ to the complete set $\phi_{k}^{(a)}$ of Segal-Sugawara vectors:

$$
\rho: \phi_{k}^{(a)} \mapsto \phi_{k(0)}^{(a)} z^{-k}+\cdots+\phi_{k(k-1)}^{(a)} z^{-1}+\phi_{k(k)}^{(a)} .
$$

Apply the homomorphism ρ to the complete set $\phi_{k}^{(a)}$ of Segal-Sugawara vectors:

$$
\rho: \phi_{k}^{(a)} \mapsto \phi_{k(0)}^{(a)} z^{-k}+\cdots+\phi_{k(k-1)}^{(a)} z^{-1}+\phi_{k(k)}^{(a)} .
$$

Corollary. The elements $\phi_{k(m)}^{(a)} \in \mathrm{U}(\mathfrak{a})$ with $k=1, \ldots, n$,

$$
\lambda_{n-k+2}+\cdots+\lambda_{n}<a+k \leqslant \lambda_{n-k+1}+\cdots+\lambda_{n},
$$

and $m=0, \ldots, k-1$ generate the subalgebra \mathcal{A}_{χ} of $\mathrm{U}(\mathfrak{a})$.

Apply the homomorphism ρ to the complete set $\phi_{k}^{(a)}$ of Segal-Sugawara vectors:

$$
\rho: \phi_{k}^{(a)} \mapsto \phi_{k(0)}^{(a)} z^{-k}+\cdots+\phi_{k(k-1)}^{(a)} z^{-1}+\phi_{k(k)}^{(a)} .
$$

Corollary. The elements $\phi_{k(m)}^{(a)} \in \mathrm{U}(\mathfrak{a})$ with $k=1, \ldots, n$,

$$
\lambda_{n-k+2}+\cdots+\lambda_{n}<a+k \leqslant \lambda_{n-k+1}+\cdots+\lambda_{n},
$$

and $m=0, \ldots, k-1$ generate the subalgebra \mathcal{A}_{χ} of $\mathrm{U}(\mathfrak{a})$.

Moreover, if $\chi \in \mathfrak{a}^{*}$ is regular, then this family is algebraically independent and gr $\mathcal{A}_{\chi}=\overline{\mathcal{A}}_{\chi}$.

