Alexander Molev

University of Sydney

Let V be a vector space over \mathbb{C} .

Let *V* be a vector space over \mathbb{C} .

A series of the form

$$c(z) = \sum_{n \in \mathbb{Z}} c_n z^{-n-1} \in \operatorname{End} V[[z, z^{-1}]]$$

is called a field, if for any $v \in V$ there exists an integer $N \ge 0$

such that $c_n v = 0$ for all $n \ge N$.

Let *V* be a vector space over \mathbb{C} .

A series of the form

$$c(z) = \sum_{n \in \mathbb{Z}} c_n z^{-n-1} \in \operatorname{End} V[[z, z^{-1}]]$$

is called a field, if for any $v \in V$ there exists an integer $N \ge 0$

such that $c_n v = 0$ for all $n \ge N$.

Equivalently, the series c(z)v contains finitely many negative powers of z for any $v \in V$.

the additional data (Y, T, 1), where

the additional data (Y, T, 1), where

1 is the vacuum vector $1 \in V$,

the additional data (Y, T, 1), where

1 is the vacuum vector $1 \in V$,

the translation *T* is an operator $T: V \rightarrow V$ and

the additional data (Y, T, 1), where

1 is the vacuum vector $1 \in V$,

the translation T is an operator $T: V \rightarrow V$ and

the state-field correspondence Y is a linear map

 $Y: V \to \operatorname{End} V[[z, z^{-1}]]$

such that the image of any element $a \in V$ is a field, $Y : a \mapsto a(z)$,

$$a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \qquad a_{(n)} \in \operatorname{End} V.$$

▶ $1(z) = id_V$,

- ▶ $\mathbf{1}(z) = \mathrm{id}_V$,
- $a(z)\mathbf{1}$ is a power series and $a(z)\mathbf{1}|_{z=0} = a$ for any a,

- ► $1(z) = id_V$,
- $a(z)\mathbf{1}$ is a power series and $a(z)\mathbf{1}|_{z=0} = a$ for any a,
- ▶ $T\mathbf{1} = 0$,

- ▶ $1(z) = id_V$,
- $a(z)\mathbf{1}$ is a power series and $a(z)\mathbf{1}|_{z=0} = a$ for any a,
- $\blacktriangleright T\mathbf{1}=0,$
- $[T, a(z)] = \partial_z a(z)$ for each $a \in V$,

- ► $\mathbf{1}(z) = \mathrm{id}_V$,
- $a(z)\mathbf{1}$ is a power series and $a(z)\mathbf{1}|_{z=0} = a$ for any a,
- $\blacktriangleright T\mathbf{1}=0,$
- $[T, a(z)] = \partial_z a(z)$ for each $a \in V$,
- For any states a, b ∈ V there exists a nonnegative integer N such that (z − w)^N [a(z), b(w)] = 0.

The field a(z) is often written as a(z) = Y(a, z), and

The field a(z) is often written as a(z) = Y(a, z), and

the maps $a_{(n)}: V \to V$ are called the Fourier coefficients of a(z).

The field a(z) is often written as a(z) = Y(a, z), and

the maps $a_{(n)}: V \to V$ are called the Fourier coefficients of a(z).

The span in End *V* of all Fourier coefficients $a_{(n)}$ of all fields a(z) is a Lie subalgebra of End *V*.

The field a(z) is often written as a(z) = Y(a, z), and

the maps $a_{(n)}: V \to V$ are called the Fourier coefficients of a(z).

The span in End *V* of all Fourier coefficients $a_{(n)}$ of all fields a(z) is a Lie subalgebra of End *V*.

The commutator is given by

$$\left[a_{(m)}, b_{(k)}\right] = \sum_{n \ge 0} \binom{m}{n} \left(a_{(n)} b\right)_{(m+k-n)}$$

The center of a vertex algebra V is the subspace

 $\mathfrak{z}(V) = \{ b \in V \mid a_{(n)}b = 0 \quad \text{for all} \quad a \in V \text{ and all } n \ge 0 \}.$

The center of a vertex algebra V is the subspace

 $\mathfrak{z}(V) = \{ b \in V \mid a_{(n)}b = 0 \quad \text{for all} \quad a \in V \text{ and all } n \ge 0 \}.$

Equivalently, $b \in \mathfrak{z}(V)$ if and only if [a(z), b(w)] = 0 for all $a \in V$.

The center of a vertex algebra V is the subspace

 $\mathfrak{z}(V) = \{ b \in V \mid a_{(n)}b = 0 \quad \text{for all} \quad a \in V \text{ and all } n \ge 0 \}.$

Equivalently, $b \in \mathfrak{z}(V)$ if and only if [a(z), b(w)] = 0 for all $a \in V$.

The equivalence is implied by the commutator formula.

The center of a vertex algebra V is the subspace

 $\mathfrak{z}(V) = \{ b \in V \mid a_{(n)}b = 0 \quad \text{for all} \quad a \in V \text{ and all} \quad n \ge 0 \}.$

Equivalently, $b \in \mathfrak{z}(V)$ if and only if [a(z), b(w)] = 0 for all $a \in V$.

The equivalence is implied by the commutator formula.

Proposition. The center $\mathfrak{z}(V)$ of any vertex algebra *V* is a unital commutative associative algebra with respect to the product $ab := a_{(-1)}b$.

6

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$.

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$.

Fix $\kappa \in \mathbb{C}$ and introduce the vector space $V_{\kappa}(\mathfrak{g})$ as the quotient of the universal enveloping algebra $U(\widehat{\mathfrak{g}})$:

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$.

Fix $\kappa \in \mathbb{C}$ and introduce the vector space $V_{\kappa}(\mathfrak{g})$ as the quotient of the universal enveloping algebra $U(\hat{\mathfrak{g}})$:

$$V_{\kappa}(\mathfrak{g}) = \mathrm{U}(\widehat{\mathfrak{g}})/\mathrm{U}(\widehat{\mathfrak{g}}) \big(\mathfrak{g}[t] + \mathbb{C} \left(K - \kappa
ight) ig).$$

Consider the affine Kac–Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$.

Fix $\kappa \in \mathbb{C}$ and introduce the vector space $V_{\kappa}(\mathfrak{g})$ as the quotient of the universal enveloping algebra $U(\hat{\mathfrak{g}})$:

$$V_{\kappa}(\mathfrak{g}) = \mathrm{U}(\widehat{\mathfrak{g}})/\mathrm{U}(\widehat{\mathfrak{g}})(\mathfrak{g}[t] + \mathbb{C}(K - \kappa)).$$

We view $V_{\kappa}(\mathfrak{g})$ as a $\widehat{\mathfrak{g}}$ -module. It is called

the vacuum module of level κ .

• $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

• $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1.

• $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1. For $X \in \mathfrak{g}$ write $X[r] = X t^r$. Then

• $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1. For $X \in \mathfrak{g}$ write $X[r] = X t^r$. Then

 $T: 1 \mapsto 0, \quad [T, X[r]] = -rX[r-1].$

• $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1. For $X \in \mathfrak{g}$ write $X[r] = X t^r$. Then

$$T: 1 \mapsto 0, \quad [T, X[r]] = -rX[r-1].$$

The state-field correspondence Y is defined as follows. First,

$$Y(X[-1], z) = \sum_{r \in \mathbb{Z}} X[r] z^{-r-1} =: X(z).$$

For any $r_i \ge 0$ we have

$$Y(X_1[-r_1-1]...X_m[-r_m-1],z) = \frac{1}{r_1!...r_m!} : \partial_z^{r_1} X_1(z)...\partial_z^{r_m} X_m(z) :,$$

with the convention that the normally ordered product is read from right to left;

For any $r_i \ge 0$ we have

$$Y(X_1[-r_1-1]...X_m[-r_m-1],z) = \frac{1}{r_1!...r_m!} : \partial_z^{r_1} X_1(z)...\partial_z^{r_m} X_m(z) :,$$

with the convention that the normally ordered product is read from right to left;

 $: a(z)b(w) := a(z)_{+}b(w) + b(w)a(z)_{-},$

For any $r_i \ge 0$ we have

$$Y(X_1[-r_1-1]...X_m[-r_m-1],z) = \frac{1}{r_1!...r_m!} : \partial_z^{r_1} X_1(z)...\partial_z^{r_m} X_m(z) :,$$

with the convention that the normally ordered product is read from right to left;

$$: a(z)b(w) := a(z)_{+}b(w) + b(w)a(z)_{-},$$

where

$$a(z)_{+} = \sum_{r < 0} a_{(r)} z^{-r-1}$$
 and $a(z)_{-} = \sum_{r \ge 0} a_{(r)} z^{-r-1}$.

If $\kappa \neq -h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with

the subspace of scalar multiples $\mathbb{C}1$ of the vacuum vector.

If $\kappa \neq -h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with

the subspace of scalar multiples $\mathbb{C}1$ of the vacuum vector.

From now on suppose $\kappa = -h^{\vee}$, the critical level and let

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{h^{\vee}}(\mathfrak{g})$.

If $\kappa \neq -h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C}1$ of the vacuum vector.

From now on suppose $\kappa = -h^{\vee}$, the critical level and let

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{-h^{\vee}}(\mathfrak{g})$.

Any element $S \in \mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector.

If $\kappa \neq -h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C}1$ of the vacuum vector.

From now on suppose $\kappa = -h^{\vee}$, the critical level and let

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{-h^{\vee}}(\mathfrak{g})$.

Any element $S \in \mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector. By definition, $\mathfrak{g}[t] S = 0$.

If $\kappa \neq -h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C}1$ of the vacuum vector.

From now on suppose $\kappa = -h^{\vee}$, the critical level and let

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{h^{\vee}}(\mathfrak{g})$.

Any element $S \in \mathfrak{z}(\hat{\mathfrak{g}})$ is called a Segal–Sugawara vector. By definition, $\mathfrak{g}[t] S = 0$.

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$ such that

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$ such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^r S_l \mid l = 1, \dots, n, \ r \ge 0],$$

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$ such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^r S_l \mid l = 1, \dots, n, \ r \ge 0],$$

where $n = \operatorname{rank} \mathfrak{g}$.

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$ such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^r S_l \mid l = 1, \dots, n, \ r \ge 0],$$

where $n = \operatorname{rank} \mathfrak{g}$.

 S_1, \ldots, S_n is a complete set of Segal–Sugawara vectors.

There exist elements $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$ such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^r S_l \mid l = 1, \dots, n, \ r \ge 0],$$

where $n = \operatorname{rank} \mathfrak{g}$.

 S_1, \ldots, S_n is a complete set of Segal–Sugawara vectors.

 $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called the Feigin–Frenkel center associated with \mathfrak{g} . Detailed exposition: [E. Frenkel, 2007]. Example. $\mathfrak{g} = \mathfrak{gl}_N$.

Example. $\mathfrak{g} = \mathfrak{gl}_N$.

Set $\tau = -\partial_t$ and consider the $N \times N$ matrix $\tau + E[-1]$ given by

$$\tau + E[-1] = \begin{bmatrix} \tau + E_{11}[-1] & E_{12}[-1] & \dots & E_{1N}[-1] \\ E_{21}[-1] & \tau + E_{22}[-1] & \dots & E_{2N}[-1] \\ \vdots & \vdots & \ddots & \vdots \\ E_{N1}[-1] & E_{N2}[-1] & \dots & \tau + E_{NN}[-1] \end{bmatrix}.$$

Theorem [Chervov–Talalaev, 2006, Chervov–M. 2009].

The coefficients ϕ_1, \ldots, ϕ_N of the polynomial

$$\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$$

form a complete set of Segal–Sugawara vectors in $V_{-N}(\mathfrak{gl}_N)$.

Theorem [Chervov–Talalaev, 2006, Chervov–M. 2009].

The coefficients ϕ_1, \ldots, ϕ_N of the polynomial

 $\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$

form a complete set of Segal–Sugawara vectors in $V_{-N}(\mathfrak{gl}_N)$.

Example. For N = 2 $\operatorname{cdet}(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]$ $= \tau^2 + \phi_1 \tau + \phi_2$ Theorem [Chervov–Talalaev, 2006, Chervov–M. 2009].

The coefficients ϕ_1, \ldots, ϕ_N of the polynomial

 $\operatorname{cdet}(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$

form a complete set of Segal–Sugawara vectors in $V_{-N}(\mathfrak{gl}_N)$.

Example. For
$$N = 2$$

 $\operatorname{cdet}(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]$
 $= \tau^2 + \phi_1 \tau + \phi_2$

with

$$\phi_1 = E_{11}[-1] + E_{22}[-1],$$

$$\phi_2 = E_{11}[-1]E_{22}[-1] - E_{21}[-1]E_{12}[-1] + E_{22}[-2].$$

Set

$$E[-1] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(t^{-1}\mathfrak{gl}_{N}[t^{-1}]).$$

Set

$$E[-1] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(t^{-1}\mathfrak{gl}_{N}[t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(t^{-1}\mathfrak{gl}_N[t^{-1}])$$

Set

$$E[-1] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}(t^{-1}\mathfrak{gl}_{N}[t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(t^{-1}\mathfrak{gl}_N[t^{-1}])$$

and let $H^{(m)}$ and $A^{(m)}$ denote the symmetrizer and

anti-symmetrizer in

$$\underbrace{\mathbb{C}^N\otimes\ldots\otimes\mathbb{C}^N}_{}.$$

$$\operatorname{tr}_{1,...,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

$$=\phi_{m0}\,\tau^m+\phi_{m1}\,\tau^{m-1}+\cdots+\phi_{mm},$$

$$tr_{1,...,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm},$

$$tr_{1,...,m} H^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm},$

$$tr_{1,...,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm},$

$$\operatorname{tr}_{1,\dots,m} H^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \psi_{m0} \, \tau^m + \psi_{m1} \, \tau^{m-1} + \dots + \psi_{mm},$$

$$\operatorname{tr} \left(\tau + E[-1]\right)^m = \theta_{m0} \, \tau^m + \theta_{m1} \, \tau^{m-1} + \dots + \theta_{mm}$$

$$tr_{1,...,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm},$

$$\operatorname{tr}_{1,\dots,m} H^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \psi_{m0} \, \tau^m + \psi_{m1} \, \tau^{m-1} + \dots + \psi_{mm},$$

$$\operatorname{tr} \left(\tau + E[-1]\right)^m = \theta_{m0} \, \tau^m + \theta_{m1} \, \tau^{m-1} + \dots + \theta_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

Moreover, each family

$\psi_{11},\ldots,\psi_{NN}$ and $\theta_{11},\ldots,\theta_{NN}$

is a complete set of Segal–Sugawara vectors for \mathfrak{gl}_N .

Moreover, each family

$\psi_{11},\ldots,\psi_{NN}$ and $\theta_{11},\ldots,\theta_{NN}$

is a complete set of Segal–Sugawara vectors for \mathfrak{gl}_N .

This follows from the MacMahon Master Theorem and the Newton identity for the matrix $\tau + E[-1]$.

Moreover, each family

$\psi_{11},\ldots,\psi_{NN}$ and $\theta_{11},\ldots,\theta_{NN}$

is a complete set of Segal–Sugawara vectors for \mathfrak{gl}_N .

This follows from the MacMahon Master Theorem and the

Newton identity for the matrix $\tau + E[-1]$.

Extension to types B_n , C_n , D_n and G_2 :

[M. 2013], [M.–Ragoucy–Rozhkovskaya, 2016].

The double Yangian $DY(\mathfrak{gl}_N)$ is a deformation of $U(\widehat{\mathfrak{gl}}_N)$ in the

class of Hopf algebras.

The double Yangian $DY(\mathfrak{gl}_N)$ is a deformation of $U(\widehat{\mathfrak{gl}}_N)$ in the class of Hopf algebras.

The algebra $DY(\mathfrak{gl}_N)$ is generated by the central element *C* and elements $t_{ij}^{(r)}$ and $t_{ij}^{(-r)}$, where $1 \le i, j \le N$ and r = 1, 2, ...

The double Yangian $DY(\mathfrak{gl}_N)$ is a deformation of $U(\widehat{\mathfrak{gl}}_N)$ in the class of Hopf algebras.

The algebra $DY(\mathfrak{gl}_N)$ is generated by the central element *C* and elements $t_{ij}^{(r)}$ and $t_{ij}^{(-r)}$, where $1 \le i, j \le N$ and r = 1, 2, ...

The defining relations are written in terms of the series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r}$$

The double Yangian $DY(\mathfrak{gl}_N)$ is a deformation of $U(\widehat{\mathfrak{gl}}_N)$ in the class of Hopf algebras.

The algebra $DY(\mathfrak{gl}_N)$ is generated by the central element *C* and elements $t_{ij}^{(r)}$ and $t_{ij}^{(-r)}$, where $1 \le i, j \le N$ and r = 1, 2, ...

The defining relations are written in terms of the series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r}$$

and

$$t_{ij}^+(u) = \delta_{ij} - \sum_{r=1}^\infty t_{ij}^{(-r)} u^{r-1}.$$

The defining relations are

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v),$$

$$R(u - v) T_1^+(u) T_2^+(v) = T_2^+(v) T_1^+(u) R(u - v),$$

$$\overline{R}(u - v) T_1^+(v) T_2^+(v) = T_2^+(v) T_1^+(v) T$$

$$\overline{R}(u-v+C/2) T_1(u) T_2^+(v) = T_2^+(v) T_1(u) \overline{R}(u-v-C/2),$$

The defining relations are

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v),$$

$$R(u-v) T_1^+(u) T_2^+(v) = T_2^+(v) T_1^+(u) R(u-v),$$

$$\overline{R}(u-v+C/2) T_1(u) T_2^+(v) = T_2^+(v) T_1(u) \overline{R}(u-v-C/2),$$

where the coefficients of powers of u, v belong to

End $\mathbb{C}^N \otimes$ End $\mathbb{C}^N \otimes$ DY (\mathfrak{gl}_N)

and

$$T(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t_{ij}(u)$$
 and $T^+(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t^+_{ij}(u).$

Here R(u) is the Yang *R*-matrix,

$$R(u)=1-P\,u^{-1},$$

where *P* is the permutation operator in $\mathbb{C}^N \otimes \mathbb{C}^N$.

Here R(u) is the Yang *R*-matrix,

 $R(u)=1-P\,u^{-1},$

where *P* is the permutation operator in $\mathbb{C}^N \otimes \mathbb{C}^N$.

We also use the normalized *R*-matrix

 $\overline{R}(u) = g(u) R(u),$

Here R(u) is the Yang *R*-matrix,

$$R(u)=1-P\,u^{-1},$$

where *P* is the permutation operator in $\mathbb{C}^N \otimes \mathbb{C}^N$.

We also use the normalized *R*-matrix

 $\overline{R}(u) = g(u) R(u),$

where

$$g(u) = 1 + \sum_{i=1}^{\infty} g_i u^{-i}, \qquad g_i \in \mathbb{C},$$

is uniquely determined by the relation

$$g(u+N) = g(u) (1 - u^{-2}).$$

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$.

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$.

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}(\mathfrak{gl}_N)$.

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}(\mathfrak{gl}_N)$.

Proposition. The assignments

$$E_{ij}[r-1] \mapsto \overline{t}_{ij}^{(r)}, \qquad E_{ij}[-r] \mapsto \overline{t}_{ij}^{(-r)} \qquad \text{and} \qquad K \mapsto \overline{C}$$

with $r \ge 1$

$$\deg t_{ij}^{(r)} = r - 1$$
 and $\deg t_{ij}^{(-r)} = -r$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}(\mathfrak{gl}_N)$.

Proposition. The assignments

$$E_{ij}[r-1] \mapsto \overline{t}_{ij}^{(r)}, \qquad E_{ij}[-r] \mapsto \overline{t}_{ij}^{(-r)} \qquad ext{and} \qquad K \mapsto \overline{C}$$

with $r \ge 1$ define an algebra isomorphism

 $\mathrm{U}(\widehat{\mathfrak{gl}}_N) \to \operatorname{gr}\mathrm{DY}(\mathfrak{gl}_N).$

$$\mathcal{V}_c(\mathfrak{gl}_N) = \mathrm{DY}(\mathfrak{gl}_N)/\mathrm{DY}(\mathfrak{gl}_N)\langle C-c, \ t_{ij}^{(r)} \ | \ r \geqslant 1
angle.$$

$$\mathcal{V}_c(\mathfrak{gl}_N) = \mathrm{DY}(\mathfrak{gl}_N)/\mathrm{DY}(\mathfrak{gl}_N)\langle C-c, t_{ii}^{(r)} | r \ge 1 \rangle.$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $Y^+(\mathfrak{gl}_N)$, which is the subalgebra of $DY(\mathfrak{gl}_N)$ generated by the elements $t_{ij}^{(-r)}$.

$$\mathcal{V}_c(\mathfrak{gl}_N) = \mathrm{DY}(\mathfrak{gl}_N)/\mathrm{DY}(\mathfrak{gl}_N)\langle C-c, t_{ii}^{(r)} | r \ge 1 \rangle.$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $Y^+(\mathfrak{gl}_N)$, which is the subalgebra of $DY(\mathfrak{gl}_N)$ generated by the elements $t_{ij}^{(-r)}$.

Assume the level is critical, c = -N.

$$\mathcal{V}_c(\mathfrak{gl}_N) = \mathrm{DY}(\mathfrak{gl}_N)/\mathrm{DY}(\mathfrak{gl}_N)\langle C-c, t_{ij}^{(r)} | r \ge 1 \rangle.$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $Y^+(\mathfrak{gl}_N)$, which is the subalgebra of $DY(\mathfrak{gl}_N)$ generated by the elements $t_{ij}^{(-r)}$.

Assume the level is critical, c = -N.

Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}(\mathfrak{gl}_N)$ by the descending filtration defined by setting the degree of $t_{ii}^{(-r)}$ to be *r*.

Introduce the subspace of invariants by

$$\mathfrak{z}(\widehat{\mathcal{V}}) = \{ v \in \widehat{\mathcal{V}} \mid t_{ij}(u) v = \delta_{ij} v \},\$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{ij}^{(r)}$ with $r \ge 1$.

Introduce the subspace of invariants by

$$\mathfrak{z}(\widehat{\mathcal{V}}) = \{ v \in \widehat{\mathcal{V}} \mid t_{ij}(u) v = \delta_{ij} v \},\$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{ii}^{(r)}$ with $r \ge 1$.

Proposition. $\mathfrak{z}(\widehat{\mathcal{V}})$ is a commutative subalgebra of the completed dual Yangian $\mathbf{Y}^+(\mathfrak{gl}_N)$.

Introduce the subspace of invariants by

$$\mathfrak{z}(\widehat{\mathcal{V}}) = \{ v \in \widehat{\mathcal{V}} \mid t_{ij}(u) v = \delta_{ij} v \},\$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{ij}^{(r)}$ with $r \ge 1$.

Proposition. $\mathfrak{z}(\widehat{\mathcal{V}})$ is a commutative subalgebra of the completed dual Yangian $Y^+(\mathfrak{gl}_N)$.

 $\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

We will work with the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \widehat{\mathcal{V}}$$

We will work with the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \widehat{\mathcal{V}}$$

and introduce the rational function in variables u_1, \ldots, u_m by

$$R(u_1,\ldots,u_m)=\prod_{1\leqslant a < b\leqslant m}R_{ab}(u_a-u_b),$$

We will work with the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \widehat{\mathcal{V}}$$

and introduce the rational function in variables u_1, \ldots, u_m by

$$R(u_1,\ldots,u_m)=\prod_{1\leqslant a\leqslant b\leqslant m}R_{ab}(u_a-u_b),$$

the product is in the lexicographical order on the pairs (a, b).

For a standard μ -tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ introduce the contents $c_a = c_a(\mathcal{U})$ for $a = 1, \ldots, m$ so that $c_a = j - i$ if aoccupies the box (i, j) in \mathcal{U} .

For a standard μ -tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ introduce the contents $c_a = c_a(\mathcal{U})$ for $a = 1, \ldots, m$ so that $c_a = j - i$ if aoccupies the box (i, j) in \mathcal{U} .

Let $e_{\mathcal{U}} \in \mathbb{C}[\mathfrak{S}_m]$ be the associated primitive idempotent.

For a standard μ -tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ introduce the contents $c_a = c_a(\mathcal{U})$ for $a = 1, \ldots, m$ so that $c_a = j - i$ if aoccupies the box (i, j) in \mathcal{U} .

Let $e_{\mathcal{U}} \in \mathbb{C}[\mathfrak{S}_m]$ be the associated primitive idempotent.

The symmetric group \mathfrak{S}_m acts by permuting the tensor factors in $(\mathbb{C}^N)^{\otimes m}$. Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=h(\mu)\,\mathcal{E}_{\mathcal{U}},$$

where $h(\mu)$ is the product of all hook lengths of the boxes of μ .

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=h(\mu)\,\mathcal{E}_{\mathcal{U}},$$

where $h(\mu)$ is the product of all hook lengths of the boxes of μ .

In the tensor product algebra set

$$\mathbb{T}^+_{\mu}(u) = \operatorname{tr}_{1,\dots,m} \mathcal{E}_{\mathcal{U}} T^+_1(u+c_1)\dots T^+_m(u+c_m).$$

$$R(u_1,\ldots,u_m)\big|_{u_1=c_1}\big|_{u_2=c_2}\ldots\big|_{u_m=c_m}=h(\mu)\,\mathcal{E}_{\mathcal{U}},$$

where $h(\mu)$ is the product of all hook lengths of the boxes of μ .

In the tensor product algebra set

$$\mathbb{T}^+_{\mu}(u) = \operatorname{tr}_{1,\dots,m} \mathcal{E}_{\mathcal{U}} T^+_1(u+c_1) \dots T^+_m(u+c_m).$$

This is a power series in *u* independent of \mathcal{U} , whose coefficients are elements of the completed vacuum module $\widehat{\mathcal{V}}$.

Theorem [Jing-Kožić-M.-Yang, 2018].

Theorem [Jing-Kožić-M.-Yang, 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Theorem [Jing–Kožić–M.–Yang, 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

A key point in the proof is the identity

 $R(u_1,\ldots,u_m)T_1^+(u_1)\ldots T_m^+(u_m)=T_m^+(u_m)\ldots T_1^+(u_1)R(u_1,\ldots,u_m),$

Theorem [Jing–Kožić–M.–Yang, 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

A key point in the proof is the identity

 $R(u_1,\ldots,u_m)T_1^+(u_1)\ldots T_m^+(u_m)=T_m^+(u_m)\ldots T_1^+(u_1)R(u_1,\ldots,u_m),$

and its consequence implied by the fusion procedure:

Theorem [Jing–Kožić–M.–Yang, 2018].

All coefficients of the series $\mathbb{T}^+_{\mu}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

A key point in the proof is the identity

 $R(u_1,\ldots,u_m)T_1^+(u_1)\ldots T_m^+(u_m)=T_m^+(u_m)\ldots T_1^+(u_1)R(u_1,\ldots,u_m),$

and its consequence implied by the fusion procedure:

$$\mathcal{E}_{\mathcal{U}}T_1^+(u+c_1)\ldots T_m^+(u+c_m)=T_m^+(u+c_m)\ldots T_1^+(u+c_1)\mathcal{E}_{\mathcal{U}}.$$

Application: quantum immanants

Application: quantum immanants

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^N \otimes \operatorname{U}(\mathfrak{gl}_N).$$

Application: quantum immanants

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}).$$

By replacing $T^+(u) \rightsquigarrow u + E$ and then setting u = 0, we recover the quantum immanants:

Application: quantum immanants

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}).$$

By replacing $T^+(u) \rightsquigarrow u + E$ and then setting u = 0, we recover the quantum immanants:

$$\mathbb{S}_{\mu} = \operatorname{tr}_{1,\ldots,m} \mathcal{E}_{\mathcal{U}} \left(E_1 + c_1 \right) \ldots \left(E_m + c_m \right).$$

Application: quantum immanants

Introduce the matrix

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}).$$

By replacing $T^+(u) \rightsquigarrow u + E$ and then setting u = 0, we recover the quantum immanants:

$$\mathbb{S}_{\mu} = \operatorname{tr}_{1,\ldots,m} \mathcal{E}_{\mathcal{U}} \left(E_1 + c_1 \right) \ldots \left(E_m + c_m \right).$$

Theorem [Okounkov, 1996]. The quantum immanants \mathbb{S}_{μ} form a basis of the center of $U(\mathfrak{gl}_N)$.

Take the particular case of column diagram $\mu = (1^m)$.

Take the particular case of column diagram $\mu = (1^m)$.

We have $\mathcal{E}_{\mathcal{U}} = A^{(m)}$, the anti-symmetrizer.

Take the particular case of column diagram $\mu = (1^m)$.

We have $\mathcal{E}_{\mathcal{U}} = A^{(m)}$, the anti-symmetrizer.

Hence all coefficients of the polynomial

$$tr_{1,...,m} A^{(m)} T_1^+(u) \dots T_m^+(u-m+1)$$

= $tr_{1,...,m} A^{(m)} T_1^+(u) e^{-\partial_u} \dots T_m^+(u) e^{-\partial_u} \cdot e^{m\partial_u}$

belong to $\mathfrak{z}(\widehat{\mathcal{V}})$.

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]].$

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]]$. The element

$$\operatorname{tr}_{1,...,m} A^{(m)} (1 - T_1^+(u) e^{-\partial_u}) \dots (1 - T_m^+(u) e^{-\partial_u})$$

has degree -m

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]]$. The element

$$\operatorname{tr}_{1,...,m} A^{(m)} (1 - T_1^+(u) e^{-\partial_u}) \dots (1 - T_m^+(u) e^{-\partial_u})$$

has degree -m and its symbol coincides with

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

 $Y^+(\mathfrak{gl}_N)[[u,\partial_u]]$ by deg u = 1 and deg $\partial_u = -1$.

The associated graded is isomorphic to $U(t^{-1}\mathfrak{gl}_N[t^{-1}])[[u, \partial_u]]$. The element

$$\operatorname{tr}_{1,...,m} A^{(m)} (1 - T_1^+(u) e^{-\partial_u}) \dots (1 - T_m^+(u) e^{-\partial_u})$$

has degree -m and its symbol coincides with

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

where,

$$E(u)_{+} = \sum_{r=1}^{\infty} E[-r]u^{r-1}.$$

 ∞

By taking the coefficients of u^0 in

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

By taking the coefficients of u^0 in

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

we recover the differential operator in $\tau = -\partial_t$:

$$tr_{1,...,m}A^{(m)}(\tau + E[-1]_1)\dots(\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$.

By taking the coefficients of u^0 in

$$\operatorname{tr}_{1,\ldots,m}A^{(m)}(\partial_u + E(u)_{+1})\ldots(\partial_u + E(u)_{+m}),$$

we recover the differential operator in $\tau = -\partial_t$:

$$\operatorname{tr}_{1,\dots,m} A^{(m)} \left(\tau + E[-1]_1 \right) \dots \left(\tau + E[-1]_m \right)$$
$$= \phi_{m0} \, \tau^m + \phi_{m1} \, \tau^{m-1} + \dots + \phi_{mm}.$$

A similar calculation works for the row-diagram $\mu = (m)$, but no Segal–Sugawara vectors are known for arbitrary μ .