Centers of vertex algebras

Alexander Molev

University of Sydney

Vertex algebras

Vertex algebras

Let V be a vector space over \mathbb{C}.

Vertex algebras

Let V be a vector space over \mathbb{C}.

A series of the form

$$
c(z)=\sum_{n \in \mathbb{Z}} c_{n} z^{-n-1} \in \text { End } V\left[\left[z, z^{-1}\right]\right]
$$

is called a field, if for any $v \in V$ there exists an integer $N \geqslant 0$
such that $c_{n} v=0$ for all $n \geqslant N$.

Vertex algebras

Let V be a vector space over \mathbb{C}.

A series of the form

$$
c(z)=\sum_{n \in \mathbb{Z}} c_{n} z^{-n-1} \in \text { End } V\left[\left[z, z^{-1}\right]\right]
$$

is called a field, if for any $v \in V$ there exists an integer $N \geqslant 0$
such that $c_{n} v=0$ for all $n \geqslant N$.

Equivalently, the series $c(z) v$ contains finitely many negative powers of z for any $v \in V$.

A vertex algebra is a vector space V (the space of states) with the additional data $(Y, T, \mathbf{1})$, where

A vertex algebra is a vector space V (the space of states) with the additional data $(Y, T, \mathbf{1})$, where
$\mathbf{1}$ is the vacuum vector $\mathbf{1} \in V$,

A vertex algebra is a vector space V (the space of states) with the additional data $(Y, T, \mathbf{1})$, where
$\mathbf{1}$ is the vacuum vector $\mathbf{1} \in V$,
the translation T is an operator $T: V \rightarrow V$ and

A vertex algebra is a vector space V (the space of states) with the additional data $(Y, T, \mathbf{1})$, where
$\mathbf{1}$ is the vacuum vector $\mathbf{1} \in V$,
the translation T is an operator $T: V \rightarrow V$ and
the state-field correspondence Y is a linear map

$$
Y: V \rightarrow \operatorname{End} V\left[\left[z, z^{-1}\right]\right]
$$

such that the image of any element $a \in V$ is a field, $Y: a \mapsto a(z)$,

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}, \quad a_{(n)} \in \text { End } V
$$

These data must satisfy the following axioms:

These data must satisfy the following axioms:

- $\mathbf{1}(z)=\mathrm{id}_{V}$,

These data must satisfy the following axioms:

- $\mathbf{1}(z)=\mathrm{id}_{V}$,
- $a(z) \mathbf{1}$ is a power series and $\left.a(z)\right|_{z=0}=a$ for any a,

These data must satisfy the following axioms:

- $\mathbf{1}(z)=\mathrm{id}_{V}$,
- $a(z) \mathbf{1}$ is a power series and $\left.a(z)\right|_{z=0}=a$ for any a,
- $T \mathbf{1}=0$,

These data must satisfy the following axioms:

- $\mathbf{1}(z)=\mathrm{id}_{V}$,
- $a(z) \mathbf{1}$ is a power series and $\left.a(z)\right|_{z=0}=a$ for any a,
- $T \mathbf{1}=0$,
- $[T, a(z)]=\partial_{z} a(z)$ for each $a \in V$,

These data must satisfy the following axioms:

- $\mathbf{1}(z)=\mathrm{id}_{V}$,
- $a(z) \mathbf{1}$ is a power series and $\left.a(z)\right|_{z=0}=a$ for any a,
- $T \mathbf{1}=0$,
- $[T, a(z)]=\partial_{z} a(z)$ for each $a \in V$,
- for any states $a, b \in V$ there exists a nonnegative integer N such that $(z-w)^{N}[a(z), b(w)]=0$.

Properties

Properties

The field $a(z)$ is often written as $a(z)=Y(a, z)$, and

Properties

The field $a(z)$ is often written as $a(z)=Y(a, z)$, and the maps $a_{(n)}: V \rightarrow V$ are called the Fourier coefficients of $a(z)$.

Properties

The field $a(z)$ is often written as $a(z)=Y(a, z)$, and the maps $a_{(n)}: V \rightarrow V$ are called the Fourier coefficients of $a(z)$.

The span in End V of all Fourier coefficients $a_{(n)}$ of all fields $a(z)$ is a Lie subalgebra of End V.

Properties

The field $a(z)$ is often written as $a(z)=Y(a, z)$, and the maps $a_{(n)}: V \rightarrow V$ are called the Fourier coefficients of $a(z)$.

The span in End V of all Fourier coefficients $a_{(n)}$ of all fields $a(z)$ is a Lie subalgebra of End V.

The commutator is given by

$$
\left[a_{(m)}, b_{(k)}\right]=\sum_{n \geqslant 0}\binom{m}{n}\left(a_{(n)} b\right)_{(m+k-n)}
$$

Center of a vertex algebra

Center of a vertex algebra

The center of a vertex algebra V is the subspace

$$
\mathfrak{z}(V)=\left\{b \in V \mid a_{(n)} b=0 \quad \text { for all } \quad a \in V \quad \text { and all } \quad n \geqslant 0\right\} .
$$

Center of a vertex algebra

The center of a vertex algebra V is the subspace

$$
\mathfrak{z}(V)=\left\{b \in V \mid a_{(n)} b=0 \quad \text { for all } \quad a \in V \quad \text { and all } \quad n \geqslant 0\right\} .
$$

Equivalently, $b \in \mathfrak{z}(V)$ if and only if $[a(z), b(w)]=0$ for all $a \in V$.

Center of a vertex algebra

The center of a vertex algebra V is the subspace

$$
\mathfrak{z}(V)=\left\{b \in V \mid a_{(n)} b=0 \quad \text { for all } \quad a \in V \quad \text { and all } \quad n \geqslant 0\right\} .
$$

Equivalently, $b \in \mathfrak{z}(V)$ if and only if $[a(z), b(w)]=0$ for all $a \in V$.

The equivalence is implied by the commutator formula.

Center of a vertex algebra

The center of a vertex algebra V is the subspace

$$
\mathfrak{z}(V)=\left\{b \in V \mid a_{(n)} b=0 \quad \text { for all } \quad a \in V \quad \text { and all } \quad n \geqslant 0\right\} .
$$

Equivalently, $b \in \mathfrak{z}(V)$ if and only if $[a(z), b(w)]=0$ for all $a \in V$.

The equivalence is implied by the commutator formula.

Proposition. The center $\mathfrak{z}(V)$ of any vertex algebra V is
a unital commutative associative algebra with respect to the product $a b:=a_{(-1)} b$.

Affine vertex algebras

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$.

Affine vertex algebras

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$.
Fix $\kappa \in \mathbb{C}$ and introduce the vector space $V_{\kappa}(\mathfrak{g})$ as the quotient of the universal enveloping algebra $\mathrm{U}(\widehat{\mathfrak{g}})$:

Affine vertex algebras

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$.
Fix $\kappa \in \mathbb{C}$ and introduce the vector space $V_{\kappa}(\mathfrak{g})$ as the quotient of the universal enveloping algebra $\mathrm{U}(\widehat{\mathfrak{g}})$:

$$
V_{\kappa}(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{U}(\widehat{\mathfrak{g}})(\mathfrak{g}[t]+\mathbb{C}(K-\kappa)) .
$$

Affine vertex algebras

Consider the affine Kac-Moody algebra $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$.
Fix $\kappa \in \mathbb{C}$ and introduce the vector space $V_{\kappa}(\mathfrak{g})$ as the quotient of the universal enveloping algebra $\mathrm{U}(\widehat{\mathfrak{g}})$:

$$
V_{\kappa}(\mathfrak{g})=\mathrm{U}(\widehat{\mathfrak{g}}) / \mathrm{U}(\widehat{\mathfrak{g}})(\mathfrak{g}[t]+\mathbb{C}(K-\kappa)) .
$$

We view $V_{k}(\mathfrak{g})$ as a $\widehat{\mathfrak{g}}$-module. It is called the vacuum module of level κ.

As a vector space, $V_{\kappa}(\mathfrak{g})$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

As a vector space, $V_{\kappa}(\mathfrak{g})$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

- $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

As a vector space, $V_{\kappa}(\mathfrak{g})$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

- $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1 .

As a vector space, $V_{\kappa}(\mathfrak{g})$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

- $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1 . For $X \in \mathfrak{g}$ write $X[r]=X t^{r}$. Then

As a vector space, $V_{\kappa}(\mathfrak{g})$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

- $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1 . For $X \in \mathfrak{g}$ write $X[r]=X t^{r}$. Then

$$
T: 1 \mapsto 0, \quad[T, X[r]]=-r X[r-1] .
$$

As a vector space, $V_{\kappa}(\mathfrak{g})$ will be identified with $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

- $V_{\kappa}(\mathfrak{g})$ is a vertex algebra.

The vacuum vector is 1 . For $X \in \mathfrak{g}$ write $X[r]=X t^{r}$. Then

$$
T: 1 \mapsto 0, \quad[T, X[r]]=-r X[r-1] .
$$

The state-field correspondence Y is defined as follows. First,

$$
Y(X[-1], z)=\sum_{r \in \mathbb{Z}} X[r] z^{-r-1}=: X(z)
$$

For any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
Y\left(X _ { 1 } [- r _ { 1 } - 1] \ldots X _ { m } \left[-r_{m}\right.\right. & -1], z) \\
& =\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} X_{1}(z) \ldots \partial_{z}^{r_{m}} X_{m}(z):
\end{aligned}
$$

with the convention that the normally ordered product is read
from right to left;

For any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
Y\left(X _ { 1 } [- r _ { 1 } - 1] \ldots X _ { m } \left[-r_{m}\right.\right. & -1], z) \\
& =\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} X_{1}(z) \ldots \partial_{z}^{r_{m}} X_{m}(z):
\end{aligned}
$$

with the convention that the normally ordered product is read
from right to left;

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-}
$$

For any $r_{i} \geqslant 0$ we have

$$
\begin{aligned}
Y\left(X _ { 1 } [- r _ { 1 } - 1] \ldots X _ { m } \left[-r_{m}\right.\right. & -1], z) \\
& =\frac{1}{r_{1}!\ldots r_{m}!}: \partial_{z}^{r_{1}} X_{1}(z) \ldots \partial_{z}^{r_{m}} X_{m}(z):
\end{aligned}
$$

with the convention that the normally ordered product is read from right to left;

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-}
$$

where

$$
a(z)_{+}=\sum_{r<0} a_{(r)} z^{-r-1} \quad \text { and } \quad a(z)_{-}=\sum_{r \geqslant 0} a_{(r)} z^{-r-1} .
$$

The center of $V_{\kappa}(\mathfrak{g})$

The center of $V_{\kappa}(\mathfrak{g})$

If $\kappa \neq-h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C} 1$ of the vacuum vector.

The center of $V_{\kappa}(\mathfrak{g})$

If $\kappa \neq-h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C} 1$ of the vacuum vector.

From now on suppose $\kappa=-h^{\vee}$, the critical level and let
$\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{-h^{\vee}}(\mathfrak{g})$.

The center of $V_{\kappa}(\mathfrak{g})$

If $\kappa \neq-h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C} 1$ of the vacuum vector.

From now on suppose $\kappa=-h^{\vee}$, the critical level and let
$\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{-h^{\vee}}(\mathfrak{g})$.

Any element $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.

The center of $V_{\kappa}(\mathfrak{g})$

If $\kappa \neq-h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C} 1$ of the vacuum vector.

From now on suppose $\kappa=-h^{\vee}$, the critical level and let
$\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{-h^{\vee}}(\mathfrak{g})$.

Any element $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.
By definition, $\mathfrak{g}[t] S=0$.

The center of $V_{\kappa}(\mathfrak{g})$

If $\kappa \neq-h^{\vee}$, then the center of $V_{\kappa}(\mathfrak{g})$ is trivial, i.e., coincides with the subspace of scalar multiples $\mathbb{C} 1$ of the vacuum vector.

From now on suppose $\kappa=-h^{\vee}$, the critical level and let
$\mathfrak{z}(\widehat{\mathfrak{g}})$ denote the center of $V_{-h^{\vee}}(\mathfrak{g})$.

Any element $S \in \mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal-Sugawara vector.
By definition, $\mathfrak{g}[t] S=0$.
$\mathfrak{z}(\widehat{\mathfrak{g}})$ is a commutative subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$.

Theorem (Feigin-Frenkel, 1992).
There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

Theorem (Feigin-Frenkel, 1992).
There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, n, \quad r \geqslant 0\right],
$$

Theorem (Feigin-Frenkel, 1992).

There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, n, \quad r \geqslant 0\right],
$$

where $n=\operatorname{rank} \mathfrak{g}$.

Theorem (Feigin-Frenkel, 1992).

There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, n, \quad r \geqslant 0\right],
$$

where $n=\operatorname{rank} \mathfrak{g}$.
S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors.

Theorem (Feigin-Frenkel, 1992).

There exist elements $S_{1}, \ldots, S_{n} \in \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ such that

$$
\mathfrak{z}(\widehat{\mathfrak{g}})=\mathbb{C}\left[T^{r} S_{l} \mid l=1, \ldots, n, \quad r \geqslant 0\right],
$$

where $n=\operatorname{rank} \mathfrak{g}$.
S_{1}, \ldots, S_{n} is a complete set of Segal-Sugawara vectors.
$\mathfrak{z}(\widehat{\mathfrak{g}})$ is called the Feigin-Frenkel center associated with \mathfrak{g}.
Detailed exposition: [E. Frenkel, 2007].

Example. $\mathfrak{g}=\mathfrak{g l}_{N}$.

Example. $\mathfrak{g}=\mathfrak{g l}_{N}$.

Set $\tau=-\partial_{t}$ and consider the $N \times N$ matrix $\tau+E[-1]$ given by

$$
\tau+E[-1]=\left[\begin{array}{cccc}
\tau+E_{11}[-1] & E_{12}[-1] & \ldots & E_{1 N}[-1] \\
E_{21}[-1] & \tau+E_{22}[-1] & \ldots & E_{2 N}[-1] \\
\vdots & \vdots & \ddots & \vdots \\
E_{N 1}[-1] & E_{N 2}[-1] & \ldots & \tau+E_{N N}[-1]
\end{array}\right]
$$

Theorem [Chervov-Talalaev, 2006, Chervov-M. 2009].
The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors in $V_{-N}\left(\mathfrak{g l}_{N}\right)$.

Theorem [Chervov-Talalaev, 2006, Chervov-M. 2009].
The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors in $V_{-N}\left(\mathfrak{g l}_{N}\right)$.
Example. For $N=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+\phi_{1} \tau+\phi_{2}
\end{aligned}
$$

Theorem [Chervov-Talalaev, 2006, Chervov-M. 2009].
The coefficients $\phi_{1}, \ldots, \phi_{N}$ of the polynomial

$$
\operatorname{cdet}(\tau+E[-1])=\tau^{N}+\phi_{1} \tau^{N-1}+\cdots+\phi_{N-1} \tau+\phi_{N}
$$

form a complete set of Segal-Sugawara vectors in $V_{-N}\left(\mathfrak{g l}_{N}\right)$.

Example. For $N=2$

$$
\begin{aligned}
\operatorname{cdet}(\tau+E[-1]) & =\left(\tau+E_{11}[-1]\right)\left(\tau+E_{22}[-1]\right)-E_{21}[-1] E_{12}[-1] \\
& =\tau^{2}+\phi_{1} \tau+\phi_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& \phi_{1}=E_{11}[-1]+E_{22}[-1] \\
& \phi_{2}=E_{11}[-1] E_{22}[-1]-E_{21}[-1] E_{12}[-1]+E_{22}[-2] .
\end{aligned}
$$

Matrix form of generators

Matrix form of generators

Set

$$
E[-1]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)
$$

Matrix form of generators

Set

$$
E[-1]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)
$$

Matrix form of generators

Set

$$
E[-1]=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j}[-1] \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)
$$

Consider the algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)
$$

and let $H^{(m)}$ and $A^{(m)}$ denote the symmetrizer and
anti-symmetrizer in

$$
\underbrace{\mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}}_{m}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots(\left(\tau+E[-1]_{m}\right) \\
&=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \operatorname{tr}_{1, \ldots, m} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \operatorname{tr}_{1, \ldots, m} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m} \\
& \operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
\end{aligned}
$$

Theorem. All coefficients of the polynomials in $\tau=-d / d t$

$$
\begin{aligned}
& \operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m} \\
& \operatorname{tr}_{1, \ldots, m} H^{(m)}\left(\tau+E[-1]_{1}\right) \ldots\left(\tau+E[-1]_{m}\right) \\
&=\psi_{m 0} \tau^{m}+\psi_{m 1} \tau^{m-1}+\cdots+\psi_{m m} \\
& \operatorname{tr}(\tau+E[-1])^{m}=\theta_{m 0} \tau^{m}+\theta_{m 1} \tau^{m-1}+\cdots+\theta_{m m}
\end{aligned}
$$

belong to the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g l}}_{N}\right)$.

In fact, $\phi_{m}=\phi_{m m}$ for $m=1, \ldots, N$.

In fact, $\phi_{m}=\phi_{m m}$ for $m=1, \ldots, N$.

Moreover, each family

$$
\psi_{11}, \ldots, \psi_{N N} \quad \text { and } \quad \theta_{11}, \ldots, \theta_{N N}
$$

is a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$.

In fact, $\phi_{m}=\phi_{m m}$ for $m=1, \ldots, N$.

Moreover, each family

$$
\psi_{11}, \ldots, \psi_{N N} \quad \text { and } \quad \theta_{11}, \ldots, \theta_{N N}
$$

is a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$.

This follows from the MacMahon Master Theorem and the
Newton identity for the matrix $\tau+E[-1]$.

In fact, $\phi_{m}=\phi_{m m}$ for $m=1, \ldots, N$.

Moreover, each family

$$
\psi_{11}, \ldots, \psi_{N N} \quad \text { and } \quad \theta_{11}, \ldots, \theta_{N N}
$$

is a complete set of Segal-Sugawara vectors for $\mathfrak{g l}_{N}$.

This follows from the MacMahon Master Theorem and the
Newton identity for the matrix $\tau+E[-1]$.

Extension to types B_{n}, C_{n}, D_{n} and G_{2} :
[M. 2013], [M.-Ragoucy-Rozhkovskaya, 2016].

Quantum vacuum modules

Quantum vacuum modules

The double Yangian $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ is a deformation of $\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right)$ in the class of Hopf algebras.

Quantum vacuum modules

The double Yangian $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ is a deformation of $\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right)$ in the class of Hopf algebras.

The algebra $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is generated by the central element C and elements $t_{i j}^{(r)}$ and $t_{i j}^{(-r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$.

Quantum vacuum modules

The double Yangian DY $\left(\mathfrak{g l}_{N}\right)$ is a deformation of $\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right)$ in the class of Hopf algebras.

The algebra $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is generated by the central element C and elements $t_{i j}^{(r)}$ and $t_{i j}^{(-r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$.

The defining relations are written in terms of the series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r}
$$

Quantum vacuum modules

The double Yangian $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ is a deformation of $\mathrm{U}\left(\widehat{\mathfrak{g}}_{N}\right)$ in the class of Hopf algebras.

The algebra $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is generated by the central element C and elements $t_{i j}^{(r)}$ and $t_{i j}^{(-r)}$, where $1 \leqslant i, j \leqslant N$ and $r=1,2, \ldots$.

The defining relations are written in terms of the series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r}
$$

and

$$
t_{i j}^{+}(u)=\delta_{i j}-\sum_{r=1}^{\infty} t_{i j}^{(-r)} u^{r-1}
$$

The defining relations are

$$
\begin{aligned}
R(u-v) T_{1}(u) T_{2}(v) & =T_{2}(v) T_{1}(u) R(u-v), \\
R(u-v) T_{1}^{+}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}^{+}(u) R(u-v), \\
\bar{R}(u-v+C / 2) T_{1}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}(u) \bar{R}(u-v-C / 2),
\end{aligned}
$$

The defining relations are

$$
\begin{aligned}
R(u-v) T_{1}(u) T_{2}(v) & =T_{2}(v) T_{1}(u) R(u-v) \\
R(u-v) T_{1}^{+}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}^{+}(u) R(u-v) \\
\bar{R}(u-v+C / 2) T_{1}(u) T_{2}^{+}(v) & =T_{2}^{+}(v) T_{1}(u) \bar{R}(u-v-C / 2)
\end{aligned}
$$

where the coefficients of powers of u, v belong to

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{DY}\left(\mathfrak{g l}_{N}\right)
$$

and

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u) \quad \text { and } \quad T^{+}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}^{+}(u) .
$$

Here $R(u)$ is the Yang R-matrix,

$$
R(u)=1-P u^{-1}
$$

where P is the permutation operator in $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$.

Here $R(u)$ is the Yang R-matrix,

$$
R(u)=1-P u^{-1}
$$

where P is the permutation operator in $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$.

We also use the normalized R-matrix

$$
\bar{R}(u)=g(u) R(u),
$$

Here $R(u)$ is the Yang R-matrix,

$$
R(u)=1-P u^{-1}
$$

where P is the permutation operator in $\mathbb{C}^{N} \otimes \mathbb{C}^{N}$.

We also use the normalized R-matrix

$$
\bar{R}(u)=g(u) R(u),
$$

where

$$
g(u)=1+\sum_{i=1}^{\infty} g_{i} u^{-i}, \quad g_{i} \in \mathbb{C}
$$

is uniquely determined by the relation

$$
g(u+N)=g(u)\left(1-u^{-2}\right)
$$

Consider the filtration on $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Consider the filtration on $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}\left(\mathfrak{g l}_{N}\right)$.

Consider the filtration on $\operatorname{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \operatorname{DY}\left(\mathfrak{g l}_{N}\right)$.

Proposition. The assignments

$$
E_{i j}[r-1] \mapsto \bar{t}_{i j}^{(r)}, \quad E_{i j}[-r] \mapsto \bar{t}_{i j}^{(-r)} \quad \text { and } \quad K \mapsto \bar{C}
$$

with $r \geqslant 1$

Consider the filtration on $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ defined by $\operatorname{deg} C=0$,

$$
\operatorname{deg} t_{i j}^{(r)}=r-1 \quad \text { and } \quad \operatorname{deg} t_{i j}^{(-r)}=-r .
$$

Use the bar notation for the images of the generators in the associated graded algebra $\operatorname{gr} \mathrm{DY}\left(\mathfrak{g l}_{N}\right)$.

Proposition. The assignments

$$
E_{i j}[r-1] \mapsto \bar{t}_{i j}^{(r)}, \quad E_{i j}[-r] \mapsto \bar{t}_{i j}^{(-r)} \quad \text { and } \quad K \mapsto \bar{C}
$$

with $r \geqslant 1$ define an algebra isomorphism

$$
\mathrm{U}\left(\widehat{\mathfrak{g l}}_{N}\right) \rightarrow \operatorname{grDY}^{\mathrm{D}}\left(\mathfrak{g l}_{N}\right)
$$

The vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

The vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$, which is the subalgebra of $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ generated by the elements $t_{i j}^{(-r)}$.

The vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$, which is the subalgebra of $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ generated by the elements $t_{i j}^{(-r)}$.

Assume the level is critical, $c=-N$.

The vacuum module $\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)$ at the level $c \in \mathbb{C}$ over $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ is

$$
\mathcal{V}_{c}\left(\mathfrak{g l}_{N}\right)=\mathrm{DY}\left(\mathfrak{g l}_{N}\right) / \mathrm{DY}\left(\mathfrak{g l}_{N}\right)\left\langle C-c, t_{i j}^{(r)} \mid r \geqslant 1\right\rangle .
$$

As a vector space, the vacuum module is isomorphic to the dual Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$, which is the subalgebra of $\mathrm{DY}\left(\mathfrak{g l}_{N}\right)$ generated by the elements $t_{i j}^{(-r)}$.

Assume the level is critical, $c=-N$.
Let $\widehat{\mathcal{V}}$ denote the completion of $\mathcal{V}_{-N}\left(\mathfrak{g l}_{N}\right)$ by the descending filtration defined by setting the degree of $t_{i j}^{(-r)}$ to be r.

By the proposition, $\operatorname{gr} \mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\widehat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g l}}_{N}$.

By the proposition, $\operatorname{gr}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\hat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g l}}_{N}$.

Introduce the subspace of invariants by

$$
\mathfrak{z}(\widehat{\mathcal{V}})=\left\{v \in \widehat{\mathcal{V}} \mid t_{i j}(u) v=\delta_{i j} v\right\},
$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{i j}^{(r)}$ with $r \geqslant 1$.

By the proposition, $\operatorname{gr}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\hat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g}}_{N}$.

Introduce the subspace of invariants by

$$
\mathfrak{z}(\widehat{\mathcal{V}})=\left\{v \in \widehat{\mathcal{V}} \mid t_{i j}(u) v=\delta_{i j} v\right\},
$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{i j}^{(r)}$ with $r \geqslant 1$.
Proposition. $\mathfrak{z}(\widehat{\mathcal{V}})$ is a commutative subalgebra of the completed dual Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$.

By the proposition, $\operatorname{gr}^{+}\left(\mathfrak{g l}_{N}\right) \cong \mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)$ so that $\hat{\mathcal{V}}$ is a quantization of the vacuum module at the critical level over $\widehat{\mathfrak{g}}_{N}$.

Introduce the subspace of invariants by

$$
\mathfrak{z}(\widehat{\mathcal{V}})=\left\{v \in \widehat{\mathcal{V}} \mid t_{i j}(u) v=\delta_{i j} v\right\},
$$

so that any element of $\mathfrak{z}(\widehat{\mathcal{V}})$ is annihilated by all $t_{i j}^{(r)}$ with $r \geqslant 1$.
Proposition. $\mathfrak{z}(\widehat{\mathcal{V}})$ is a commutative subalgebra of the completed dual Yangian $\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)$.
$\mathfrak{z}(\widehat{\mathcal{V}})$ is a quantization of the Feigin-Frenkel center $\mathfrak{z}\left(\widehat{\mathfrak{g}}_{N}\right)$.

Construction of invariants

Construction of invariants

We will work with the tensor product algebra

Construction of invariants

We will work with the tensor product algebra

and introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m} R_{a b}\left(u_{a}-u_{b}\right),
$$

Construction of invariants

We will work with the tensor product algebra

$$
\underbrace{\operatorname{End} \mathbb{C}^{N} \otimes \ldots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \widehat{\mathcal{V}}
$$

and introduce the rational function in variables u_{1}, \ldots, u_{m} by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\prod_{1 \leqslant a<b \leqslant m} R_{a b}\left(u_{a}-u_{b}\right),
$$

the product is in the lexicographical order on the pairs (a, b).

Let μ be a Young diagram with m boxes and at most N rows.

Let μ be a Young diagram with m boxes and at most N rows.

For a standard μ-tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ introduce the contents $c_{a}=c_{a}(\mathcal{U})$ for $a=1, \ldots, m$ so that $c_{a}=j-i$ if a occupies the box (i, j) in \mathcal{U}.

Let μ be a Young diagram with m boxes and at most N rows.

For a standard μ-tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ introduce the contents $c_{a}=c_{a}(\mathcal{U})$ for $a=1, \ldots, m$ so that $c_{a}=j-i$ if a occupies the box (i, j) in \mathcal{U}.

Let $e_{\mathcal{U}} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ be the associated primitive idempotent.

Let μ be a Young diagram with m boxes and at most N rows.

For a standard μ-tableau \mathcal{U} with entries in $\{1, \ldots, m\}$ introduce the contents $c_{a}=c_{a}(\mathcal{U})$ for $a=1, \ldots, m$ so that $c_{a}=j-i$ if a occupies the box (i, j) in \mathcal{U}.

Let $e_{\mathcal{U}} \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ be the associated primitive idempotent.

The symmetric group \mathfrak{S}_{m} acts by permuting the tensor factors
in $\left(\mathbb{C}^{N}\right)^{\otimes m}$. Denote by $\mathcal{E}_{\mathcal{U}}$ the image of $e_{\mathcal{U}}$ under this action.

Proposition [Fusion procedure; Jucys, 1966].

Proposition [Fusion procedure; Jucys, 1966].

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{m}=c_{m}}=h(\mu) \mathcal{E}_{\mathcal{U}}
$$

where $h(\mu)$ is the product of all hook lengths of the boxes of μ.

Proposition [Fusion procedure; Jucys, 1966].

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{m}=c_{m}}=h(\mu) \mathcal{E}_{\mathcal{U}}
$$

where $h(\mu)$ is the product of all hook lengths of the boxes of μ.

In the tensor product algebra set

$$
\mathbb{T}_{\mu}^{+}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}^{+}\left(u+c_{1}\right) \ldots T_{m}^{+}\left(u+c_{m}\right)
$$

Proposition [Fusion procedure; Jucys, 1966].

$$
\left.\left.\left.R\left(u_{1}, \ldots, u_{m}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{m}=c_{m}}=h(\mu) \mathcal{E}_{\mathcal{U}}
$$

where $h(\mu)$ is the product of all hook lengths of the boxes of μ.

In the tensor product algebra set

$$
\mathbb{T}_{\mu}^{+}(u)=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}} T_{1}^{+}\left(u+c_{1}\right) \ldots T_{m}^{+}\left(u+c_{m}\right) .
$$

This is a power series in u independent of \mathcal{U}, whose coefficients are elements of the completed vacuum module $\widehat{\mathcal{V}}$.

Theorem [Jing-Kožić-M.-Yang, 2018].

Theorem [Jing-Kožić-M.-Yang, 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

Theorem [Jing-Kožić-M.-Yang, 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

A key point in the proof is the identity

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}^{+}\left(u_{1}\right) \ldots T_{m}^{+}\left(u_{m}\right)=T_{m}^{+}\left(u_{m}\right) \ldots T_{1}^{+}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

Theorem [Jing-Kožić-M.-Yang, 2018].
All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

A key point in the proof is the identity
$R\left(u_{1}, \ldots, u_{m}\right) T_{1}^{+}\left(u_{1}\right) \ldots T_{m}^{+}\left(u_{m}\right)=T_{m}^{+}\left(u_{m}\right) \ldots T_{1}^{+}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)$,
and its consequence implied by the fusion procedure:

Theorem [Jing-Kožić-M.-Yang, 2018].

All coefficients of the series $\mathbb{T}_{\mu}^{+}(u)$ belong to the subspace of invariants $\mathfrak{z}(\widehat{\mathcal{V}})$.

A key point in the proof is the identity
$R\left(u_{1}, \ldots, u_{m}\right) T_{1}^{+}\left(u_{1}\right) \ldots T_{m}^{+}\left(u_{m}\right)=T_{m}^{+}\left(u_{m}\right) \ldots T_{1}^{+}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)$,
and its consequence implied by the fusion procedure:

$$
\mathcal{E}_{\mathcal{U}} T_{1}^{+}\left(u+c_{1}\right) \ldots T_{m}^{+}\left(u+c_{m}\right)=T_{m}^{+}\left(u+c_{m}\right) \ldots T_{1}^{+}\left(u+c_{1}\right) \mathcal{E}_{\mathcal{U}} .
$$

Application: quantum immanants

Application: quantum immanants

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Application: quantum immanants

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

By replacing $T^{+}(u) \rightsquigarrow u+E$ and then setting $u=0$, we recover the quantum immanants:

Application: quantum immanants

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

By replacing $T^{+}(u) \rightsquigarrow u+E$ and then setting $u=0$, we recover the quantum immanants:

$$
\mathbb{S}_{\mu}=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}}\left(E_{1}+c_{1}\right) \ldots\left(E_{m}+c_{m}\right)
$$

Application: quantum immanants

Introduce the matrix

$$
E=\sum_{i, j=1}^{N} e_{i j} \otimes E_{i j} \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

By replacing $T^{+}(u) \rightsquigarrow u+E$ and then setting $u=0$, we recover the quantum immanants:

$$
\mathbb{S}_{\mu}=\operatorname{tr}_{1, \ldots, m} \mathcal{E}_{\mathcal{U}}\left(E_{1}+c_{1}\right) \ldots\left(E_{m}+c_{m}\right)
$$

Theorem [Okounkov, 1996]. The quantum immanants \mathbb{S}_{μ} form a basis of the center of $U\left(\mathfrak{g l}_{N}\right)$.

Segal-Sugawara vectors from the invariants

Segal-Sugawara vectors from the invariants

Take the particular case of column diagram $\mu=\left(1^{m}\right)$.

Segal-Sugawara vectors from the invariants

Take the particular case of column diagram $\mu=\left(1^{m}\right)$.

We have $\mathcal{E}_{\mathcal{U}}=A^{(m)}$, the anti-symmetrizer.

Segal-Sugawara vectors from the invariants

Take the particular case of column diagram $\mu=\left(1^{m}\right)$.

We have $\mathcal{E}_{\mathcal{U}}=A^{(m)}$, the anti-symmetrizer.

Hence all coefficients of the polynomial

$$
\begin{aligned}
& \operatorname{tr}_{1, \ldots, m} A^{(m)} T_{1}^{+}(u) \ldots T_{m}^{+}(u-m+1) \\
& \quad=\operatorname{tr}_{1, \ldots, m} A^{(m)} T_{1}^{+}(u) e^{-\partial_{u}} \ldots T_{m}^{+}(u) e^{-\partial_{u}} \cdot e^{m \partial_{u}}
\end{aligned}
$$

belong to $\mathfrak{z}(\widehat{\mathcal{V}})$.

Extend the filtration on the dual Yangian to the algebra

$$
\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right] \text { by } \operatorname{deg} u=1 \text { and } \operatorname{deg} \partial_{u}=-1 .
$$

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.
The element

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(1-T_{1}^{+}(u) e^{-\partial_{u}}\right) \ldots\left(1-T_{m}^{+}(u) e^{-\partial_{u}}\right)
$$

has degree $-m$

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.
The element

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(1-T_{1}^{+}(u) e^{-\partial_{u}}\right) \ldots\left(1-T_{m}^{+}(u) e^{-\partial_{u}}\right)
$$

has degree $-m$ and its symbol coincides with

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

Extend the filtration on the dual Yangian to the algebra
$\mathrm{Y}^{+}\left(\mathfrak{g l}_{N}\right)\left[\left[u, \partial_{u}\right]\right]$ by $\operatorname{deg} u=1$ and $\operatorname{deg} \partial_{u}=-1$.
The associated graded is isomorphic to $\mathrm{U}\left(t^{-1} \mathfrak{g l}_{N}\left[t^{-1}\right]\right)\left[\left[u, \partial_{u}\right]\right]$.
The element

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(1-T_{1}^{+}(u) e^{-\partial_{u}}\right) \ldots\left(1-T_{m}^{+}(u) e^{-\partial_{u}}\right)
$$

has degree $-m$ and its symbol coincides with

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

where,

$$
E(u)_{+}=\sum_{r=1}^{\infty} E[-r] u^{r-1} .
$$

By taking the coefficients of u^{0} in

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

By taking the coefficients of u^{0} in

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

we recover the differential operator in $\tau=-\partial_{t}$:

$$
\begin{aligned}
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

By taking the coefficients of u^{0} in

$$
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\partial_{u}+E(u)_{+1}\right) \ldots\left(\partial_{u}+E(u)_{+m}\right)
$$

we recover the differential operator in $\tau=-\partial_{t}$:

$$
\begin{aligned}
\operatorname{tr}_{1, \ldots, m} A^{(m)}\left(\tau+E[-1]_{1}\right) \ldots & \left(\tau+E[-1]_{m}\right) \\
& =\phi_{m 0} \tau^{m}+\phi_{m 1} \tau^{m-1}+\cdots+\phi_{m m}
\end{aligned}
$$

A similar calculation works for the row-diagram $\mu=(m)$, but no
Segal-Sugawara vectors are known for arbitrary μ.

