Casimir elements and Yangians

Alexander Molev

University of Sydney

Classical Lie algebras over \mathbb{C}

Classical Lie algebras over \mathbb{C}

A type:
special linear Lie algebra $\mathfrak{s l}_{N}$
general linear Lie algebra $\mathfrak{g l}_{N}$

Classical Lie algebras over \mathbb{C}

A type:
special linear Lie algebra $\mathfrak{s l}_{N}$
general linear Lie algebra $\mathfrak{g l}_{N}$
B type: \quad orthogonal Lie algebra $\mathfrak{o}_{2 n+1}$

Classical Lie algebras over \mathbb{C}

A type:
special linear Lie algebra $\mathfrak{s l}_{N}$
general linear Lie algebra $\mathfrak{g l}_{N}$
B type: \quad orthogonal Lie algebra $\mathfrak{o}_{2 n+1}$
C type: \quad symplectic Lie algebra $\mathfrak{s p}_{2 n}$

Classical Lie algebras over \mathbb{C}

A type: \quad special linear Lie algebra $\mathfrak{s l}_{N}$
general linear Lie algebra $\mathfrak{g l}_{N}$
B type: orthogonal Lie algebra $\mathfrak{o}_{2 n+1}$
C type: \quad symplectic Lie algebra $\mathfrak{s p}_{2 n}$
D type: orthogonal Lie algebra $\mathfrak{o}_{2 n}$

General linear Lie algebra

General linear Lie algebra

The Lie algebra $\mathfrak{g l}_{N}$ has the basis of the standard matrix units $E_{i j}$ with $1 \leqslant i, j \leqslant N$ so that $\operatorname{dim} \mathfrak{g l}_{N}=N^{2}$. The commutation relations are

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

General linear Lie algebra

The Lie algebra $\mathfrak{g l}_{N}$ has the basis of the standard matrix units $E_{i j}$ with $1 \leqslant i, j \leqslant N$ so that $\operatorname{dim} \mathfrak{g l}_{N}=N^{2}$. The commutation relations are

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

The universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is the associative algebra with generators $E_{i j}$ and the defining relations

$$
E_{i j} E_{k l}-E_{k l} E_{i j}=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}
$$

By the Poincaré-Birkhoff-Witt theorem, given any ordering on the set of generators $\left\{E_{i j}\right\}$, any element of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of the ordered monomials in the $E_{i j}$.

By the Poincaré-Birkhoff-Witt theorem, given any ordering on the set of generators $\left\{E_{i j}\right\}$, any element of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of the ordered monomials in the $E_{i j}$.

The center $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is

$$
\mathrm{Z}\left(\mathfrak{g l}_{N}\right)=\left\{z \in \mathrm{U}\left(\mathfrak{g l}_{N}\right) \mid z x=x z \quad \text { for all } \quad x \in \mathrm{U}\left(\mathfrak{g l}_{N}\right)\right\}
$$

By the Poincaré-Birkhoff-Witt theorem, given any ordering on the set of generators $\left\{E_{i j}\right\}$, any element of $U\left(\mathfrak{g l}_{N}\right)$ can be uniquely written as a linear combination of the ordered monomials in the $E_{i j}$.

The center $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is

$$
\mathrm{Z}\left(\mathfrak{g l}_{N}\right)=\left\{z \in \mathrm{U}\left(\mathfrak{g l}_{N}\right) \mid z x=x z \quad \text { for all } \quad x \in \mathrm{U}\left(\mathfrak{g l}_{N}\right)\right\}
$$

The Casimir elements for $\mathfrak{g l}_{N}$ are elements of $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.

Every finite-dimensional irreducible representation of $\mathfrak{g l}_{N}$ contains a unique (up to a scalar factor) nonzero vector ζ such that

Every finite-dimensional irreducible representation of \mathfrak{g}_{N} contains a unique (up to a scalar factor) nonzero vector ζ such that

$$
\begin{array}{ll}
E_{i j} \zeta=0 & \text { for } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } \quad 1 \leqslant i \leqslant j \leqslant N, \quad \text { and } \\
\end{array}
$$

for some complex numbers $\lambda_{1}, \ldots, \lambda_{N}$.

Every finite-dimensional irreducible representation of \mathfrak{g}_{N} contains a unique (up to a scalar factor) nonzero vector ζ such that

$$
\begin{array}{ll}
E_{i j} \zeta=0 & \text { for } \quad 1 \leqslant i<j \leqslant N, \quad \text { and } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } \quad 1 \leqslant i \leqslant N .
\end{array}
$$

for some complex numbers $\lambda_{1}, \ldots, \lambda_{N}$.
Moreover, $\quad \lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+} \quad$ for all $\quad i=1, \ldots, N-1$.

Every finite-dimensional irreducible representation of \mathfrak{g}_{N} contains a unique (up to a scalar factor) nonzero vector ζ such that

$$
\begin{array}{ll}
E_{i j} \zeta=0 & \text { for } \\
E_{i i} \zeta=\lambda_{i} \zeta & \text { for } \quad 1 \leqslant i \leqslant j \leqslant N, \quad \text { and } \\
\end{array}
$$

for some complex numbers $\lambda_{1}, \ldots, \lambda_{N}$.
Moreover, $\quad \lambda_{i}-\lambda_{i+1} \in \mathbb{Z}_{+} \quad$ for all $\quad i=1, \ldots, N-1$.
This representation is denoted by $L(\lambda)$,
ζ is its highest vector and
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is its highest weight.

Harish-Chandra isomorphism

Harish-Chandra isomorphism

Any Casimir element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$.

Harish-Chandra isomorphism

Any Casimir element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{N}$;

Harish-Chandra isomorphism

Any Casimir element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{N}$; this polynomial is symmetric in the shifted variables

$$
I_{1}=\lambda_{1}, \quad I_{2}=\lambda_{2}-1, \quad \ldots, \quad I_{N}=\lambda_{N}-N+1
$$

Harish-Chandra isomorphism

Any Casimir element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{N}$; this polynomial is symmetric in the shifted variables

$$
I_{1}=\lambda_{1}, \quad I_{2}=\lambda_{2}-1, \quad \ldots, \quad I_{N}=\lambda_{N}-N+1
$$

The map $\quad \chi: \mathrm{Z}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathbb{C}\left[I_{1}, \ldots, I_{N}\right]^{\mathfrak{S}_{N}} \quad$ in an algebra isomorphism called the Harish-Chandra isomorphism.

Harish-Chandra isomorphism

Any Casimir element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{N}$; this polynomial is symmetric in the shifted variables

$$
I_{1}=\lambda_{1}, \quad I_{2}=\lambda_{2}-1, \quad \ldots, \quad I_{N}=\lambda_{N}-N+1
$$

The map $\quad \chi: \mathrm{Z}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathbb{C}\left[I_{1}, \ldots, I_{N}\right]^{\mathfrak{S}_{N}} \quad$ in an algebra isomorphism called the Harish-Chandra isomorphism.

Example.

$$
\begin{aligned}
\chi: E_{11}+\cdots & +E_{N N} \mapsto \lambda_{1}+\cdots+\lambda_{N} \\
& =I_{1}+\cdots+I_{N}-N(N-1) / 2
\end{aligned}
$$

Capelli determinant

Capelli determinant

Denote by E the $N \times N$ matrix whose $i j$-th entry is $E_{i j}$.

Capelli determinant

Denote by E the $N \times N$ matrix whose $i j$-th entry is $E_{i j}$.
If u is a complex variable, we set

$$
u+E=\left[\begin{array}{cccc}
u+E_{11} & E_{12} & \ldots & E_{1 N} \\
E_{21} & u+E_{22} & \ldots & E_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
E_{N 1} & E_{N 2} & \ldots & u+E_{N N}
\end{array}\right] .
$$

Let $\mathcal{C}(u)$ denote the Capelli determinant

$$
\mathcal{C}(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot(u+E)_{p(1), 1} \ldots(u+E-N+1)_{p(N), N} .
$$

Let $\mathcal{C}(u)$ denote the Capelli determinant

$$
\mathcal{C}(u)=\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot(u+E)_{p(1), 1} \ldots(u+E-N+1)_{p(N), N} .
$$

This is a polynomial in u with coefficients in the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$,

$$
\mathcal{C}(u)=u^{N}+\mathcal{C}_{1} u^{N-1}+\cdots+\mathcal{C}_{N}, \quad \mathcal{C}_{i} \in \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

Example. For $N=2$ we have

$$
\begin{aligned}
\mathcal{C}(u) & =\left(u+E_{11}\right)\left(u+E_{22}-1\right)-E_{21} E_{12} \\
& =u^{2}+\left(E_{11}+E_{22}-1\right) u+E_{11}\left(E_{22}-1\right)-E_{21} E_{12} .
\end{aligned}
$$

Example. For $N=2$ we have

$$
\begin{aligned}
\mathcal{C}(u) & =\left(u+E_{11}\right)\left(u+E_{22}-1\right)-E_{21} E_{12} \\
& =u^{2}+\left(E_{11}+E_{22}-1\right) u+E_{11}\left(E_{22}-1\right)-E_{21} E_{12} .
\end{aligned}
$$

Note that

$$
\mathcal{C}_{1}=E_{11}+E_{22}-1, \quad \mathcal{C}_{2}=E_{11}\left(E_{22}-1\right)-E_{21} E_{12}
$$

are Casimir elements for $\mathfrak{g l}_{2}$ and

$$
\begin{aligned}
& \chi\left(\mathcal{C}_{1}\right)=I_{1}+I_{2}, \\
& \chi\left(\mathcal{C}_{2}\right)=I_{1} I_{2} .
\end{aligned}
$$

Theorem (C, HU).
The coefficients $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}$ belong to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.

Theorem (C, HU).

The coefficients $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}$ belong to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.
The image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$
\chi: \mathcal{C}(u) \mapsto\left(u+I_{1}\right) \ldots\left(u+I_{N}\right)
$$

Theorem (C, HU).

The coefficients $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}$ belong to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.
The image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$
\chi: \mathcal{C}(u) \mapsto\left(u+I_{1}\right) \ldots\left(u+I_{N}\right)
$$

Hence, $\chi\left(\mathcal{C}_{k}\right)$ is the elementary symmetric polynomial of degree k in I_{1}, \ldots, I_{N},

$$
\chi\left(\mathcal{C}_{k}\right)=\sum_{i_{1}<\cdots<i_{k}} I_{i_{1}} \ldots I_{i_{k}} .
$$

Theorem (C, HU).

The coefficients $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}$ belong to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$.
The image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$
\chi: \mathcal{C}(u) \mapsto\left(u+I_{1}\right) \ldots\left(u+I_{N}\right)
$$

Hence, $\chi\left(\mathcal{C}_{k}\right)$ is the elementary symmetric polynomial of degree k in I_{1}, \ldots, I_{N},

$$
\chi\left(\mathcal{C}_{k}\right)=\sum_{i_{1}<\cdots<i_{k}} i_{i_{1}} \ldots l_{i_{k}} .
$$

Moreover, $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ is the algebra of polynomials in $\mathcal{C}_{1}, \ldots, \mathcal{C}_{N}$.

Hudson elements

Hudson elements

Given any complex numbers a_{1}, \ldots, a_{N}, set

$$
\begin{aligned}
& H\left(a_{1}, \ldots, a_{N}\right) \\
& =\frac{1}{N!} \sum_{p, q \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot \operatorname{sgn} q \cdot\left(a_{1}+E\right)_{p(1), q(1)} \ldots\left(a_{N}+E\right)_{p(N), q(N)}
\end{aligned}
$$

Hudson elements

Given any complex numbers a_{1}, \ldots, a_{N}, set

$$
\begin{aligned}
& H\left(a_{1}, \ldots, a_{N}\right) \\
& =\frac{1}{N!} \sum_{p, q \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot \operatorname{sgn} q \cdot\left(a_{1}+E\right)_{p(1), q(1)} \ldots\left(a_{N}+E\right)_{p(N), q(N)}
\end{aligned}
$$

Remark. The definition goes back to R. Hudson (1974), and it was re-discovered by M. Itoh and T. Umeda (2001).

Hudson elements

Given any complex numbers a_{1}, \ldots, a_{N}, set

$$
\begin{aligned}
& H\left(a_{1}, \ldots, a_{N}\right) \\
& =\frac{1}{N!} \sum_{p, q \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot \operatorname{sgn} q \cdot\left(a_{1}+E\right)_{p(1), q(1)} \cdots\left(a_{N}+E\right)_{p(N), q(N)}
\end{aligned}
$$

Remark. The definition goes back to R. Hudson (1974), and it was re-discovered by M. Itoh and T. Umeda (2001).

Theorem (H, IU).
The Capelli determinant can be written as

$$
\mathcal{C}(u)=H(u, u-1, \ldots, u-N+1) .
$$

Gelfand invariants

Gelfand invariants

These are the elements of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\operatorname{tr} E^{k}=\sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{N} E_{i_{1} i_{2}} E_{i_{2} i_{3}} \ldots E_{i_{k} i_{1}}, \quad k=0,1, \ldots
$$

Gelfand invariants

These are the elements of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\operatorname{tr} E^{k}=\sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{N} E_{i_{1} i_{2}} E_{i_{2} i_{3}} \ldots E_{i_{k} i_{1}}, \quad k=0,1, \ldots
$$

Example. For $N=2$ we have

$$
\begin{aligned}
\operatorname{tr} E & =E_{11}+E_{22}, \\
\operatorname{tr} E^{2} & =E_{11}^{2}+E_{12} E_{21}+E_{21} E_{12}+E_{22}^{2} .
\end{aligned}
$$

Gelfand invariants

These are the elements of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ defined by

$$
\operatorname{tr} E^{k}=\sum_{i_{1}, i_{2}, \ldots, i_{k}=1}^{N} E_{i_{1} i_{2}} E_{i_{2} i_{3}} \ldots E_{i_{k} i_{1}}, \quad k=0,1, \ldots
$$

Example. For $N=2$ we have

$$
\begin{aligned}
\operatorname{tr} E & =E_{11}+E_{22} \\
\operatorname{tr} E^{2} & =E_{11}^{2}+E_{12} E_{21}+E_{21} E_{12}+E_{22}^{2} .
\end{aligned}
$$

Note that they are Casimir elements and

$$
\begin{aligned}
\chi(\operatorname{tr} E) & =I_{1}+I_{2}-1, \\
\chi\left(\operatorname{tr} E^{2}\right) & =I_{1}^{2}+I_{2}^{2}+I_{1}+I_{2} .
\end{aligned}
$$

Theorem (Newton's formula). We have

$$
1+\sum_{k=0}^{\infty} \frac{(-1)^{k} \operatorname{tr} E^{k}}{(u-N+1)^{k+1}}=\frac{\mathcal{C}(u+1)}{\mathcal{C}(u)}
$$

Theorem (Newton's formula). We have

$$
1+\sum_{k=0}^{\infty} \frac{(-1)^{k} \operatorname{tr} E^{k}}{(u-N+1)^{k+1}}=\frac{\mathcal{C}(u+1)}{\mathcal{C}(u)}
$$

Proof.

This is equivalent to the Perelomov-Popov formulas

$$
1+\sum_{k=0}^{\infty} \frac{(-1)^{k} \chi\left(\operatorname{tr} E^{k}\right)}{(u-N+1)^{k+1}}=\prod_{i=1}^{N} \frac{u+l_{i}+1}{u+I_{i}}
$$

Noncommutative Cayley-Hamilton theorem

Noncommutative Cayley-Hamilton theorem

$\mathcal{C}(u)$ denotes the Capelli determinant for $\mathfrak{g l}_{N}$.

Noncommutative Cayley-Hamilton theorem

$\mathcal{C}(u)$ denotes the Capelli determinant for $\mathfrak{g l}_{N}$.
Theorem (NT). We have

$$
\mathcal{C}(-E+N-1)=0 \quad \text { and } \quad \mathcal{C}\left(-E^{t}\right)=0 .
$$

Noncommutative Cayley-Hamilton theorem

$\mathcal{C}(u)$ denotes the Capelli determinant for $\mathfrak{g l}_{N}$.
Theorem (NT). We have

$$
\mathcal{C}(-E+N-1)=0 \quad \text { and } \quad \mathcal{C}\left(-E^{t}\right)=0
$$

Corollary (Characteristic identities of Bracken and Green).

Noncommutative Cayley-Hamilton theorem

$\mathcal{C}(u)$ denotes the Capelli determinant for $\mathfrak{g l}_{N}$.
Theorem (NT). We have

$$
\mathcal{C}(-E+N-1)=0 \quad \text { and } \quad \mathcal{C}\left(-E^{t}\right)=0 .
$$

Corollary (Characteristic identities of Bracken and Green).

The following identities hold for the image of the matrix E in the representation $L(\lambda)$ of $\mathfrak{g l}_{N}$:

$$
\prod_{i=1}^{N}\left(E-l_{i}-N+1\right)=0 \quad \text { and } \quad \prod_{i=1}^{N}\left(E^{t}-l_{i}\right)=0 .
$$

Noncommutative power sums

Noncommutative power sums

For each $1 \leqslant m \leqslant N$ consider the complete oriented graph with the vertices $1,2, \ldots, m$.

Noncommutative power sums

For each $1 \leqslant m \leqslant N$ consider the complete oriented graph with the vertices $1,2, \ldots, m$.

For each pair of vertices $i, j \in\{1, \ldots, m\}$, label the arrow from i to j by $E_{i j}-\delta_{i j}(m-1)$.

Noncommutative power sums

For each $1 \leqslant m \leqslant N$ consider the complete oriented graph with the vertices $1,2, \ldots, m$.

For each pair of vertices $i, j \in\{1, \ldots, m\}$, label the arrow from i to j by $E_{i j}-\delta_{i j}(m-1)$.

Given a path in the graph, take the ordered product of the labels of the arrows to get an element of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ which we call the label of the path.

Example. The complete oriented graph for $m=3$:

For any positive integer k set

$$
\Phi_{k}^{(m)}=\sum \frac{k}{\sharp \text { returns to } m}\{\text { label of the path }\},
$$

summed over all paths in the graph from m to m of length k.

For any positive integer k set

$$
\Phi_{k}^{(m)}=\sum \frac{k}{\sharp \text { returns to } m}\{\text { label of the path }\},
$$

summed over all paths in the graph from m to m of length k.

Example.

$$
\begin{aligned}
& \Phi_{1}^{(m)}=E_{m m}-m+1 \\
& \Phi_{2}^{(m)}=\left(E_{m m}-m+1\right)^{2}+2 \sum_{i=1}^{m-1} E_{m i} E_{i m} .
\end{aligned}
$$

Theorem (GKLLRT). For any $k \geqslant 1$ the element

$$
\Phi_{k}=\Phi_{k}^{(1)}+\cdots+\Phi_{k}^{(N)}
$$

belongs to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$. Moreover,

$$
\chi\left(\Phi_{k}\right)=I_{1}^{k}+\cdots+I_{N}^{k}
$$

Theorem (GKLLRT). For any $k \geqslant 1$ the element

$$
\Phi_{k}=\Phi_{k}^{(1)}+\cdots+\Phi_{k}^{(N)}
$$

belongs to $\mathrm{Z}\left(\mathfrak{g l}_{N}\right)$. Moreover,

$$
\chi\left(\Phi_{k}\right)=I_{1}^{k}+\cdots+I_{N}^{k}
$$

Example.

$$
\begin{aligned}
\Phi_{1} & =\sum_{m=1}^{N}\left(E_{m m}-m+1\right) \\
\Phi_{2} & =\sum_{m=1}^{N}\left(E_{m m}-m+1\right)^{2}+2 \sum_{1 \leqslant I<m \leqslant N} E_{m l} E_{l m}
\end{aligned}
$$

Orthogonal and symplectic Lie algebras

Orthogonal and symplectic Lie algebras

For $N=2 n$ or $N=2 n+1$, respectively, set

$$
\mathfrak{g}_{N}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}, \quad \mathfrak{o}_{2 n}
$$

Orthogonal and symplectic Lie algebras

For $N=2 n$ or $N=2 n+1$, respectively, set

$$
\mathfrak{g}_{N}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}, \quad \mathfrak{o}_{2 n}
$$

We will number the rows and columns of $N \times N$ matrices by the indices $\{-n, \ldots,-1,0,1, \ldots, n\}$ if $N=2 n+1$, and by $\{-n, \ldots,-1,1, \ldots, n\}$ if $N=2 n$.

Orthogonal and symplectic Lie algebras

For $N=2 n$ or $N=2 n+1$, respectively, set

$$
\mathfrak{g}_{N}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}, \quad \mathfrak{o}_{2 n}
$$

We will number the rows and columns of $N \times N$ matrices by the indices $\{-n, \ldots,-1,0,1, \ldots, n\}$ if $N=2 n+1$, and by $\{-n, \ldots,-1,1, \ldots, n\}$ if $N=2 n$.

The Lie algebra $\mathfrak{g}_{N}=\mathfrak{o}_{N}$ is spanned by the elements

$$
F_{i j}=E_{i j}-E_{-j,-i}, \quad-n \leqslant i, j \leqslant n .
$$

$\mathfrak{g}_{N}=\mathfrak{o}_{2 n+1}$

$$
\begin{array}{r|r|}
\hline-n & \\
\vdots & \\
-1 & \\
0 & \\
1 & \\
\vdots & \\
n & \\
\end{array}
$$

$$
\mathfrak{g}_{N}=\mathfrak{o}_{2 n}
$$

$$
\left.\begin{array}{rlllll}
& -n & \cdots & -1 & 1 & \cdots
\end{array}\right) n
$$

Skew-symmetric matrices with respect to the second diagonal.

The Lie algebra $\mathfrak{g}_{N}=\mathfrak{s p}_{N}$ with $N=2 n$ is spanned by the elements

$$
F_{i j}=E_{i j}-\operatorname{sgn} i \cdot \operatorname{sgn} j \cdot E_{-j,-i}, \quad-n \leqslant i, j \leqslant n
$$

The Lie algebra $\mathfrak{g}_{N}=\mathfrak{s p}_{N}$ with $N=2 n$ is spanned by the elements

$$
F_{i j}=E_{i j}-\operatorname{sgn} i \cdot \operatorname{sgn} j \cdot E_{-j,-i}, \quad-n \leqslant i, j \leqslant n .
$$

A	$B=B^{\prime}$
$C=C^{\prime}$	$-A^{\prime}$

For any n-tuple of complex numbers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ the corresponding irreducible highest weight representation $V(\lambda)$ of \mathfrak{g}_{N} is generated by a nonzero vector ξ such that

$$
\begin{array}{lll}
F_{i j} \xi=0 & \text { for } & -n \leqslant i<j \leqslant n, \quad \text { and } \\
F_{i j} \xi=\lambda_{i} \xi & \text { for } \quad 1 \leqslant i \leqslant n .
\end{array}
$$

Any element $z \in Z\left(\mathfrak{g}_{N}\right)$ of the center of $\mathrm{U}\left(\mathfrak{g}_{N}\right)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g}_{N}\right)$ of the center of $\mathrm{U}\left(\mathfrak{g}_{N}\right)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{n}$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g}_{N}\right)$ of the center of $\mathrm{U}\left(\mathfrak{g}_{N}\right)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{n}$. In the B and C cases, this polynomial is symmetric in the variables $I_{1}^{2}, \ldots, l_{n}^{2}$, where $l_{i}=\lambda_{i}+\rho_{i}$ and

$$
\rho_{i}=-\rho_{-i}= \begin{cases}-i+1 & \text { for } \mathfrak{g}_{N}=\mathfrak{o}_{2 n} \\ -i+\frac{1}{2} & \text { for } \mathfrak{g}_{N}=\mathfrak{o}_{2 n+1} \\ -i & \text { for } \\ \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

for $i=1, \ldots, n$. Also, $\rho_{0}=1 / 2$ in the case $\mathfrak{g}_{N}=\mathfrak{o}_{2 n+1}$.

Any element $z \in \mathrm{Z}\left(\mathfrak{g}_{N}\right)$ of the center of $\mathrm{U}\left(\mathfrak{g}_{N}\right)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$. This scalar is a polynomial in $\lambda_{1}, \ldots, \lambda_{n}$. In the B and C cases, this polynomial is symmetric in the variables $I_{1}^{2}, \ldots, I_{n}^{2}$, where $I_{i}=\lambda_{i}+\rho_{i}$ and

$$
\rho_{i}=-\rho_{-i}= \begin{cases}-i+1 & \text { for } \mathfrak{g}_{N}=\mathfrak{o}_{2 n} \\ -i+\frac{1}{2} & \text { for } \mathfrak{g}_{N}=\mathfrak{o}_{2 n+1} \\ -i & \text { for } \\ \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

for $i=1, \ldots, n$. Also, $\rho_{0}=1 / 2$ in the case $\mathfrak{g}_{N}=\mathfrak{o}_{2 n+1}$.
In the D case $\chi(z)$ is the sum of a symmetric polynomial in $I_{1}^{2}, \ldots, I_{n}^{2}$ and $I_{1} \ldots I_{n}$ times a symmetric polynomial in $I_{1}^{2}, \ldots, I_{n}^{2}$.

The map

$$
\chi: \mathrm{Z}\left(\mathfrak{g}_{N}\right) \rightarrow \text { algebra of polynomials }
$$

is an algebra isomorphism called the Harish-Chandra isomorphism.

The map

$$
\chi: Z\left(\mathfrak{g}_{N}\right) \rightarrow \text { algebra of polynomials }
$$

is an algebra isomorphism called the Harish-Chandra
isomorphism.
Example. For $\mathfrak{g}_{N}=\mathfrak{o}_{N}$

$$
\sum_{m=1}^{n}\left(\left(F_{m m}+\rho_{m}\right)^{2}+2 \sum_{-m<i<m} F_{m i} F_{i m}\right)
$$

is the second degree Casimir element. Its Harish-Chandra image is

$$
I_{1}^{2}+\cdots+I_{n}^{2} .
$$

Capelli-type determinant for \mathfrak{g}_{N}

Capelli-type determinant for \mathfrak{g}_{N}

Introduce a special map

$$
\varphi_{N}: \mathfrak{S}_{N} \rightarrow \mathfrak{S}_{N}, \quad p \mapsto p^{\prime}
$$

from the symmetric group \mathfrak{S}_{N} into itself.

Capelli-type determinant for \mathfrak{g}_{N}

Introduce a special map

$$
\varphi_{N}: \mathfrak{S}_{N} \rightarrow \mathfrak{S}_{N}, \quad p \mapsto p^{\prime}
$$

from the symmetric group \mathfrak{S}_{N} into itself.

If $N=2$ we define φ_{2} as the map $\mathfrak{S}_{2} \rightarrow \mathfrak{S}_{2}$ whose image is the identity permutation.

Capelli-type determinant for \mathfrak{g}_{N}

Introduce a special map

$$
\varphi_{N}: \mathfrak{S}_{N} \rightarrow \mathfrak{S}_{N}, \quad p \mapsto p^{\prime}
$$

from the symmetric group \mathfrak{S}_{N} into itself.

If $N=2$ we define φ_{2} as the map $\mathfrak{S}_{2} \rightarrow \mathfrak{S}_{2}$ whose image is the identity permutation.

Given a set of positive integers $a_{1}<\cdots<a_{N}$ we regard \mathfrak{S}_{N} as the group of their permutations.

For $N \geqslant 3$ define a map from the set of ordered pairs

$$
\left\{\left(a_{k}, a_{l}\right) \mid k \neq 1\right\}
$$

into itself by the rule

For $N \geqslant 3$ define a map from the set of ordered pairs

$$
\left\{\left(a_{k}, a_{l}\right) \mid k \neq 1\right\}
$$

into itself by the rule

$$
\left(a_{k}, a_{l}\right) \mapsto\left(a_{l}, a_{k}\right), \quad k, l<N
$$

For $N \geqslant 3$ define a map from the set of ordered pairs

$$
\left\{\left(a_{k}, a_{l}\right) \mid k \neq 1\right\}
$$

into itself by the rule

$$
\begin{array}{ll}
\left(a_{k}, a_{l}\right) \mapsto\left(a_{l}, a_{k}\right), & k, l<N, \\
\left(a_{k}, a_{N}\right) \mapsto\left(a_{N-1}, a_{k}\right), & \\
\left(a_{N}, a_{k}\right) \mapsto\left(a_{k}, a_{N-1}\right), & \\
k<N-1, \\
\end{array}
$$

For $N \geqslant 3$ define a map from the set of ordered pairs

$$
\left\{\left(a_{k}, a_{l}\right) \mid k \neq 1\right\}
$$

into itself by the rule

$$
\begin{aligned}
\left(a_{k}, a_{l}\right) & \mapsto\left(a_{l}, a_{k}\right), & & k, l<N, \\
\left(a_{k}, a_{N}\right) & \mapsto\left(a_{N-1}, a_{k}\right), & & k<N-1, \\
\left(a_{N}, a_{k}\right) & \mapsto\left(a_{k}, a_{N-1}\right), & & k<N-1, \\
\left(a_{N-1}, a_{N}\right) & \mapsto\left(a_{N-1}, a_{N-2}\right), & & \\
\left(a_{N}, a_{N-1}\right) & \mapsto\left(a_{N-1}, a_{N-2}\right) . & &
\end{aligned}
$$

Let $p=\left(p_{1}, \ldots, p_{N}\right)$ be a permutation of the indices a_{1}, \ldots, a_{N}.
Its image under the map φ_{N} is the permutation of the form
$p^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{N-1}^{\prime}, a_{N}\right)$.

Let $p=\left(p_{1}, \ldots, p_{N}\right)$ be a permutation of the indices a_{1}, \ldots, a_{N}.
Its image under the map φ_{N} is the permutation of the form
$p^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{N-1}^{\prime}, a_{N}\right)$.

The pair $\left(p_{1}^{\prime}, p_{N-1}^{\prime}\right)$ is the image of the ordered pair $\left(p_{1}, p_{N}\right)$ under the above map.

Let $p=\left(p_{1}, \ldots, p_{N}\right)$ be a permutation of the indices a_{1}, \ldots, a_{N}. Its image under the map φ_{N} is the permutation of the form $p^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{N-1}^{\prime}, a_{N}\right)$.

The pair $\left(p_{1}^{\prime}, p_{N-1}^{\prime}\right)$ is the image of the ordered pair $\left(p_{1}, p_{N}\right)$ under the above map.

Then the pair $\left(p_{2}^{\prime}, p_{N-2}^{\prime}\right)$ is found as the image of $\left(p_{2}, p_{N-1}\right)$ under the above map, etc.

Example.

$$
p=(3,5,7,6,1,2,4) .
$$

Example.
$p=(3,5,7,6,1,2,4)$.
$(3,5,7,6,1,2,4) \mapsto(*, *, *, *, *, *, 7)$

Example.

$p=(3,5,7,6,1,2,4)$.
$(3,5,7,6,1,2,4) \mapsto(*, *, *, *, *, *, 7)$
$(3,5,7,6,1,2,4) \mapsto(4, *, *, *, *, 3,7)$

Example.

$p=(3,5,7,6,1,2,4)$.
$(3,5,7,6,1,2,4) \mapsto(*, *, *, *, *, *, 7)$
$(3,5,7,6,1,2,4) \mapsto(4, *, *, *, *, 3,7)$
$(3,5,7,6,1,2,4) \mapsto(4,2, *, *, 5,3,7)$

Example.

$p=(3,5,7,6,1,2,4)$.
$(3,5,7,6,1,2,4) \mapsto(*, *, *, *, *, *, 7)$
$(3,5,7,6,1,2,4) \mapsto(4, *, *, *, *, 3,7)$
$(3,5,7,6,1,2,4) \mapsto(4,2, *, *, 5,3,7)$
$(3,5,7,6,1,2,4) \mapsto(4,2,1,6,5,3,7)$

Example.

$p=(3,5,7,6,1,2,4)$.
$(3,5,7,6,1,2,4) \mapsto(*, *, *, *, *, *, 7)$
$(3,5,7,6,1,2,4) \mapsto(4, *, *, *, *, 3,7)$
$(3,5,7,6,1,2,4) \mapsto(4,2, *, *, 5,3,7)$
$(3,5,7,6,1,2,4) \mapsto(4,2,1,6,5,3,7)$

Thus, $\quad p^{\prime}=(4,2,1,6,5,3,7)$.

Each fiber of the map φ_{N} is an interval in \mathfrak{S}_{N} with respect to the
Bruhat order, and this interval is isomorphic to a Boolean poset.

Each fiber of the map φ_{N} is an interval in \mathfrak{S}_{N} with respect to the Bruhat order, and this interval is isomorphic to a Boolean poset.

Each fiber of the map φ_{N} is an interval in \mathfrak{S}_{N} with respect to the Bruhat order, and this interval is isomorphic to a Boolean poset.

Denote by F the $N \times N$ matrix whose $i j$-th entry is $F_{i j}$.

Denote by F the $N \times N$ matrix whose $i j$-th entry is $F_{i j}$.
If u is a complex variable, we set

$$
u+F=\left[\begin{array}{cccc}
u+F_{-n,-n} & F_{-n,-n+1} & \ldots & F_{-n, n} \\
F_{-n+1,-n} & u+F_{-n+1,-n+1} & \ldots & F_{-n+1, n} \\
\vdots & \vdots & \ddots & \vdots \\
F_{n,-n} & F_{n,-n+1} & \ldots & u+F_{n, n}
\end{array}\right]
$$

Denote by F the $N \times N$ matrix whose $i j$-th entry is $F_{i j}$.
If u is a complex variable, we set

$$
u+F=\left[\begin{array}{cccc}
u+F_{-n,-n} & F_{-n,-n+1} & \ldots & F_{-n, n} \\
F_{-n+1,-n} & u+F_{-n+1,-n+1} & \ldots & F_{-n+1, n} \\
\vdots & \vdots & \ddots & \vdots \\
F_{n,-n} & F_{n,-n+1} & \ldots & u+F_{n, n}
\end{array}\right]
$$

Note that

$$
F_{-j,-i}= \begin{cases}-F_{i j} & \text { in the orthogonal case }, \\ -\operatorname{sgn} i \cdot \operatorname{sgn} j \cdot F_{i j} & \text { in the symplectic case. }\end{cases}
$$

Introduce the Capelli-type determinant

$$
\begin{aligned}
\mathcal{C}(u)=(-1)^{n} \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p p^{\prime} \cdot(& \left.u+\rho_{-n}+F\right)_{-b_{p(1)}, b_{p^{\prime}(1)}} \\
& \times \cdots \times\left(u+\rho_{n}+F\right)_{-b_{p(N)}}, b_{p^{\prime}(N)}
\end{aligned}
$$

Introduce the Capelli-type determinant

$$
\begin{aligned}
\mathcal{C}(u)=(-1)^{n} \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p p^{\prime} \cdot(& \left(u+\rho_{-n}+F\right)_{-b_{p(1)},}, b_{p^{\prime}(1)} \\
& \times \cdots \times\left(u+\rho_{n}+F\right)_{-b_{p(N)}, b_{p^{\prime}(N)}},
\end{aligned}
$$

where $\left(b_{1}, \ldots, b_{N}\right)$ is a fixed permutation of the indices $(-n, \ldots, n)$ and p^{\prime} is the image of p under the map φ_{N}.

Theorem (M). The polynomial $\mathcal{C}(u)$ does not depend on the choice of the permutation $\left(b_{1}, \ldots, b_{N}\right)$.

Theorem (M). The polynomial $\mathcal{C}(u)$ does not depend on the choice of the permutation $\left(b_{1}, \ldots, b_{N}\right)$. All coefficients of $\mathcal{C}(u)$ belong to $\mathrm{Z}\left(\mathfrak{g}_{N}\right)$.

Theorem (M). The polynomial $\mathcal{C}(u)$ does not depend on the choice of the permutation $\left(b_{1}, \ldots, b_{N}\right)$. All coefficients of $\mathcal{C}(u)$ belong to $\mathrm{Z}\left(\mathfrak{g}_{N}\right)$. Moreover, the image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$
\chi: \mathcal{C}(u) \mapsto \prod_{i=1}^{n}\left(u^{2}-l_{i}^{2}\right), \quad \text { if } \quad N=2 n
$$

and

$$
\chi: \mathcal{C}(u) \mapsto\left(u+\frac{1}{2}\right) \prod_{i=1}^{n}\left(u^{2}-l_{i}^{2}\right), \quad \text { if } \quad N=2 n+1
$$

Example. For $\mathfrak{g}_{N}=\mathfrak{o}_{3}$ take $\left(b_{1}, b_{2}, b_{3}\right)=(-1,0,1)$.

Example. For $\mathfrak{g}_{N}=\mathfrak{o}_{3}$ take $\left(b_{1}, b_{2}, b_{3}\right)=(-1,0,1)$.
Here $\rho_{-1}=\rho_{0}=-\rho_{1}=1 / 2, \quad l_{1}=\lambda_{1}-1 / 2$,

Example. For $\mathfrak{g}_{N}=\mathfrak{o}_{3}$ take $\left(b_{1}, b_{2}, b_{3}\right)=(-1,0,1)$. Here $\rho_{-1}=\rho_{0}=-\rho_{1}=1 / 2, \quad l_{1}=\lambda_{1}-1 / 2$,

$$
\begin{aligned}
\mathcal{C}(u) & =\left(u+F_{-1,-1}+1 / 2\right)(u+1 / 2)\left(u+F_{11}-1 / 2\right) \\
& -F_{0,-1} F_{-1,0}\left(u+F_{11}-1 / 2\right) \\
& -F_{10}\left(u+F_{-1,-1}+1 / 2\right) F_{01} .
\end{aligned}
$$

Example. For $\mathfrak{g}_{N}=\mathfrak{o}_{3}$ take $\left(b_{1}, b_{2}, b_{3}\right)=(-1,0,1)$. Here $\rho_{-1}=\rho_{0}=-\rho_{1}=1 / 2, \quad l_{1}=\lambda_{1}-1 / 2$,

$$
\begin{aligned}
\mathcal{C}(u) & =\left(u+F_{-1,-1}+1 / 2\right)(u+1 / 2)\left(u+F_{11}-1 / 2\right) \\
& -F_{0,-1} F_{-1,0}\left(u+F_{11}-1 / 2\right) \\
& -F_{10}\left(u+F_{-1,-1}+1 / 2\right) F_{01} .
\end{aligned}
$$

Hence

$$
\mathcal{C}(u)=(u+1 / 2)\left(u^{2}-\left(F_{11}-1 / 2\right)^{2}-2 F_{10} F_{01}\right)
$$

Example. For $\mathfrak{g}_{N}=\mathfrak{o}_{3}$ take $\left(b_{1}, b_{2}, b_{3}\right)=(-1,0,1)$. Here $\rho_{-1}=\rho_{0}=-\rho_{1}=1 / 2, \quad l_{1}=\lambda_{1}-1 / 2$,

$$
\begin{aligned}
\mathcal{C}(u) & =\left(u+F_{-1,-1}+1 / 2\right)(u+1 / 2)\left(u+F_{11}-1 / 2\right) \\
& -F_{0,-1} F_{-1,0}\left(u+F_{11}-1 / 2\right) \\
& -F_{10}\left(u+F_{-1,-1}+1 / 2\right) F_{01} .
\end{aligned}
$$

Hence

$$
\mathcal{C}(u)=(u+1 / 2)\left(u^{2}-\left(F_{11}-1 / 2\right)^{2}-2 F_{10} F_{01}\right)
$$

and

$$
\chi: \mathcal{C}(u) \mapsto(u+1 / 2)\left(u^{2}-I_{1}^{2}\right) .
$$

Noncommutative Pfaffians and Hafnians

Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a $2 k \times 2 k$ matrix $A=\left[A_{i j}\right]$ is defined by

$$
\operatorname{Pf} A=\frac{1}{2^{k} k!} \sum_{\sigma \in \mathfrak{S}_{2 k}} \operatorname{sgn} \sigma \cdot A_{\sigma(1), \sigma(2)} \ldots A_{\sigma(2 k-1), \sigma(2 k)}
$$

Noncommutative Pfaffians and Hafnians

The Pfaffian $\operatorname{Pf} A$ of a $2 k \times 2 k$ matrix $A=\left[A_{i j}\right]$ is defined by

$$
\operatorname{Pf} A=\frac{1}{2^{k} k!} \sum_{\sigma \in \mathfrak{S}_{2 k}} \operatorname{sgn} \sigma \cdot A_{\sigma(1), \sigma(2)} \ldots A_{\sigma(2 k-1), \sigma(2 k)}
$$

If A is a skew-symmetric numerical matrix, then

$$
\operatorname{det} A=(\operatorname{Pf} A)^{2}
$$

Examples. We have

$$
\operatorname{Pf}\left[\begin{array}{cc}
0 & A_{12} \\
-A_{12} & 0
\end{array}\right]=A_{12}
$$

Examples. We have

$$
\operatorname{Pf}\left[\begin{array}{cc}
0 & A_{12} \\
-A_{12} & 0
\end{array}\right]=A_{12}
$$

$$
\operatorname{Pf}\left[\begin{array}{cccc}
0 & A_{12} & A_{13} & A_{14} \\
-A_{12} & 0 & A_{23} & A_{24} \\
-A_{13} & -A_{23} & 0 & A_{34} \\
-A_{14} & -A_{24} & -A_{34} & 0
\end{array}\right]=A_{12} A_{34}-A_{13} A_{24}+A_{14} A_{23} .
$$

Let $\mathfrak{g}_{N}=\mathfrak{o}_{N}$.

Let $\mathfrak{g}_{N}=\mathfrak{o}_{N}$. For any subset I of $\{-n, \ldots, n\}$ containing $2 k$ elements $i_{1}<\cdots<i_{2 k}$, the submatrix

$$
F_{I}=\left[\begin{array}{cccc}
0 & F_{i_{1},-i_{2}} & \ldots & F_{i_{1},-i_{2 k}} \\
F_{i_{2},-i_{1}} & 0 & \ldots & F_{i_{2},-i_{2 k}} \\
\vdots & \vdots & \ddots & \vdots \\
F_{i_{2 k},-i_{1}} & F_{i_{2 k},-i_{2}} & \ldots & 0
\end{array}\right]
$$

is skew-symmetric.

Let $\mathfrak{g}_{N}=\mathfrak{o}_{N}$. For any subset I of $\{-n, \ldots, n\}$ containing $2 k$ elements $i_{1}<\cdots<i_{2 k}$, the submatrix

$$
F_{I}=\left[\begin{array}{cccc}
0 & F_{i_{1},-i_{2}} & \cdots & F_{i_{1},-i_{2 k}} \\
F_{i_{2},-i_{1}} & 0 & \cdots & F_{i_{2},-i_{2 k}} \\
\vdots & \vdots & \ddots & \vdots \\
F_{i_{2 k},-i_{1}} & F_{i_{2 k},-i_{2}} & \cdots & 0
\end{array}\right]
$$

is skew-symmetric.
Set

$$
C_{k}=(-1)^{k} \cdot \sum_{l} \operatorname{Pf} F_{l} \cdot \operatorname{Pf} F_{l^{*}}, \quad I^{*}=\left\{-i_{2 k}, \ldots,-i_{1}\right\}
$$

summed over all subsets $/$ with $|I|=2 k$.

Theorem (MN). C_{1}, \ldots, C_{n} are Casimir elements for \mathfrak{o}_{N}.

Theorem (MN). C_{1}, \ldots, C_{n} are Casimir elements for \mathfrak{o}_{N}.
Moreover, the image of C_{k} under the Harish-Chandra isomorphism is given by

$$
\chi: C_{k} \mapsto(-1)^{k} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(l_{i_{1}}^{2}-\rho_{i_{1}}^{2}\right) \ldots\left(l_{i_{k}}^{2}-\rho_{i_{k}-k+1}^{2}\right)
$$

Theorem (MN). C_{1}, \ldots, C_{n} are Casimir elements for \mathfrak{o}_{N}.
Moreover, the image of C_{k} under the Harish-Chandra isomorphism is given by

$$
\chi: C_{k} \mapsto(-1)^{k} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n}\left(l_{i_{1}}^{2}-\rho_{i_{1}}^{2}\right) \ldots\left(l_{i_{k}}^{2}-\rho_{i_{k}-k+1}^{2}\right)
$$

Corollary.

$$
\frac{\mathcal{C}(u)}{\left(u+\rho_{-n}\right) \ldots\left(u+\rho_{n}\right)}=1+\sum_{k=1}^{n} \frac{C_{k}}{\left(u^{2}-\rho_{n-k+1}^{2}\right) \ldots\left(u^{2}-\rho_{n}^{2}\right)} .
$$

For any $k \geqslant 1$ let $I=\left\{i_{1}, \ldots, i_{2 k}\right\}$ be a multiset whose elements belong to $\{-n, \ldots, n\}$.

For any $k \geqslant 1$ let $I=\left\{i_{1}, \ldots, i_{2 k}\right\}$ be a multiset whose elements belong to $\{-n, \ldots, n\}$.

Denote by A_{l} the $2 k \times 2 k$ matrix whose (a, b) entry is $A_{i_{a} i_{b}}$.

For any $k \geqslant 1$ let $I=\left\{i_{1}, \ldots, i_{2 k}\right\}$ be a multiset whose elements belong to $\{-n, \ldots, n\}$.

Denote by A_{l} the $2 k \times 2 k$ matrix whose (a, b) entry is $A_{i_{a} i_{b}}$.
The Hafnian $\operatorname{Hf} A_{l}$ of the matrix A_{l} is defined by

$$
\operatorname{Hf} A_{l}=\frac{1}{2^{k} k!} \sum_{\sigma \in \mathfrak{S}_{2 k}} A_{i_{\sigma(1)}, i_{\sigma(2)}} \ldots A_{i_{\sigma(2 k-1)}, i_{\sigma(2 k)}}
$$

For any $k \geqslant 1$ let $I=\left\{i_{1}, \ldots, i_{2 k}\right\}$ be a multiset whose elements belong to $\{-n, \ldots, n\}$.

Denote by A_{l} the $2 k \times 2 k$ matrix whose (a, b) entry is $A_{i_{a} i_{b}}$.
The Hafnian Hf A_{l} of the matrix A_{l} is defined by

$$
\operatorname{Hf} A_{l}=\frac{1}{2^{k} k!} \sum_{\sigma \in \mathfrak{S}_{2 k}} A_{i_{\sigma(1)}, i_{\sigma(2)}} \ldots A_{i_{\sigma(2 k-1)}, i_{\sigma(2 k)}}
$$

Remark. The term is due to Caianiello, '56. Hafnia is the Latin name for "Copenhagen"; cf. Hafnium ${ }^{72}$.

Let $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$.

Let $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$. Let $I=\left(i_{1} \leqslant \cdots \leqslant i_{2 k}\right)$ be a sequence of elements of the set $\{-n, \ldots, n\}$.

Let $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$. Let $I=\left(i_{1} \leqslant \cdots \leqslant i_{2 k}\right)$ be a sequence of elements of the set $\{-n, \ldots, n\}$. Set $\widetilde{F}_{i j}=\operatorname{sgn} i \cdot F_{i j}$.

Let $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$. Let $I=\left(i_{1} \leqslant \cdots \leqslant i_{2 k}\right)$ be a sequence of elements of the set $\{-n, \ldots, n\}$. Set $\widetilde{F}_{i j}=\operatorname{sgn} i \cdot F_{i j}$.

The matrix

$$
F_{I}=\left[\begin{array}{cccc}
\widetilde{F}_{i_{1},-i_{1}} & \widetilde{F}_{i_{1},-i_{2}} & \ldots & \widetilde{F}_{i_{1},-i_{2 k}} \\
\widetilde{F}_{i_{2},-i_{1}} & \widetilde{F}_{i_{2},-i_{2}} & \ldots & \widetilde{F}_{i_{2},-i_{2 k}} \\
\vdots & \vdots & \ddots & \vdots \\
\widetilde{F}_{i_{2 k},-i_{1}} & \widetilde{F}_{i_{2 k},-i_{2}} & \ldots & \widetilde{F}_{i_{2 k},-i_{2 k}}
\end{array}\right]
$$

is symmetric.

Let $\mathfrak{g}_{N}=\mathfrak{s p}_{2 n}$. Let $I=\left(i_{1} \leqslant \cdots \leqslant i_{2 k}\right)$ be a sequence of elements of the set $\{-n, \ldots, n\}$. Set $\widetilde{F}_{i j}=\operatorname{sgn} i \cdot F_{i j}$.

The matrix

$$
F_{I}=\left[\begin{array}{cccc}
\widetilde{F}_{i_{1},-i_{1}} & \widetilde{F}_{i_{1},-i_{2}} & \ldots & \widetilde{F}_{i_{1},-i_{2 k}} \\
\widetilde{F}_{i_{2},-i_{1}} & \widetilde{F}_{i_{2},-i_{2}} & \ldots & \widetilde{F}_{i_{2},-i_{2 k}} \\
\vdots & \vdots & \ddots & \vdots \\
\widetilde{F}_{i_{2 k},-i_{1}} & \widetilde{F}_{i_{2 k},-i_{2}} & \ldots & \widetilde{F}_{i_{2 k},-i_{2 k}}
\end{array}\right]
$$

is symmetric. Set
$D_{k}=\sum_{l} \frac{\operatorname{sgn}\left(i_{1} \ldots i_{2 k}\right)}{\alpha_{-n}!\ldots \alpha_{n}!} \cdot \operatorname{Hf} F_{l} \cdot \operatorname{Hf} F_{l^{*}}, \quad \quad I^{*}=\left\{-i_{2 k}, \ldots,-i_{1}\right\}$,
where α_{i} is the multiplicity of an element i in I.

Theorem (MN). For $k \geqslant 1$ the D_{k} are Casimir elements for $\mathfrak{s p}_{2 n}$.

Theorem (MN). For $k \geqslant 1$ the D_{k} are Casimir elements for $\mathfrak{s p}_{2 n}$. Moreover, the image of D_{k} under the Harish-Chandra isomorphism is given by

$$
\chi: D_{k} \mapsto(-1)^{k} \sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{k} \leqslant n}\left(i_{i_{1}}^{2}-i_{1}^{2}\right) \ldots\left(l_{i_{k}}^{2}-\left(i_{k}+k-1\right)^{2}\right) .
$$

Theorem (MN). For $k \geqslant 1$ the D_{k} are Casimir elements for $\mathfrak{s p}_{2 n}$. Moreover, the image of D_{k} under the Harish-Chandra isomorphism is given by

$$
\chi: D_{k} \mapsto(-1)^{k} \sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{k} \leqslant n}\left(l_{i_{1}}^{2}-i_{1}^{2}\right) \ldots\left(l_{i_{k}}^{2}-\left(i_{k}+k-1\right)^{2}\right) .
$$

Corollary.

$$
\begin{aligned}
&\left(\frac{\mathcal{C}(u)}{\left(u+\rho_{-n}\right) \ldots\left(u+\rho_{n}\right)}\right)^{-1} \\
&=1+\sum_{k=1}^{\infty} \frac{(-1)^{k} D_{k}}{\left(u^{2}-(n+1)^{2}\right) \ldots\left(u^{2}-(n+k)^{2}\right)}
\end{aligned}
$$

Yangians

Yangians

Recall that $E=\left[E_{i j}\right]$ with $i, j \in\{1, \ldots, N\}$.

Yangians

Recall that $E=\left[E_{i j}\right]$ with $i, j \in\{1, \ldots, N\}$.
We have

$$
\left[E_{i j},\left(E^{s}\right)_{k l}\right]=\delta_{k j}\left(E^{s}\right)_{i l}-\delta_{i l}\left(E^{s}\right)_{k j} .
$$

Yangians

Recall that $E=\left[E_{i j}\right]$ with $i, j \in\{1, \ldots, N\}$.
We have

$$
\left[E_{i j},\left(E^{s}\right)_{k l}\right]=\delta_{k j}\left(E^{s}\right)_{i l}-\delta_{i l}\left(E^{s}\right)_{k j} .
$$

This implies that tr E^{s} are Casimir elements for $\mathfrak{g l}_{N}$ (the Gelfand invariants).

Yangians

Recall that $E=\left[E_{i j}\right]$ with $i, j \in\{1, \ldots, N\}$.
We have

$$
\left[E_{i j},\left(E^{s}\right)_{k l}\right]=\delta_{k j}\left(E^{s}\right)_{i l}-\delta_{i l}\left(E^{s}\right)_{k j} .
$$

This implies that tr E^{s} are Casimir elements for $\mathfrak{g l}_{N}$ (the Gelfand invariants).

More generally, we have
$\left[\left(E^{r+1}\right)_{i j},\left(E^{s}\right)_{k l}\right]-\left[\left(E^{r}\right)_{i j},\left(E^{s+1}\right)_{k l}\right]=\left(E^{r}\right)_{k j}\left(E^{s}\right)_{i l}-\left(E^{s}\right)_{k j}\left(E^{r}\right)_{i l}$,
where $r, s \geqslant 0$ and $E^{0}=1$ is the identity matrix.

Yangian for $\mathfrak{g l}_{N}$

Yangian for $\mathfrak{g l}_{N}$

Definition

The Yangian for $\mathfrak{g l}_{N}$ is the associative algebra over \mathbb{C} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)},
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

Yangian for $\mathfrak{g l}_{N}$

Definition

The Yangian for $\mathfrak{g l}_{N}$ is the associative algebra over \mathbb{C} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{k i}^{(r)},
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.
This algebra is denoted by $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations take the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations take the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)
$$

The defining relations are also equivalent to

$$
\left[t_{i j}^{(r)}, t_{k l}^{(s)}\right]=\sum_{a=1}^{\min \{r, s\}}\left(t_{k j}^{(a-1)} t_{i l}^{(r+s-a)}-t_{k j}^{(r+s-a)} t_{i l}^{(a-1)}\right)
$$

Evaluation homomorphism

Proposition. The assignment

$$
\pi_{N}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

defines a surjective homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

Evaluation homomorphism

Proposition. The assignment

$$
\pi_{N}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

defines a surjective homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)$.
Moreover, the assignment

$$
E_{i j} \mapsto t_{i j}^{(1)}
$$

defines an embedding $\mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Evaluation homomorphism

Proposition. The assignment

$$
\pi_{N}: t_{i j}(u) \mapsto \delta_{i j}+E_{i j} u^{-1}
$$

defines a surjective homomorphism $\mathrm{Y}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)$.
Moreover, the assignment

$$
E_{i j} \mapsto t_{i j}^{(1)}
$$

defines an embedding $\mathrm{U}\left(\mathfrak{g l}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.
Hence, we may regard $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$ as a subalgebra of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Matrix form of the defining relations

Matrix form of the defining relations

Introduce the $N \times N$ matrix $T(u)$ whose $i j$-th entry is the series
$t_{i j}(u)$.

Matrix form of the defining relations

Introduce the $N \times N$ matrix $T(u)$ whose $i j$-th entry is the series
$t_{j}(u)$. We regard $T(u)$ as an element of the algebra
$\operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]:$

$$
T(u)=\sum_{i, j=1}^{N} e_{i j} \otimes t_{i j}(u),
$$

where $e_{i j} \in \operatorname{End} \mathbb{C}^{N}$ are the standard matrix units.

For any positive integer m consider the algebra

For any positive integer m consider the algebra

$$
\underbrace{\text { End } \mathbb{C}^{N} \otimes \cdots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

For any $a \in\{1, \ldots, m\}$ denote by $T_{a}(u)$ the matrix $T(u)$ which corresponds to the a-th copy of the algebra End \mathbb{C}^{N} in the tensor product algebra.

For any positive integer m consider the algebra

$$
\underbrace{\text { End } \mathbb{C}^{N} \otimes \cdots \otimes \operatorname{End} \mathbb{C}^{N}}_{m} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

For any $a \in\{1, \ldots, m\}$ denote by $T_{a}(u)$ the matrix $T(u)$ which corresponds to the a-th copy of the algebra End \mathbb{C}^{N} in the tensor product algebra. That is, $T_{a}(u)$ is a formal power series in u^{-1} given by

$$
T_{a}(u)=\sum_{i, j=1}^{N} \underbrace{1 \otimes \cdots \otimes 1}_{a-1} \otimes e_{i j} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{m-a} \otimes t_{i j}(u),
$$

where 1 is the identity matrix.

Similarly, if

$$
C=\sum_{i, j, k, l=1}^{N} c_{i j k l} e_{i j} \otimes e_{k l} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

Similarly, if

$$
C=\sum_{i, j, k, l=1}^{N} c_{i j k l} e_{i j} \otimes e_{k l} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

then for any two indices $a, b \in\{1, \ldots, m\}$ such that $a<b$, define the element $C_{a b}$ of the algebra $\left(\operatorname{End} \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
C_{a b}=\sum_{i, j, k, l=1}^{N} c_{i j k l} \underbrace{1 \otimes \cdots \otimes 1}_{a-1} \otimes \boldsymbol{e}_{i j} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{b-a-1} \otimes e_{k l} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{m-b} .
$$

Consider now the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

Consider now the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

The rational function

$$
R(u)=1-P u^{-1}
$$

with values in End $\mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ is called the Yang R-matrix.

Proposition. We have the identity

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

Proposition. We have the identity

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

This relation is known as the Yang-Baxter equation. The Yang R-matrix is its simplest nontrivial solution.

Proposition. The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Proposition. The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Here $T_{1}(u)$ and $T_{2}(v)$ as formal power series with the coefficients in the algebra

$$
\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

Proposition. The defining relations of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the equivalent form

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Here $T_{1}(u)$ and $T_{2}(v)$ as formal power series with the coefficients in the algebra

$$
\operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

The matrix relation is called the $R T T$ relation (or ternary relation).

Quantum determinant

Quantum determinant

For any $m \geqslant 2$ introduce the rational function $R\left(u_{1}, \ldots, u_{m}\right)$ with values in the tensor product algebra $\left(\text { End } \mathbb{C}^{N}\right)^{\otimes m}$ by

$$
R\left(u_{1}, \ldots, u_{m}\right)=\left(R_{m-1, m}\right)\left(R_{m-2, m} R_{m-2, m-1}\right) \ldots\left(R_{1 m} \ldots R_{12}\right)
$$

where u_{1}, \ldots, u_{m} are independent complex variables and

$$
R_{i j}=R_{i j}\left(u_{i}-u_{j}\right)=1-P_{i j}\left(u_{i}-u_{j}\right)^{-1}
$$

Applying the RTT relation repeatedly, we come to the fundamental relation

$$
R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)
$$

Applying the RTT relation repeatedly, we come to the fundamental relation
$R\left(u_{1}, \ldots, u_{m}\right) T_{1}\left(u_{1}\right) \ldots T_{m}\left(u_{m}\right)=T_{m}\left(u_{m}\right) \ldots T_{1}\left(u_{1}\right) R\left(u_{1}, \ldots, u_{m}\right)$.

Lemma (Jucys). If $u_{i}-u_{i+1}=1$ for all $i=1, \ldots, m-1$ then

$$
R\left(u_{1}, \ldots, u_{m}\right)=A_{m},
$$

the image of the anti-symmetrizer $\sum_{p \in \mathfrak{S}_{m}} \operatorname{sgn} p \cdot p \in \mathbb{C}\left[\mathfrak{S}_{m}\right]$ in the algebra $\operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes m}$.

Hence, taking $m=N$ we get

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=T_{N}(u-N+1) \ldots T_{1}(u) A_{N} .
$$

Hence, taking $m=N$ we get

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=T_{N}(u-N+1) \ldots T_{1}(u) A_{N}
$$

The operator A_{N} on $\left(\mathbb{C}^{N}\right)^{\otimes N}$ is one-dimensional.

Hence, taking $m=N$ we get

$$
A_{N} T_{1}(u) \ldots T_{N}(u-N+1)=T_{N}(u-N+1) \ldots T_{1}(u) A_{N} .
$$

The operator A_{N} on $\left(\mathbb{C}^{N}\right)^{\otimes N}$ is one-dimensional.
Definition
The quantum determinant of the matrix $T(u)$ with the coefficients in $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is the formal series

$$
q \operatorname{det} T(u)=1+d_{1} u^{-1}+d_{2} u^{-2}+\ldots
$$

such that both sides of the above relation are equal to
A_{N} qdet $T(u)$.

We have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1), 1}(u) \ldots t_{p(N), N}(u-N+1) \\
& =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{1, p(1)}(u-N+1) \ldots t_{N, p(N)}(u)
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{p(1), 1}(u) \ldots t_{p(N), N}(u-N+1) \\
& =\sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p \cdot t_{1, p(1)}(u-N+1) \ldots t_{N, p(N)}(u)
\end{aligned}
$$

Example. For $N=2$ we have

$$
\begin{aligned}
\operatorname{qdet} T(u) & =t_{11}(u) t_{22}(u-1)-t_{21}(u) t_{12}(u-1) \\
& =t_{22}(u) t_{11}(u-1)-t_{12}(u) t_{21}(u-1) \\
& =t_{11}(u-1) t_{22}(u)-t_{12}(u-1) t_{21}(u) \\
& =t_{22}(u-1) t_{11}(u)-t_{21}(u-1) t_{12}(u) .
\end{aligned}
$$

Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Theorem (KS). The coefficients d_{1}, d_{2}, \ldots of the series qdet $T(u)$ belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Theorem (KS). The coefficients d_{1}, d_{2}, \ldots of the series qdet $T(u)$ belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. Moreover, these elements are algebraically independent and generate $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Theorem (KS). The coefficients d_{1}, d_{2}, \ldots of the series qdet $T(u)$ belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. Moreover, these elements are algebraically independent and generate $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Note that

$$
\mathcal{C}(u)=u(u-1) \ldots(u-N+1) \pi_{N}(\operatorname{qdet} T(u)) .
$$

Center of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$

Theorem (KS). The coefficients d_{1}, d_{2}, \ldots of the series qdet $T(u)$ belong to the center $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$ of the algebra $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$. Moreover, these elements are algebraically independent and generate $\mathrm{ZY}\left(\mathfrak{g l}_{N}\right)$.

Note that

$$
\mathcal{C}(u)=u(u-1) \ldots(u-N+1) \pi_{N}(\operatorname{qdet} T(u)) .
$$

Corollary. All coefficients of $\mathcal{C}(u)$ are Casimir elements for $\mathfrak{g l}_{N}$.

Quantum Liouville formula

Quantum Liouville formula

Consider the series $z(u)$ with coefficients from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ given by the formula

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr}\left(T(u) T^{-1}(u-N)\right),
$$

so that

$$
z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\ldots \quad \text { where } \quad z_{i} \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

Quantum Liouville formula

Consider the series $z(u)$ with coefficients from $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ given by the formula

$$
z(u)^{-1}=\frac{1}{N} \operatorname{tr}\left(T(u) T^{-1}(u-N)\right),
$$

so that

$$
z(u)=1+z_{2} u^{-2}+z_{3} u^{-3}+\ldots \quad \text { where } \quad z_{i} \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)
$$

Theorem (N). We have the relation

$$
z(u)=\frac{\mathrm{qdet} T(u-1)}{q \operatorname{det} T(u)}
$$

Application to $\mathfrak{g l}_{N}$

Application to $\mathfrak{g l}_{N}$

Recall the evaluation homomorphism $\pi_{N}: T(u) \mapsto 1+E u^{-1}$:

$$
\begin{aligned}
\pi_{N}: z(-u+N)^{-1} & \mapsto \frac{1}{N} \operatorname{tr}\left(\left(1-E(u-N)^{-1}\right)\left(1-E u^{-1}\right)^{-1}\right) \\
& =1-\frac{1}{u-N} \sum_{k=1}^{\infty} \operatorname{tr} E^{k} u^{-k}
\end{aligned}
$$

Application to $\mathfrak{g l}_{N}$

Recall the evaluation homomorphism $\pi_{N}: T(u) \mapsto 1+E u^{-1}$:

$$
\begin{aligned}
\pi_{N}: z(-u+N)^{-1} & \mapsto \frac{1}{N} \operatorname{tr}\left(\left(1-E(u-N)^{-1}\right)\left(1-E u^{-1}\right)^{-1}\right) \\
& =1-\frac{1}{u-N} \sum_{k=1}^{\infty} \operatorname{tr} E^{k} u^{-k}
\end{aligned}
$$

The quantum Liouville formula gives

$$
z(u+1)^{-1}=\frac{q \operatorname{det} T(u+1)}{q \operatorname{det} T(u)}
$$

Applying the evaluation homomorphism to both sides of this relation, we get Newton's formula.

Twisted Yangians

Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_{N} as the subalgebra of $\mathfrak{g l}_{N}$ spanned by the skew-symmetric matrices. The elements $F_{i j}=E_{i j}-E_{j i}$ with $i<j$ form a basis of \mathfrak{o}_{N}. Introduce the $N \times N$ matrix F whose $i j$-th entry is $F_{i j}$.

Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_{N} as the subalgebra of $\mathfrak{g l}_{N}$ spanned by the skew-symmetric matrices. The elements $F_{i j}=E_{i j}-E_{j i}$ with $i<j$ form a basis of \mathfrak{o}_{N}. Introduce the $N \times N$ matrix F whose $i j$-th entry is $F_{i j}$.

The matrix elements of the powers of the matrix F are known to satisfy the relations

$$
\left[F_{i j},\left(F^{s}\right)_{k l}\right]=\delta_{k j}\left(F^{s}\right)_{i l}-\delta_{i l}\left(F^{s}\right)_{k j}-\delta_{i k}\left(F^{s}\right)_{j l}+\delta_{l j}\left(F^{s}\right)_{k i}
$$

Introduce the generating series

$$
f_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty}\left(F^{r}\right)_{i j}\left(u+\frac{N-1}{2}\right)^{-r}
$$

Introduce the generating series

$$
f_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty}\left(F^{r}\right)_{i j}\left(u+\frac{N-1}{2}\right)^{-r}
$$

Then we have the relations

$$
\begin{array}{r}
\left(u^{2}-v^{2}\right)\left[f_{i j}(u), f_{k l}(v)\right]=(u+v)\left(f_{k j}(u) f_{i l}(v)-f_{k j}(v) f_{i l}(u)\right) \\
-(u-v)\left(f_{i k}(u) f_{j l}(v)-f_{k i}(v) f_{j j}(u)\right) \\
\\
+f_{k i}(u) f_{j l}(v)-f_{k i}(v) f_{j l}(u) .
\end{array}
$$

Introduce the generating series

$$
f_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty}\left(F^{r}\right)_{i j}\left(u+\frac{N-1}{2}\right)^{-r}
$$

Then we have the relations

$$
\begin{array}{r}
\left(u^{2}-v^{2}\right)\left[f_{i j}(u), f_{k l}(v)\right]=(u+v)\left(f_{k j}(u) f_{i l}(v)-f_{k j}(v) f_{i l}(u)\right) \\
-(u-v)\left(f_{i k}(u) f_{j l}(v)-f_{k i}(v) f_{j j}(u)\right) \\
\\
+f_{k i}(u) f_{j l}(v)-f_{k i}(v) f_{j l}(u) .
\end{array}
$$

Let $G=\left[g_{i j}\right]$ be a nonsingular (skew-)symmetric matrix.

The twisted Yangian $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ is an associative algebra with generators $s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots$ where $1 \leqslant i, j \leqslant N$, and the defining relations written in terms of the generating series

$$
s_{i j}(u)=g_{i j}+s_{i j}^{(1)} u^{-1}+s_{i j}^{(2)} u^{-2}+\ldots
$$

The twisted Yangian $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ is an associative algebra with generators $s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots$ where $1 \leqslant i, j \leqslant N$, and the defining relations written in terms of the generating series

$$
s_{i j}(u)=g_{i j}+s_{i j}^{(1)} u^{-1}+s_{i j}^{(2)} u^{-2}+\ldots
$$

as follows

$$
\begin{array}{r}
\left(u^{2}-v^{2}\right)\left[s_{i j}(u), s_{k l}(v)\right]=(u+v)\left(s_{k j}(u) s_{i l}(v)-s_{k j}(v) s_{i l}(u)\right) \\
-(u-v)\left(s_{i k}(u) s_{j l}(v)-s_{k i}(v) s_{l j}(u)\right) \\
+s_{k i}(u) s_{j l}(v)-s_{k i}(v) s_{j l}(u)
\end{array}
$$

The twisted Yangian $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ is an associative algebra with generators $s_{i j}^{(1)}, s_{i j}^{(2)}, \ldots$ where $1 \leqslant i, j \leqslant N$, and the defining relations written in terms of the generating series

$$
s_{i j}(u)=g_{i j}+s_{i j}^{(1)} u^{-1}+s_{i j}^{(2)} u^{-2}+\ldots
$$

as follows

$$
\begin{array}{r}
\left(u^{2}-v^{2}\right)\left[s_{i j}(u), s_{k l}(v)\right]=(u+v)\left(s_{k j}(u) s_{i l}(v)-s_{k j}(v) s_{i l}(u)\right) \\
-(u-v)\left(s_{i k}(u) s_{j l}(v)-s_{k i}(v) s_{l j}(u)\right) \\
+s_{k i}(u) s_{j l}(v)-s_{k i}(v) s_{j l}(u)
\end{array}
$$

and

$$
s_{j i}(-u)= \pm s_{i j}(u)+\frac{s_{i j}(u)-s_{i j}(-u)}{2 u} .
$$

Matrix form of the defining relations

Matrix form of the defining relations

Introduce the $N \times N$ matrix $S(u)$ by

$$
S(u)=\sum_{i, j=1}^{N} e_{i j} \otimes s_{i j}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

Matrix form of the defining relations

Introduce the $N \times N$ matrix $S(u)$ by

$$
S(u)=\sum_{i, j=1}^{N} e_{i j} \otimes s_{i j}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations of $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ have the form

$$
R(u-v) S_{1}(u) R^{t}(-u-v) S_{2}(v)=S_{2}(v) R^{t}(-u-v) S_{1}(u) R(u-v)
$$

Matrix form of the defining relations

Introduce the $N \times N$ matrix $S(u)$ by

$$
S(u)=\sum_{i, j=1}^{N} e_{i j} \otimes s_{i j}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

The defining relations of $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ have the form

$$
R(u-v) S_{1}(u) R^{t}(-u-v) S_{2}(v)=S_{2}(v) R^{t}(-u-v) S_{1}(u) R(u-v)
$$

and

$$
S^{t}(-u)= \pm S(u)+\frac{S(u)-S(-u)}{2 u}
$$

Here

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix, while

$$
R^{t}(u)=1-Q u^{-1}, \quad Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i j}
$$

Here

$$
R(u)=1-P u^{-1}
$$

is the Yang R-matrix, while

$$
R^{t}(u)=1-Q u^{-1}, \quad Q=\sum_{i, j=1}^{N} e_{i j} \otimes e_{i j}
$$

The mapping

$$
S(u) \mapsto T(u) G T^{t}(-u)
$$

defines an embedding $\mathrm{Y}\left(\mathfrak{g}_{N}\right) \hookrightarrow \mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Sklyanin determinant

Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

$$
\operatorname{sdet} S(u)=\gamma_{n, G}(u) \operatorname{qdet} T(u) \operatorname{qdet} T(-u+N-1),
$$

where

$$
\gamma_{n, G}(u)= \begin{cases}\operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ \frac{2 u+1}{2 u-2 n+1} \operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

$$
\operatorname{sdet} S(u)=\gamma_{n, G}(u) \operatorname{qdet} T(u) \operatorname{qdet} T(-u+N-1)
$$

where

$$
\gamma_{n, G}(u)= \begin{cases}\operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ \frac{2 u+1}{2 u-2 n+1} \operatorname{det} G & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

All coefficients of $\operatorname{sdet} S(u)$ are contained in $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$ and belong to the center of $\mathrm{Y}\left(\mathfrak{g}_{N}\right)$.

Introduce the scalar $\gamma_{n}(u)$ by

$$
\gamma_{n}(u)= \begin{cases}1 & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ (-1)^{n} \frac{2 u+1}{2 u-2 n+1} & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

Introduce the scalar $\gamma_{n}(u)$ by

$$
\gamma_{n}(u)= \begin{cases}1 & \text { if } \mathfrak{g}_{N}=\mathfrak{o}_{N} \\ (-1)^{n} \frac{2 u+1}{2 u-2 n+1} & \text { if } \mathfrak{g}_{N}=\mathfrak{s p}_{2 n}\end{cases}
$$

Theorem (M). We have
sdet $S(u)$

$$
\begin{aligned}
=\gamma_{n}(u) \sum_{p \in \mathfrak{S}_{N}} & \operatorname{sgn} p p^{\prime} \cdot s_{p(1), p^{\prime}(1)}^{t}(-u) \ldots s_{p(n), p^{\prime}(n)}^{t}(-u+n-1) \\
& \times s_{p(n+1), p^{\prime}(n+1)}(u-n) \ldots s_{p(N), p^{\prime}(N)}(u-N+1)
\end{aligned}
$$

Examples. For $N=2$ we have
$\operatorname{sdet} S(u)=\frac{1 \mp 2 u}{1-2 u}\left(s_{11}^{t}(-u) s_{22}(u-1)-s_{21}^{t}(-u) s_{12}(u-1)\right)$.

Examples. For $N=2$ we have
$\operatorname{sdet} S(u)=\frac{1 \mp 2 u}{1-2 u}\left(s_{11}^{t}(-u) s_{22}(u-1)-s_{21}^{t}(-u) s_{12}(u-1)\right)$.

If $N=3$ then $\operatorname{sdet} S(u)=$

$$
\begin{aligned}
& s_{22}^{t}(-u) s_{11}(u-1) s_{33}(u-2)+s_{12}^{t}(-u) s_{31}(u-1) s_{23}(u-2) \\
& +s_{21}^{t}(-u) s_{32}(u-1) s_{13}(u-2)-s_{12}^{t}(-u) s_{21}(u-1) s_{33}(u-2) \\
& -s_{32}^{t}(-u) s_{11}(u-1) s_{23}(u-2)-s_{31}^{t}(-u) s_{22}(u-1) s_{13}(u-2) .
\end{aligned}
$$

