Littlewood-Richardson polynomials

Alexander Molev

University of Sydney

A diagram (or partition) is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of
integers λ_{i} such that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$, depicted as an array of unit boxes.

A diagram (or partition) is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of integers λ_{i} such that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$, depicted as an array of unit boxes.

Example. The diagram $\lambda=(5,5,3)$ is

A diagram (or partition) is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of integers λ_{i} such that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$, depicted as an array of unit boxes.

Example. The diagram $\lambda=(5,5,3)$ is

The number of boxes is the weight of the diagram, denoted $|\lambda|$.
The number of nonzero rows is its length, denoted $\ell(\lambda)$.

A diagram (or partition) is a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of integers λ_{i} such that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$, depicted as an array of unit boxes.

Example. The diagram $\lambda=(5,5,3)$ is

$$
|\lambda|=13 \quad \ell(\lambda)=3
$$

The number of boxes is the weight of the diagram, denoted $|\lambda|$.
The number of nonzero rows is its length, denoted $\ell(\lambda)$.

Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$

Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$

Let $\ell(\lambda) \leqslant n$ and let V^{λ} denote the irreducible $\mathfrak{g l}_{n}$-module with the highest weight λ.

Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$

Let $\ell(\lambda) \leqslant n$ and let V^{λ} denote the irreducible $\mathfrak{g l}_{n}$-module with the highest weight λ.

Then

$$
V^{\lambda} \otimes V^{\mu} \cong \underset{\nu}{\oplus} c_{\lambda \mu}^{\nu} V^{\nu}
$$

Here $\quad \ell(\lambda), \ell(\mu), \ell(\nu) \leqslant n$.

Let $|\lambda|=k$ and let χ^{λ} denote the corresponding
irreducible character of the symmetric group \mathfrak{S}_{k}.

Let $|\lambda|=k$ and let χ^{λ} denote the corresponding
irreducible character of the symmetric group \mathfrak{S}_{k}.

Then

$$
\operatorname{Ind}_{\mathfrak{G}_{k} \times \mathfrak{S}_{l}}^{\mathfrak{S}_{k+1}}\left(\chi^{\lambda} \times \chi^{\mu}\right)=\sum_{\nu} c_{\lambda \mu}^{\nu} \chi^{\nu} .
$$

Here $|\lambda|=k, \quad|\mu|=I, \quad|\nu|=k+I$.

Let $|\lambda|=k$ and let χ^{λ} denote the corresponding
irreducible character of the symmetric group \mathfrak{S}_{k}.

Then

$$
\operatorname{Ind} \underset{\mathfrak{S}_{k} \times \mathfrak{S}_{l}}{\mathfrak{S}_{k+1}}\left(\chi^{\lambda} \times \chi^{\mu}\right)=\sum_{\nu} c_{\lambda \mu}^{\nu} \chi^{\nu}
$$

Here $|\lambda|=k, \quad|\mu|=I, \quad|\nu|=k+I$.
In particular,

$$
c_{\lambda \mu}^{\nu} \neq 0 \quad \Longrightarrow \quad|\nu|=|\lambda|+|\mu| .
$$

Let n and N be nonnegative integers with $n \leqslant N$ and let $\mathrm{Gr}_{n, N}$ denote the Grassmannian of the n-dimensional vector subspaces of \mathbb{C}^{N}. The cohomology ring $H^{*}\left(\mathrm{Gr}_{n, N}\right)$ has a basis of the Schubert classes σ_{λ} parameterized by all diagrams λ contained in the $n \times m$ rectangle, $m=N-n$.

Let n and N be nonnegative integers with $n \leqslant N$ and let $\mathrm{Gr}_{n, N}$ denote the Grassmannian of the n-dimensional vector subspaces of \mathbb{C}^{N}. The cohomology ring $H^{*}\left(\mathrm{Gr}_{n, N}\right)$ has a basis of the Schubert classes σ_{λ} parameterized by all diagrams λ contained in the $n \times m$ rectangle, $m=N-n$.

We have

$$
\sigma_{\lambda} \sigma_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

Here λ, μ, ν are contained in the $n \times m$ rectangle.

Let $x=\left(x_{1}, x_{2}, \ldots\right)$ be an infinite set of variables.

Let $x=\left(x_{1}, x_{2}, \ldots\right)$ be an infinite set of variables.
Given any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, define the corresponding monomial symmetric function by

$$
m_{\lambda}(x)=\sum_{\sigma} x_{\sigma(1)}^{\lambda_{1}} x_{\sigma(2)}^{\lambda_{2}} \ldots x_{\sigma(n)}^{\lambda_{n}}
$$

summed over permutations σ of the x_{i} which give distinct monomials.

Let $x=\left(x_{1}, x_{2}, \ldots\right)$ be an infinite set of variables.
Given any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, define the corresponding monomial symmetric function by

$$
m_{\lambda}(x)=\sum_{\sigma} x_{\sigma(1)}^{\lambda_{1}} x_{\sigma(2)}^{\lambda_{2}} \ldots x_{\sigma(n)}^{\lambda_{n}}
$$

summed over permutations σ of the x_{i} which give distinct monomials.

The algebra of symmetric functions Λ is defined as the \mathbb{Q}-span of all monomial symmetric functions.

Examples: power sums symmetric functions

$$
p_{k}(x)=m_{(k)}(x)=\sum_{i=1}^{\infty} x_{i}^{k},
$$

Examples: power sums symmetric functions

$$
p_{k}(x)=m_{(k)}(x)=\sum_{i=1}^{\infty} x_{i}^{k}
$$

elementary symmetric functions

$$
e_{k}(x)=m_{\left(1^{k}\right)}(x)=\sum_{i_{1}>\cdots>i_{k} \geqslant 1} x_{i_{1}} \ldots x_{i_{k}}
$$

Examples: power sums symmetric functions

$$
p_{k}(x)=m_{(k)}(x)=\sum_{i=1}^{\infty} x_{i}^{k}
$$

elementary symmetric functions

$$
e_{k}(x)=m_{\left(1^{k}\right)}(x)=\sum_{i_{1}>\cdots>i_{k} \geqslant 1} x_{i_{1}} \ldots x_{i_{k}}
$$

complete symmetric functions

$$
h_{k}(x)=\sum_{|\lambda|=k} m_{\lambda}(x)=\sum_{i_{1} \geqslant \cdots \geqslant i_{k} \geqslant 1} x_{i_{1}} \ldots x_{i_{k}} .
$$

Schur functions

Schur functions

Given a diagram λ, a reverse λ-tableau T is obtained by filling in the boxes of λ with the numbers $1,2, \ldots$ in such a way that the entries weakly decrease along the rows and strictly decrease down the columns. If $\alpha=(i, j)$ is a box of λ we let $T(\alpha)=T(i, j)$ denote the entry of T in the box α.

Schur functions

Given a diagram λ, a reverse λ-tableau T is obtained by filling in the boxes of λ with the numbers $1,2, \ldots$ in such a way that the entries weakly decrease along the rows and strictly decrease down the columns. If $\alpha=(i, j)$ is a box of λ we let $T(\alpha)=T(i, j)$ denote the entry of T in the box α.

Example. A reverse λ-tableau for $\lambda=(5,5,3)$:

5	5	4	2	2
4	3	2	1	1
2	1	1		
$y y n n n$				

The Schur function $s_{\lambda}(x)$ corresponding to λ is defined by

$$
s_{\lambda}(x)=\sum_{T} \prod_{\alpha \in \lambda} x_{T(\alpha)},
$$

summed over the reverse λ-tableaux T.

The Schur function $s_{\lambda}(x)$ corresponding to λ is defined by

$$
s_{\lambda}(x)=\sum_{T} \prod_{\alpha \in \lambda} x_{T(\alpha)}
$$

summed over the reverse λ-tableaux T.

Example. For $\lambda=(2,1)$ the reverse tableaux are

$$
\begin{array}{|l|l|}
\hline i & j \\
\hline k &
\end{array} \quad \text { with } \quad i \geqslant j \text { and } i>k .
$$

The Schur function $s_{\lambda}(x)$ corresponding to λ is defined by

$$
s_{\lambda}(x)=\sum_{T} \prod_{\alpha \in \lambda} x_{T(\alpha)}
$$

summed over the reverse λ-tableaux T.

Example. For $\lambda=(2,1)$ the reverse tableaux are

$$
\begin{array}{|l|l|}
\hline i & j \\
\hline k &
\end{array} \quad \text { with } \quad i \geqslant j \text { and } i>k .
$$

Hence

$$
s_{(2,1)}(x)=\sum_{i \geqslant j, i>k} x_{i} x_{j} x_{k} .
$$

Note also $\quad h_{k}(x)=s_{(k)}(x), \quad e_{k}(x)=s_{\left(1^{k}\right)}(x)$.

Note also

$$
h_{k}(x)=s_{(k)}(x), \quad e_{k}(x)=s_{\left(1^{k}\right)}(x)
$$

Tableaux

Note also

$$
h_{k}(x)=s_{(k)}(x), \quad e_{k}(x)=s_{\left(1^{k}\right)}(x)
$$

Tableaux

Hence

$$
\begin{aligned}
s_{(k)}(x) & =\sum_{i_{1} \geqslant \cdots \geqslant i_{k} \geqslant 1} x_{i_{1}} \ldots x_{i_{k}}, \\
s_{\left(1^{k}\right)}(x) & =\sum_{i_{1}>\cdots>i_{k} \geqslant 1} x_{i_{1}} \ldots x_{i_{k}} .
\end{aligned}
$$

The Schur functions $s_{\lambda}(x)$ parameterized by all diagrams form a basis of the algebra of symmetric functions Λ.

The Schur functions $s_{\lambda}(x)$ parameterized by all diagrams form a basis of the algebra of symmetric functions Λ.

The relation

$$
s_{\lambda}(x) s_{\mu}(x)=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}(x)
$$

defines the Littlewood-Richardson coefficients $C_{\lambda \mu}^{\nu}$.

History:

D. E. Littlewood and A. R. Richardson (1934),
(general formulation, a proof in the case $\ell(\mu) \leqslant 2$),
G. de B. Robinson (1938), (proof contains gaps).

History:

D. E. Littlewood and A. R. Richardson (1934),
(general formulation, a proof in the case $\ell(\mu) \leqslant 2$),
G. de B. Robinson (1938), (proof contains gaps).

Complete proofs:
G. P. Thomas (1974 PhD thesis, 1978 paper),
M. P. Schützenberger (1977).

History:

D. E. Littlewood and A. R. Richardson (1934),
(general formulation, a proof in the case $\ell(\mu) \leqslant 2$),
G. de B. Robinson (1938), (proof contains gaps).

Complete proofs:
G. P. Thomas (1974 PhD thesis, 1978 paper),
M. P. Schützenberger (1977).

Now:
A couple of dozens of versions of the LR rule, $c_{\lambda \mu}^{\nu}$ counts tableaux, trees, hives, honeycombs, cartons, puzzles,

Knutson-Tao-Woodward puzzles

Suppose that λ, μ, ν are contained in $n \times m$ rectangle.
Write each partition in the binary code of length $n+m$.

Knutson-Tao-Woodward puzzles

Suppose that λ, μ, ν are contained in $n \times m$ rectangle.
Write each partition in the binary code of length $n+m$.

Example. The diagram $\lambda=(5,5,3)$ inside 4×7 rectangle is represented as follows:

Knutson-Tao-Woodward puzzles

Suppose that λ, μ, ν are contained in $n \times m$ rectangle.
Write each partition in the binary code of length $n+m$.

Example. The diagram $\lambda=(5,5,3)$ inside 4×7 rectangle is represented as follows:

$\longrightarrow \quad 00110010001$

Write the sequences corresponding to λ, μ, ν around the border of an equilateral triangle of side length $n+m$ as indicated:

Write the sequences corresponding to λ, μ, ν around the border of an equilateral triangle of side length $n+m$ as indicated:

Write the sequences corresponding to λ, μ, ν around the border of an equilateral triangle of side length $n+m$ as indicated:

Theorem [KTW '03]. The Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$ equals the number of triangular puzzles which can be obtained with the use of the following set of unit puzzle pieces.

Puzzle pieces

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=(2), \quad \mu=(1), \quad \nu=(2,1)$.

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=(2), \quad \mu=(1), \quad \nu=(2,1)$.
Take $n=m=2$ so that

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=(2), \quad \mu=(1), \quad \nu=(2,1)$.
Take $n=m=2$ so that

Example. Calculation of $c_{\lambda_{\mu}}^{\nu}, \quad \lambda=(2), \quad \mu=(1), \quad \nu=(2,1)$.
Take $n=m=2$ so that

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=(2), \quad \mu=(1), \quad \nu=(2,1)$.
Take $n=m=2$ so that

$\mu \quad \longrightarrow \quad 0101$

ν

1010

Tiling model interpretation (P. Zinn-Justin, '08)

$10 \overbrace{\square} \frac{1}{\square}$

A tableau version of the LR rule

Let R denote a sequence of diagrams

$$
\mu=\rho^{(0)} \rightarrow \rho^{(1)} \rightarrow \cdots \rightarrow \rho^{(I-1)} \rightarrow \rho^{(I)}=\nu
$$

$\rho \rightarrow \sigma$ means σ is obtained from ρ by adding one box.

A tableau version of the LR rule

Let R denote a sequence of diagrams

$$
\mu=\rho^{(0)} \rightarrow \rho^{(1)} \rightarrow \cdots \rightarrow \rho^{(I-1)} \rightarrow \rho^{(I)}=\nu
$$

$\rho \rightarrow \sigma$ means σ is obtained from ρ by adding one box.

Let r_{i} denote the row number of the box added to $\rho^{(i-1)}$.

The sequence $r_{1} r_{2} \ldots r_{l}$ is the Yamanouchi symbol of R.

Example. Let

$$
R: \quad(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \rightarrow(3,3,1) \rightarrow(4,3,1)
$$

Example. Let

$$
R: \quad(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \rightarrow(3,3,1) \rightarrow(4,3,1)
$$

or, with diagrams,

Example. Let

$$
R: \quad(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \rightarrow(3,3,1) \rightarrow(4,3,1)
$$

or, with diagrams,

the Yamanouchi symbol is 2321.

The column word of a tableau T is the sequence of all entries of T written in the column order: by reading the entries by columns from left to right and from bottom to top in each column.

The column word of a tableau T is the sequence of all entries of T written in the column order: by reading the entries by columns from left to right and from bottom to top in each column.

Example. A reverse λ-tableau for $\lambda=(5,5,3)$:

5	5	4	2	2
4	3	2	1	1
2	1	1		
$y y n n n$				

The column word of a tableau T is the sequence of all entries of T written in the column order: by reading the entries by columns from left to right and from bottom to top in each column.

Example. A reverse λ-tableau for $\lambda=(5,5,3)$:

5	5	4	2	2
4	3	2	1	1
2	1	1		
$y y n n n$				

Its column word is
2451351241212.

Let λ and ν be two diagrams.

Let λ and ν be two diagrams.
A reverse λ-tableau T is called ν-bounded if the entries in the top row do not exceed the respective column lengths of ν :

$$
T(1,1) \leqslant \nu_{1}^{\prime}, \quad T(1,2) \leqslant \nu_{2}^{\prime}, \quad \ldots .
$$

Let λ and ν be two diagrams.
A reverse λ-tableau T is called ν-bounded if the entries in the top row do not exceed the respective column lengths of ν :

$$
T(1,1) \leqslant \nu_{1}^{\prime}, \quad T(1,2) \leqslant \nu_{2}^{\prime}, \quad \ldots .
$$

Such tableaux exist only if $\lambda \subseteq \nu$.

Let λ and ν be two diagrams.
A reverse λ-tableau T is called ν-bounded if the entries in the top row do not exceed the respective column lengths of ν :

$$
T(1,1) \leqslant \nu_{1}^{\prime}, \quad T(1,2) \leqslant \nu_{2}^{\prime}, \quad \ldots .
$$

Such tableaux exist only if $\lambda \subseteq \nu$.

Let λ and ν be two diagrams.
A reverse λ-tableau T is called ν-bounded if the entries in the top row do not exceed the respective column lengths of ν :

$$
T(1,1) \leqslant \nu_{1}^{\prime}, \quad T(1,2) \leqslant \nu_{2}^{\prime}, \quad \ldots .
$$

Such tableaux exist only if $\lambda \subseteq \nu$.
Maximal entries:

Theorem. The Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$ equals

 the number of common elements in the two sets:$\{$ column words of the ν-bounded reverse λ-tableaux $\}$ and
$\{$ Yamanouchi symbols of the sequences from μ to $\nu\}$.

Theorem. The Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$ equals the number of common elements in the two sets:
$\{$ column words of the ν-bounded reverse λ-tableaux $\}$ and $\{$ Yamanouchi symbols of the sequences from μ to $\nu\}$.

Remarks.

- This is a particular case of a more general theorem (see below). It can be shown this is equivalent to the original formulation of the Littlewood-Richardson rule.
- The theorem is equivalent to the puzzle rule (T. Tao).

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=\mu=(2,1), \quad \nu=(3,2,1)$.

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=\mu=(2,1), \quad \nu=(3,2,1)$.

Here $\nu_{1}^{\prime}=3, \nu_{2}^{\prime}=2, \nu_{3}^{\prime}=1$. The ν-bounded λ-tableaux are

Example. Calculation of $c_{\lambda \mu}^{\nu}, \quad \lambda=\mu=(2,1), \quad \nu=(3,2,1)$.

Here $\nu_{1}^{\prime}=3, \nu_{2}^{\prime}=2, \nu_{3}^{\prime}=1$. The ν-bounded λ-tableaux are

The set of column words is

$$
\{232, \quad 132, \quad 231, \quad 131, \quad 122, \quad 121\}
$$

The sequences from $(2,1)$ to $(3,2,1)$:
$(2,1) \rightarrow(3,1) \rightarrow(3,2) \rightarrow(3,2,1)$
$(2,1) \rightarrow(3,1) \rightarrow(3,1,1) \rightarrow(3,2,1)$
$(2,1) \rightarrow(2,2) \rightarrow(3,2) \rightarrow(3,2,1)$
$(2,1) \rightarrow(2,2) \rightarrow(2,2,1) \rightarrow(3,2,1)$
$(2,1) \rightarrow(2,1,1) \rightarrow(3,1,1) \rightarrow(3,2,1)$
$(2,1) \rightarrow(2,1,1) \rightarrow(2,2,1) \rightarrow(3,2,1)$

The sequences from $(2,1)$ to $(3,2,1)$:

$$
\begin{aligned}
& (2,1) \rightarrow(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(3,1) \rightarrow(3,1,1) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,2) \rightarrow(3,2) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,2) \rightarrow(2,2,1) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,1,1) \rightarrow(3,1,1) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,1,1) \rightarrow(2,2,1) \rightarrow(3,2,1)
\end{aligned}
$$

The set of the Yamanouchi symbols is

$$
\{123,132,213,231, \quad 312,321\} .
$$

The sequences from $(2,1)$ to $(3,2,1)$:

$$
\begin{aligned}
& (2,1) \rightarrow(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(3,1) \rightarrow(3,1,1) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,2) \rightarrow(3,2) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,2) \rightarrow(2,2,1) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,1,1) \rightarrow(3,1,1) \rightarrow(3,2,1) \\
& (2,1) \rightarrow(2,1,1) \rightarrow(2,2,1) \rightarrow(3,2,1)
\end{aligned}
$$

The set of the Yamanouchi symbols is

$$
\{123,132,213,231, \quad 312,321\} .
$$

Hence $c_{\lambda \mu}^{\nu}=2$.

Pieri rules

Take $\lambda=(k)$ and consider a reverse tableau

$$
\begin{array}{|l|l|l|l|}
\hline r_{1} & r_{2} & \cdots & r_{k} \\
\hline
\end{array}
$$

with the column word $r_{1} r_{2} \ldots r_{k}$. This column word can coincide with the Yamanouchi symbol of a sequence R of diagrams from μ to ν only if no two boxes were added in the same column.

Pieri rules

Take $\lambda=(k)$ and consider a reverse tableau

$$
\begin{array}{|l|l|l|l|}
\hline r_{1} & r_{2} & \cdots & r_{k} \\
\hline
\end{array}
$$

with the column word $r_{1} r_{2} \ldots r_{k}$. This column word can coincide with the Yamanouchi symbol of a sequence R of diagrams from μ to ν only if no two boxes were added in the same column.

Hence, $c_{(k) \mu}^{\nu} \leqslant 1$.

Pieri rules

Take $\lambda=(k)$ and consider a reverse tableau

$$
\begin{array}{|l|l|l|l|}
\hline r_{1} & r_{2} & \cdots & r_{k} \\
\hline
\end{array}
$$

with the column word $r_{1} r_{2} \ldots r_{k}$. This column word can coincide with the Yamanouchi symbol of a sequence R of diagrams from μ to ν only if no two boxes were added in the same column.

Hence, $c_{(k) \mu}^{\nu} \leqslant 1 . \quad$ Similarly, $c_{\left(1^{k}\right) \mu}^{\nu} \leqslant 1$.

Corollary. We have

$$
h_{k}(x) s_{\mu}(x)=\sum_{\nu} s_{\nu}(x)
$$

summed over diagrams ν obtained from μ by adding k boxes in different columns.

Corollary. We have

$$
h_{k}(x) s_{\mu}(x)=\sum_{\nu} s_{\nu}(x)
$$

summed over diagrams ν obtained from μ by adding k boxes in different columns.

Moreover,

$$
e_{k}(x) s_{\mu}(x)=\sum_{\nu} s_{\nu}(x)
$$

summed over diagrams ν obtained from μ by adding k boxes in different rows.

Double symmetric functions

The elements of the algebra of symmetric functions Λ can be viewed as sequences of symmetric polynomials:

$$
\begin{aligned}
& \sum_{i=1}^{\infty} x_{i}^{k} \quad \longrightarrow \\
& x_{1}^{k}, \quad x_{1}^{k}+x_{2}^{k}, \quad \ldots, \quad x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}, \quad \cdots
\end{aligned}
$$

Double symmetric functions

The elements of the algebra of symmetric functions \wedge can be viewed as sequences of symmetric polynomials:

$$
\begin{aligned}
& \sum_{i=1}^{\infty} x_{i}^{k} \quad \longrightarrow \\
& x_{1}^{k}, \quad x_{1}^{k}+x_{2}^{k}, \quad \ldots, \quad x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}, \quad \cdots
\end{aligned}
$$

The polynomials in such a sequence are compatible with the evaluation homomorphisms

$$
\varphi_{n}: P\left(x_{1}, \ldots, x_{n}\right) \mapsto P\left(x_{1}, \ldots, x_{n-1}, 0\right) .
$$

Let $a=\left(a_{i}\right), i \in \mathbb{Z}$, be a sequence of variables.
Denote by Λ_{n} the ring of symmetric polynomials in x_{1}, \ldots, x_{n} with coefficients in $\mathbb{Q}[a]$.

Let $a=\left(a_{i}\right), i \in \mathbb{Z}$, be a sequence of variables.
Denote by Λ_{n} the ring of symmetric polynomials in x_{1}, \ldots, x_{n} with coefficients in $\mathbb{Q}[a]$.

Consider the sequences of symmetric polynomials compatible with the evaluation homomorphisms

$$
\varphi_{n}: \Lambda_{n} \rightarrow \Lambda_{n-1}, \quad P\left(x_{1}, \ldots, x_{n}\right) \mapsto P\left(x_{1}, \ldots, x_{n-1}, a_{n}\right)
$$

Let $a=\left(a_{i}\right), i \in \mathbb{Z}$, be a sequence of variables.
Denote by Λ_{n} the ring of symmetric polynomials in x_{1}, \ldots, x_{n} with coefficients in $\mathbb{Q}[a]$.

Consider the sequences of symmetric polynomials compatible with the evaluation homomorphisms

$$
\varphi_{n}: \Lambda_{n} \rightarrow \Lambda_{n-1}, \quad P\left(x_{1}, \ldots, x_{n}\right) \mapsto P\left(x_{1}, \ldots, x_{n-1}, a_{n}\right) .
$$

The ring Λ^{a} of double symmetric functions is formed by such sequences of polynomials. The sequences can also be regarded as formal series.

Examples. We have

$$
\varphi_{n}: \sum_{i=1}^{n}\left(x_{i}^{k}-a_{i}^{k}\right) \mapsto \sum_{i=1}^{n-1}\left(x_{i}^{k}-a_{i}^{k}\right)
$$

hence

$$
p_{k}(x \| a)=\sum_{i=1}^{\infty}\left(x_{i}^{k}-a_{i}^{k}\right) \in \Lambda^{a}
$$

the double power sums symmetric function.

Examples. We have

$$
\varphi_{n}: \sum_{i=1}^{n}\left(x_{i}^{k}-a_{i}^{k}\right) \mapsto \sum_{i=1}^{n-1}\left(x_{i}^{k}-a_{i}^{k}\right)
$$

hence

$$
p_{k}(x \| a)=\sum_{i=1}^{\infty}\left(x_{i}^{k}-a_{i}^{k}\right) \in \Lambda^{a}
$$

the double power sums symmetric function.
Λ^{a} is the ring of polynomials in
$p_{1}(x \| a), \quad p_{2}(x \| a), \quad \ldots$.
with coefficients in $\mathbb{Q}[a]$.

Examples. We have

$$
\varphi_{n}: \sum_{i=1}^{n}\left(x_{i}^{k}-a_{i}^{k}\right) \mapsto \sum_{i=1}^{n-1}\left(x_{i}^{k}-a_{i}^{k}\right)
$$

hence

$$
p_{k}(x \| a)=\sum_{i=1}^{\infty}\left(x_{i}^{k}-a_{i}^{k}\right) \in \Lambda^{a}
$$

the double power sums symmetric function.
Λ^{a} is the ring of polynomials in
$p_{1}(x \| a), \quad p_{2}(x \| a), \quad \ldots$.
with coefficients in $\mathbb{Q}[a]$.
Note that $\Lambda^{0}=\Lambda$.

Double Schur functions

For any diagram λ define the double Schur function by

$$
s_{\lambda}(x \| a)=\sum_{T} \prod_{\alpha \in \lambda}\left(x_{T(\alpha)}-a_{T(\alpha)-c(\alpha)}\right),
$$

summed over the reverse λ-tableaux T,
$c(\alpha)=j-i$ is the content of the box $\alpha=(i, j)$.

Double Schur functions

For any diagram λ define the double Schur function by

$$
s_{\lambda}(x \| a)=\sum_{T} \prod_{\alpha \in \lambda}\left(x_{T(\alpha)}-a_{T(\alpha)-c(\alpha)}\right),
$$

summed over the reverse λ-tableaux T,
$c(\alpha)=j-i$ is the content of the box $\alpha=(i, j)$.

The double Schur functions form a basis of Λ^{a} over $\mathbb{Q}[a]$.

Example. For $\lambda=(2,1)$ the reverse tableaux are

$$
\begin{array}{|l|l|}
\hline i & j \\
\hline k &
\end{array} \quad \text { with } \quad i \geqslant j \text { and } \quad i>k
$$

Example. For $\lambda=(2,1)$ the reverse tableaux are

$$
\begin{array}{|l|l|}
\hline i & j \\
\hline k &
\end{array} \quad \text { with } \quad i \geqslant j \text { and } \quad i>k
$$

Hence

$$
s_{(2,1)}(x \| a)=\sum_{i \geqslant j, i>k}\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j-1}\right)\left(x_{k}-a_{k+1}\right) .
$$

$$
h_{k}(x \| a)=s_{(k)}(x \| a), \quad e_{k}(x \| a)=s_{\left(1^{k}\right)}(x \| a) .
$$

Set

$$
h_{k}(x \| a)=s_{(k)}(x \| a), \quad e_{k}(x \| a)=s_{\left(1^{k}\right)}(x \| a) .
$$

Tableaux

Set

$$
h_{k}(x \| a)=s_{(k)}(x \| a), \quad e_{k}(x \| a)=s_{\left(1^{k}\right)}(x \| a) .
$$

Tableaux

Double complete and elementary symmetric functions:

$$
\begin{aligned}
& h_{k}(x \| a)=\sum_{i_{1} \geqslant \cdots \geqslant i_{k}}\left(x_{i_{1}}-a_{i_{1}}\right) \ldots\left(x_{i_{k}}-a_{i_{k}-k+1}\right), \\
& e_{k}(x \| a)=\sum_{i_{1}>\cdots>i_{k}}\left(x_{i_{1}}-a_{i_{1}}\right) \ldots\left(x_{i_{k}}-a_{i_{k}+k-1}\right)
\end{aligned}
$$

Define the Littlewood-Richardson polynomials $c_{\lambda \mu}^{\nu}(a) \in \mathbb{Q}[a]$ by

$$
s_{\lambda}(x \| a) s_{\mu}(x \| a)=\sum_{\nu} c_{\lambda \mu}^{\nu}(a) s_{\nu}(x \| a)
$$

Define the Littlewood-Richardson polynomials $c_{\lambda \mu}^{\nu}(a) \in \mathbb{Q}[a]$ by

$$
s_{\lambda}(x \| a) s_{\mu}(x \| a)=\sum_{\nu} c_{\lambda \mu}^{\nu}(a) s_{\nu}(x \| a)
$$

Properties.

- $c_{\lambda \mu}^{\nu}(a) \neq 0$ only if $\quad|\nu| \leqslant|\lambda|+|\mu|$.

Define the Littlewood-Richardson polynomials $c_{\lambda \mu}^{\nu}(a) \in \mathbb{Q}[a]$ by

$$
s_{\lambda}(x \| a) s_{\mu}(x \| a)=\sum_{\nu} c_{\lambda \mu}^{\nu}(a) s_{\nu}(x \| a)
$$

Properties.

- $c_{\lambda \mu}^{\nu}(a) \neq 0$ only if $\quad|\nu| \leqslant|\lambda|+|\mu|$.
- $c_{\lambda \mu}^{\nu}(a)$ is homogeneous of degree $\quad|\lambda|+|\mu|-|\nu|$.

Define the Littlewood-Richardson polynomials $c_{\lambda \mu}^{\nu}(a) \in \mathbb{Q}[a]$ by

$$
s_{\lambda}(x \| a) s_{\mu}(x \| a)=\sum_{\nu} c_{\lambda \mu}^{\nu}(a) s_{\nu}(x \| a)
$$

Properties.

- $c_{\lambda \mu}^{\nu}(a) \neq 0$ only if $\quad|\nu| \leqslant|\lambda|+|\mu|$.
- $c_{\lambda \mu}^{\nu}(a)$ is homogeneous of degree $|\lambda|+|\mu|-|\nu|$.
- $c_{\lambda \mu}^{\nu}(a)=c_{\lambda \mu}^{\nu}$ if $|\lambda|+|\mu|=|\nu| \quad$ or $\quad a=(0)$.

Define the Littlewood-Richardson polynomials $c_{\lambda \mu}^{\nu}(a) \in \mathbb{Q}[a]$ by

$$
s_{\lambda}(x \| a) s_{\mu}(x \| a)=\sum_{\nu} c_{\lambda \mu}^{\nu}(a) s_{\nu}(x \| a)
$$

Properties.

- $c_{\lambda \mu}^{\nu}(a) \neq 0$ only if $\quad|\nu| \leqslant|\lambda|+|\mu|$.
$-c_{\lambda \mu}^{\nu}(a)$ is homogeneous of degree $\quad|\lambda|+|\mu|-|\nu|$.
- $c_{\lambda \mu}^{\nu}(a)=c_{\lambda \mu}^{\nu}$ if $|\lambda|+|\mu|=|\nu| \quad$ or $\quad a=(0)$.
$-c_{\lambda \mu}^{\nu}(a)=c_{\mu \lambda}^{\nu}(a)$.

Define the Littlewood-Richardson polynomials $c_{\lambda \mu}^{\nu}(a) \in \mathbb{Q}[a]$ by

$$
s_{\lambda}(x \| a) s_{\mu}(x \| a)=\sum_{\nu} c_{\lambda \mu}^{\nu}(a) s_{\nu}(x \| a)
$$

Properties.

- $c_{\lambda \mu}^{\nu}(a) \neq 0 \quad$ only if $\quad|\nu| \leqslant|\lambda|+|\mu|$.
$-c_{\lambda \mu}^{\nu}(a)$ is homogeneous of degree $\quad|\lambda|+|\mu|-|\nu|$.
- $c_{\lambda \mu}^{\nu}(a)=c_{\lambda \mu}^{\nu}$ if $|\lambda|+|\mu|=|\nu| \quad$ or $\quad a=(0)$.
$-c_{\lambda \mu}^{\nu}(a)=c_{\mu \lambda}^{\nu}(a)$.
- $c_{\lambda \mu}^{\nu}(a) \neq 0 \quad$ only if $\quad \lambda \subseteq \nu \quad$ and $\quad \mu \subseteq \nu$.

Calculation of $c_{\lambda \mu}^{\nu}(a)$

Given a sequence R from μ to ν with the Yamanouchi symbol
$r_{1} r_{2} \ldots r_{l}$, introduce the set $\mathcal{T}(\lambda, R)$ of barred reverse
λ-tableaux T with entries from $\{1,2, \ldots\}$ such that T contains entries $r_{1}, r_{2}, \ldots, r_{l}$ listed in the column order.

Calculation of $c_{\lambda \mu}^{\nu}(a)$

Given a sequence R from μ to ν with the Yamanouchi symbol
$r_{1} r_{2} \ldots r_{l}$, introduce the set $\mathcal{T}(\lambda, R)$ of barred reverse
λ-tableaux T with entries from $\{1,2, \ldots\}$ such that T contains entries $r_{1}, r_{2}, \ldots, r_{l}$ listed in the column order.

We will distinguish these entries by barring each of them.

Calculation of $c_{\lambda \mu}^{\nu}(a)$

Given a sequence R from μ to ν with the Yamanouchi symbol
$r_{1} r_{2} \ldots r_{l}$, introduce the set $\mathcal{T}(\lambda, R)$ of barred reverse
λ-tableaux T with entries from $\{1,2, \ldots\}$ such that T contains entries $r_{1}, r_{2}, \ldots, r_{l}$ listed in the column order.

We will distinguish these entries by barring each of them.

An element $T \in \mathcal{T}(\lambda, R)$ is a pair consisting of a reverse
λ-tableau and a sequence of barred entries compatible with R.

Example. Let R be the sequence

$$
(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \rightarrow(3,3,1) \rightarrow(4,3,1)
$$

so that the Yamanouchi symbol is 2321.

Example. Let R be the sequence

$$
(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \rightarrow(3,3,1) \rightarrow(4,3,1)
$$

so that the Yamanouchi symbol is 2321.
Let $\lambda=(5,5,3)$. The barred λ-tableau

7	7	4	$\overline{2}$	2
4	$\overline{3}$	2	1	$\overline{1}$
$\overline{2}$	1	1		

belongs to $\mathcal{T}(\lambda, R)$.

Example. Let R be the sequence

$$
(3,1) \rightarrow(3,2) \rightarrow(3,2,1) \rightarrow(3,3,1) \rightarrow(4,3,1)
$$

so that the Yamanouchi symbol is 2321.
Let $\lambda=(5,5,3)$. The barred λ-tableau

7	7	4	$\overline{2}$	2
4	$\overline{3}$	2	1	$\overline{1}$
$\overline{2}$	1	1		

belongs to $\mathcal{T}(\lambda, R)$.

Given a sequence of diagrams

$$
R: \quad \mu=\rho^{(0)} \rightarrow \rho^{(1)} \rightarrow \cdots \rightarrow \rho^{(I-1)} \rightarrow \rho^{(I)}=\nu
$$

set $\rho(\alpha)=\rho^{(i)}$ for any box α occupied by an unbarred entry of
T, between \bar{r}_{i} and \bar{r}_{i+1} in column order.

Given a sequence of diagrams

$$
R: \quad \mu=\rho^{(0)} \rightarrow \rho^{(1)} \rightarrow \cdots \rightarrow \rho^{(I-1)} \rightarrow \rho^{(I)}=\nu
$$

set $\rho(\alpha)=\rho^{(i)}$ for any box α occupied by an unbarred entry of
T, between \bar{r}_{i} and \bar{r}_{i+1} in column order.

The barred entries $\bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{\text {}}$ of T divide the tableau into regions marked by the elements of the sequence R :

Theorem (Kreiman \& M. '07, independently). We have

$$
c_{\lambda \mu}^{\nu}(a)=\sum_{R} \sum_{T} \prod_{\substack{\alpha \in \lambda \\ T(\alpha) \text { unbarred }}}\left(a_{T(\alpha)-\rho(\alpha)_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}\right),
$$

summed over all sequences R from μ to ν and all ν-bounded reverse λ-tableaux $T \in \mathcal{T}(\lambda, R)$.

Theorem (Kreiman \& M. '07, independently). We have

$$
c_{\lambda \mu}^{\nu}(a)=\sum_{R} \sum_{T} \prod_{\substack{\alpha \in \lambda \\ T(\alpha) \text { unbarred }}}\left(a_{T(\alpha)-\rho(\alpha)_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}\right),
$$

summed over all sequences R from μ to ν and all ν-bounded reverse λ-tableaux $T \in \mathcal{T}(\lambda, R)$. Moreover, in each factor $\rho(\alpha)_{T(\alpha)}>\boldsymbol{c}(\alpha)$.

Theorem (Kreiman \& M. '07, independently). We have

$$
c_{\lambda \mu}^{\nu}(a)=\sum_{R} \sum_{T} \prod_{\substack{\alpha \in \lambda \\ T(\alpha) \text { unbarred }}}\left(a_{T(\alpha)-\rho(\alpha)_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}\right),
$$

summed over all sequences R from μ to ν and all ν-bounded reverse λ-tableaux $T \in \mathcal{T}(\lambda, R)$. Moreover, in each factor $\rho(\alpha)_{T(\alpha)}>c(\alpha)$.

Remarks.

- If $\quad|\nu|=|\lambda|+|\mu| \quad$ then this is a version of the LR rule.

Theorem (Kreiman \& M. '07, independently). We have

$$
c_{\lambda \mu}^{\nu}(a)=\sum_{R} \sum_{T} \prod_{\substack{\alpha \in \lambda \\ T(\alpha) \text { unbarred }}}\left(a_{T(\alpha)-\rho(\alpha)_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}\right),
$$

summed over all sequences R from μ to ν and all ν-bounded reverse λ-tableaux $T \in \mathcal{T}(\lambda, R)$. Moreover, in each factor $\rho(\alpha)_{T(\alpha)}>\boldsymbol{c}(\alpha)$.

Remarks.

- If $|\nu|=|\lambda|+|\mu|$ then this is a version of the LR rule.
- $c_{\lambda \mu}^{\nu}(a)$ is Graham-positive: it is a polynomial in the differences $a_{i}-a_{j}, i<j$, with positive integer coefficients.

Example. Calculation of $c_{\lambda \mu}^{\nu}(a)$,

$$
\lambda=(2,1), \quad \mu=(3,1), \quad \nu=(4,1,1) .
$$

Example. Calculation of $c_{\lambda \mu}^{\nu}(a)$,
$\lambda=(2,1), \quad \mu=(3,1), \quad \nu=(4,1,1)$.

Here $\nu_{1}^{\prime}=3, \nu_{2}^{\prime}=1, \nu_{3}^{\prime}=1, \nu_{4}^{\prime}=1$. The ν-bounded λ-tableaux

3	1
2	

3	1
1	

2	1
1	

Example. Calculation of $c_{\lambda \mu}^{\nu}(a)$,
$\lambda=(2,1), \quad \mu=(3,1), \quad \nu=(4,1,1)$.

Here $\nu_{1}^{\prime}=3, \nu_{2}^{\prime}=1, \nu_{3}^{\prime}=1, \nu_{4}^{\prime}=1$. The ν-bounded λ-tableaux

3	1
2	

3	1
1	

2	1
1	

There are two sequences
$R_{1}: \quad(3,1) \rightarrow(4,1) \rightarrow(4,1,1) \quad$ and
$R_{2}: \quad(3,1) \rightarrow(3,1,1) \rightarrow(4,1,1)$
with the respective Yamanouchi symbols 13 and 31 .
$\mathcal{T}\left(\lambda, R_{1}\right)$ contains one barred tableau

$\overline{3}$	1
$\overline{1}$	

with $\quad T(\alpha)=1, \quad \rho(\alpha)=(4,1,1), \quad c(\alpha)=1$,
contributing $\quad a_{T(\alpha)-\rho(\alpha)_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}=a_{-3}-a_{0}$.
$\mathcal{T}\left(\lambda, R_{1}\right)$ contains one barred tableau

with $\quad T(\alpha)=1, \quad \rho(\alpha)=(4,1,1), \quad c(\alpha)=1$,
contributing $a_{T(\alpha)-\rho(\alpha))_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}=a_{-3}-a_{0}$.
$\mathcal{T}\left(\lambda, R_{2}\right)$ contains two barred tableaux with contributions

$$
a_{-2}-a_{2},
$$

$$
a_{1}-a_{3} .
$$

$\mathcal{T}\left(\lambda, R_{1}\right)$ contains one barred tableau

with $\quad T(\alpha)=1, \quad \rho(\alpha)=(4,1,1), \quad c(\alpha)=1$,
contributing $a_{T(\alpha)-\rho(\alpha)_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}=a_{-3}-a_{0}$.
$\mathcal{T}\left(\lambda, R_{2}\right)$ contains two barred tableaux with contributions

$$
a_{-2}-a_{2},
$$

$$
a_{1}-a_{3} .
$$

Hence

$$
c_{\lambda \mu}^{\nu}(a)=a_{-3}-a_{0}+a_{-2}-a_{2}+a_{1}-a_{3} .
$$

Example. For the product of the double Schur functions $s_{(2)}(x \| a)$ and $s_{(2,1)}(x \| a)$ we have

$$
\begin{aligned}
s_{(2)} & (x \| a) s_{(2,1)}(x \| a) \\
& =s_{(4,1)}(x \| a)+s_{(3,2)}(x \| a)+s_{(3,1,1)}(x \| a)+s_{(2,2,1)}(x \| a) \\
& +\left(a_{-1}-a_{0}\right) s_{(2,1,1)}(x \| a)+\left(a_{-1}-a_{2}\right) s_{(2,2)}(x \| a) \\
& +\left(a_{-1}-a_{2}+a_{-2}-a_{0}\right) s_{(3,1)}(x \| a) \\
& +\left(a_{-1}-a_{2}\right)\left(a_{-1}-a_{0}\right) s_{(2,1)}(x \| a)
\end{aligned}
$$

Example. For the product of the double Schur functions $s_{(2)}(x \| a)$ and $s_{(2,1)}(x \| a)$ we have

$$
\begin{aligned}
s_{(2)} & (x \| a) s_{(2,1)}(x \| a) \\
& =s_{(4,1)}(x \| a)+s_{(3,2)}(x \| a)+s_{(3,1,1)}(x \| a)+s_{(2,2,1)}(x \| a) \\
& +\left(a_{-1}-a_{0}\right) s_{(2,1,1)}(x \| a)+\left(a_{-1}-a_{2}\right) s_{(2,2)}(x \| a) \\
& +\left(a_{-1}-a_{2}+a_{-2}-a_{0}\right) s_{(3,1)}(x \| a) \\
& +\left(a_{-1}-a_{2}\right)\left(a_{-1}-a_{0}\right) s_{(2,1)}(x \| a) .
\end{aligned}
$$

Example. For the product of the double Schur functions $s_{(2)}(x \| a)$ and $s_{(2,1)}(x \| a)$ we have

$$
\begin{aligned}
s_{(2)} & (x \| a) s_{(2,1)}(x \| a) \\
& =s_{(4,1)}(x \| a)+s_{(3,2)}(x \| a)+s_{(3,1,1)}(x \| a)+s_{(2,2,1)}(x \| a) \\
& +\left(a_{-1}-a_{0}\right) s_{(2,1,1)}(x \| a)+\left(a_{-1}-a_{2}\right) s_{(2,2)}(x \| a) \\
& +\left(a_{-1}-a_{2}+a_{-2}-a_{0}\right) s_{(3,1)}(x \| a) \\
& +\left(a_{-1}-a_{2}\right)\left(a_{-1}-a_{0}\right) s_{(2,1)}(x \| a) .
\end{aligned}
$$

Example. For any diagram λ,

$$
c_{\lambda \lambda}^{\lambda}(a)=\prod_{(i, j) \in \lambda}\left(a_{i-\lambda_{i}}-a_{\lambda_{j}^{\prime}-j+1}\right) .
$$

Example. For any diagram λ,

$$
c_{\lambda \lambda}^{\lambda}(a)=\prod_{(i, j) \in \lambda}\left(a_{i-\lambda_{i}}-a_{\lambda_{j}^{\prime}-j+1}\right) .
$$

Setting $a_{i}=-i$ for all i gives the product of the hooks of λ.

Example. For any diagram λ,

$$
c_{\lambda \lambda}^{\lambda}(a)=\prod_{(i, j) \in \lambda}\left(a_{i-\lambda_{i}}-a_{\lambda_{j}^{\prime}-j+1}\right) .
$$

Setting $a_{i}=-i$ for all i gives the product of the hooks of λ.

Proof of the theorem. Calculate $c_{\lambda \mu}^{\nu}(a)$ by induction on $|\nu|-|\mu|$.

Example. For any diagram λ,

$$
c_{\lambda \lambda}^{\lambda}(a)=\prod_{(i, j) \in \lambda}\left(a_{i-\lambda_{i}}-a_{\lambda_{j}^{\prime}-j+1}\right)
$$

Setting $a_{i}=-i$ for all i gives the product of the hooks of λ.

Proof of the theorem. Calculate $c_{\lambda \mu}^{\nu}(a)$ by induction on $|\nu|-|\mu|$.

Starting point: the Vanishing Theorem (A. Okounkov, '96):

$$
s_{\lambda}\left(a_{\rho} \| a\right)=0 \quad \text { unless } \quad \lambda \subseteq \rho
$$

where

$$
a_{\rho}=\left(a_{1-\rho_{1}}, a_{2-\rho_{2}}, \ldots\right)
$$

Hence, if $R=\{\mu\}$ is a one-term sequence, then

$$
c_{\lambda \mu}^{\mu}(a)=s_{\lambda}\left(a_{\mu} \| a\right), \quad a_{\mu}=\left(a_{1-\mu_{1}}, a_{2-\mu_{2}}, \ldots\right)
$$

Hence, if $R=\{\mu\}$ is a one-term sequence, then

$$
c_{\lambda \mu}^{\mu}(a)=s_{\lambda}\left(a_{\mu} \| a\right), \quad a_{\mu}=\left(a_{1-\mu_{1}}, a_{2-\mu_{2}}, \ldots\right)
$$

and so

$$
c_{\lambda \mu}^{\mu}(a)=\sum_{T} \prod_{\alpha \in \lambda}\left(a_{T(\alpha)-\mu_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}\right) .
$$

Hence, if $R=\{\mu\}$ is a one-term sequence, then

$$
c_{\lambda \mu}^{\mu}(a)=s_{\lambda}\left(a_{\mu} \| a\right), \quad a_{\mu}=\left(a_{1-\mu_{1}}, a_{2-\mu_{2}}, \ldots\right),
$$

and so

$$
c_{\lambda \mu}^{\mu}(a)=\sum_{T} \prod_{\alpha \in \lambda}\left(a_{T(\alpha)-\mu_{T(\alpha)}}-a_{T(\alpha)-c(\alpha)}\right) .
$$

Then use the recurrence

$$
c_{\lambda \mu}^{\nu}(a)=\frac{1}{\left|a_{\nu}\right|-\left|a_{\mu}\right|}\left(\sum_{\mu \rightarrow \mu^{+}} c_{\lambda \mu^{+}}^{\nu}(a)-\sum_{\nu^{-} \rightarrow \nu} c_{\lambda \mu}^{\nu^{-}}(a)\right),
$$

where $\left|a_{\nu}\right|-\left|a_{\mu}\right|=\sum_{i \geqslant 1}\left(\left(a_{\nu}\right)_{i}-\left(a_{\mu}\right)_{i}\right)$ (M. \& Sagan, '99).

Knutson-Tao puzzles

Write the binary sequences corresponding to λ, μ, ν around the border of an equilateral triangle:

Knutson-Tao puzzles

Write the binary sequences corresponding to λ, μ, ν around the border of an equilateral triangle:

Knutson-Tao puzzles

Write the binary sequences corresponding to λ, μ, ν around the border of an equilateral triangle:

Theorem [KT '03]. The Littlewood-Richardson polynomial $c_{\lambda_{\mu}}^{\nu}(a)$ equals the sum of weights of triangular puzzles, where an additional puzzle piece can be used.

Additional puzzle piece

Additional puzzle piece

Each occurrence of this puzzle piece contributes a factor by the rule:

$$
a_{i-m}-a_{j-m}
$$

Dimensions of skew diagrams

Let $\mu \subseteq \lambda$ be two diagrams. The skew diagram $\theta=\lambda / \mu$ is the set-theoretical difference of the diagrams λ and μ :

Dimensions of skew diagrams

Let $\mu \subseteq \lambda$ be two diagrams. The skew diagram $\theta=\lambda / \mu$ is the set-theoretical difference of the diagrams λ and μ :

Example. $\lambda=(10,8,5,4,2)$ and $\mu=(6,3)$:

If θ has $n=|\theta|$ boxes, then a standard θ-tableau is obtained by
filling the boxes bijectively with the numbers $\{1,2, \ldots, n\}$ in
such a way that the entries increase along the rows and down the columns.

If θ has $n=|\theta|$ boxes, then a standard θ-tableau is obtained by filling the boxes bijectively with the numbers $\{1,2, \ldots, n\}$ in such a way that the entries increase along the rows and down the columns.

The dimension $\operatorname{dim} \theta$ of a skew diagram θ is the number of the standard θ-tableaux.

If θ has $n=|\theta|$ boxes, then a standard θ-tableau is obtained by filling the boxes bijectively with the numbers $\{1,2, \ldots, n\}$ in such a way that the entries increase along the rows and down the columns.

The dimension $\operatorname{dim} \theta$ of a skew diagram θ is the number of the standard θ-tableaux.

Set

$$
H_{\theta}=\frac{|\theta|!}{\operatorname{dim} \theta} .
$$

If θ is normal (nonskew), then H_{θ} coincides with the product of the hooks of θ due to the hook formula.

If θ is normal (nonskew), then H_{θ} coincides with the product of the hooks of θ due to the hook formula.

Example. The hooks of $\theta=(4,3,1)$:

6	4	3	1
4	2	1	
1			

If θ is normal (nonskew), then H_{θ} coincides with the product of the hooks of θ due to the hook formula.

Example. The hooks of $\theta=(4,3,1)$:

6	4	3	1
4	2	1	
1			

Hence $\quad H_{\theta}=6 \cdot 4^{2} \cdot 3 \cdot 2 \cdot 1^{3}=576$ and $\operatorname{dim} \theta=70$.

If θ is normal (nonskew), then H_{θ} coincides with the product of the hooks of θ due to the hook formula.

Example. The hooks of $\theta=(4,3,1)$:

6	4	3	1
4	2	1	
1			

Hence $\quad H_{\theta}=6 \cdot 4^{2} \cdot 3 \cdot 2 \cdot 1^{3}=576$ and $\operatorname{dim} \theta=70$.

If $\theta=\theta_{1} \sqcup \cdots \sqcup \theta_{r}$, then $H_{\theta}=H_{\theta_{1}} \ldots H_{\theta_{r}}$.

Example. Let $\theta=(3,2) /(1)$. The standard θ-tableaux are

Example. Let $\theta=(3,2) /(1)$. The standard θ-tableaux are

Hence $\operatorname{dim} \theta=5$ and $H_{\theta}=24 / 5$.

Example. Let $\theta=(3,2) /(1)$. The standard θ-tableaux are

Hence $\operatorname{dim} \theta=5$ and $H_{\theta}=24 / 5$.

Corollary. We have

$$
c_{\lambda \mu}^{\nu}=\sum_{\rho}(-1)^{|\nu / \rho|} \frac{H_{\rho}}{H_{\nu / \rho} H_{\rho / \lambda} H_{\rho / \mu}}
$$

summed over the diagrams ρ which contain both λ and μ, and are contained in ν.

Example. Let $\lambda=\mu=(2,1), \quad \nu=(3,2,1)$.

Example. Let $\lambda=\mu=(2,1), \quad \nu=(3,2,1)$.
Then ρ runs over the set of diagrams
$\{(2,1),(3,1),(2,2),(2,1,1),(3,2),(3,1,1),(2,2,1),(3,2,1)\}$.

Example. Let $\lambda=\mu=(2,1), \quad \nu=(3,2,1)$.
Then ρ runs over the set of diagrams
$\{(2,1),(3,1),(2,2),(2,1,1),(3,2),(3,1,1),(2,2,1),(3,2,1)\}$.

Here $H_{\nu / \rho}=H_{\rho / \lambda}=H_{\rho / \mu}=1$ for all ρ.

Example. Let $\lambda=\mu=(2,1), \quad \nu=(3,2,1)$.
Then ρ runs over the set of diagrams
$\{(2,1),(3,1),(2,2),(2,1,1),(3,2),(3,1,1),(2,2,1),(3,2,1)\}$.

Here $H_{\nu / \rho}=H_{\rho / \lambda}=H_{\rho / \mu}=1$ for all ρ.

Hence

$$
c_{(2,1)(2,1)}^{(3,2,1)}=-3+8+12+8-24-20-24+45=2 .
$$

Quantum immanants (Okounkov, '96)

Consider the Lie algebra $\mathfrak{g l}_{n}$ with its standard basis $\left\{E_{a b}\right\}$, where $a, b \in\{1, \ldots, n\}$.

Quantum immanants (Okounkov, '96)

Consider the Lie algebra $\mathfrak{g l}_{n}$ with its standard basis $\left\{E_{a b}\right\}$, where $a, b \in\{1, \ldots, n\}$.

Given a diagram λ with $\ell(\lambda) \leqslant n$, the quantum immanant \mathbb{S}_{λ} is an element of the center of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$. The \mathbb{S}_{λ} can be given by various explicit formulas.

Examples. Quantum minors (Capelli elements)

$$
\mathbb{S}_{\left(1^{k}\right)}=\sum_{a_{1}<\cdots<a_{k}} \sum_{p \in \mathfrak{S}_{k}} \operatorname{sgn} p \cdot E_{a_{1}, a_{p(1)}} \ldots(E+k-1)_{a_{k}, a_{p(k)}}
$$

Examples. Quantum minors (Capelli elements)

$$
\mathbb{S}_{\left(1^{k}\right)}=\sum_{a_{1}<\cdots<a_{k}} \sum_{p \in \mathfrak{S}_{k}} \operatorname{sgn} p \cdot E_{a_{1}, a_{p(1)}} \ldots(E+k-1)_{a_{k}, a_{p(k)}}
$$

Quantum permanents

$$
\mathbb{S}_{(k)}=\sum_{a_{1} \leqslant \cdots \leqslant a_{k}} \frac{1}{\alpha_{1}!\ldots \alpha_{n}!} \sum_{p \in \mathfrak{S}_{k}} E_{a_{1}, a_{p(1)}} \ldots(E-k+1)_{a_{k}, a_{p(k)}}
$$

where α_{i} is the multiplicity of i in a_{1}, \ldots, a_{k}, each
$a_{r} \in\{1, \ldots, n\}$.

The quantum immanants \mathbb{S}_{λ} with $\ell(\lambda) \leqslant n$ form a basis of the center of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$.

The quantum immanants \mathbb{S}_{λ} with $\ell(\lambda) \leqslant n$ form a basis of the center of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$.

Define the coefficients $f_{\lambda \mu}^{\nu}$ by the expansion

$$
\mathbb{S}_{\lambda} \mathbb{S}_{\mu}=\sum_{\nu} f_{\lambda \mu}^{\nu} \mathbb{S}_{\nu}
$$

The quantum immanants \mathbb{S}_{λ} with $\ell(\lambda) \leqslant n$ form a basis of the center of the universal enveloping algebra $\mathrm{U}\left(\mathfrak{g l}_{n}\right)$.

Define the coefficients $f_{\lambda \mu}^{\nu}$ by the expansion

$$
\mathbb{S}_{\lambda} \mathbb{S}_{\mu}=\sum_{\nu} f_{\lambda \mu}^{\nu} \mathbb{S}_{\nu}
$$

Corollary. $f_{\lambda \mu}^{\nu}=c_{\lambda \mu}^{\nu}(a)$ for the specialization $a_{i}=-i$ for $i \in \mathbb{Z}$.

The coefficient $f_{\lambda \mu}^{\nu}$ is zero unless $\lambda, \mu \subseteq \nu$. If $\lambda, \mu \subseteq \nu$ then

$$
f_{\lambda \mu}^{\nu}=\sum_{R} \sum_{T} \prod_{\substack{\alpha \in \lambda \\ T(\alpha) \text { unbarred }}}\left(\rho(\alpha)_{T(\alpha)}-c(\alpha)\right),
$$

summed over all sequences R from μ to ν and all ν-bounded reverse λ-tableaux $T \in \mathcal{T}(\lambda, R)$. In particular, the $f_{\lambda \mu}^{\nu}$ are nonnegative integers.

Example. For any $n \geqslant 3$ we have

$$
\begin{aligned}
\mathbb{S}_{(2)} \mathbb{S}_{(2,1)} & =\mathbb{S}_{(4,1)}+\mathbb{S}_{(3,2)}+\mathbb{S}_{(3,1,1)}+\mathbb{S}_{(2,2,1)} \\
& +\mathbb{S}_{(2,1,1)}+5 \mathbb{S}_{(3,1)}+3 \mathbb{S}_{(2,2)}+3 \mathbb{S}_{(2,1)} .
\end{aligned}
$$

Example. For any $n \geqslant 3$ we have

$$
\begin{aligned}
\mathbb{S}_{(2)} \mathbb{S}_{(2,1)} & =\mathbb{S}_{(4,1)}+\mathbb{S}_{(3,2)}+\mathbb{S}_{(3,1,1)}+\mathbb{S}_{(2,2,1)} \\
& +\mathbb{S}_{(2,1,1)}+5 \mathbb{S}_{(3,1)}+3 \mathbb{S}_{(2,2)}+3 \mathbb{S}_{(2,1)} .
\end{aligned}
$$

If $n=2$ then

$$
\mathbb{S}_{(2)} \mathbb{S}_{(2,1)}=\mathbb{S}_{(4,1)}+\mathbb{S}_{(3,2)}+5 \mathbb{S}_{(3,1)}+3 \mathbb{S}_{(2,2)}+3 \mathbb{S}_{(2,1)}
$$

Equivariant Schubert calculus on the Grassmannian

The torus $T=\left(\mathbb{C}^{*}\right)^{N}$ acts naturally on $\mathrm{Gr}_{n, N}$. The equivariant cohomology ring $H_{T}^{*}\left(\mathrm{Gr}_{n, N}\right)$ is a module over
$\mathbb{Z}\left[t_{1}, \ldots, t_{N}\right]=H_{T}^{*}(\{p t\})$.

Equivariant Schubert calculus on the Grassmannian

The torus $T=\left(\mathbb{C}^{*}\right)^{N}$ acts naturally on $\mathrm{Gr}_{n, N}$. The equivariant cohomology ring $H_{T}^{*}\left(\operatorname{Gr}_{n, N}\right)$ is a module over
$\mathbb{Z}\left[t_{1}, \ldots, t_{N}\right]=H_{T}^{*}(\{p t\})$.

It has a basis of the equivariant Schubert classes σ_{λ} parameterized by all diagrams λ contained in the $n \times m$ rectangle, $m=N-n$.

Corollary. We have

$$
\sigma_{\lambda} \sigma_{\mu}=\sum_{\nu} d_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

where $d_{\lambda \mu}^{\nu}=c_{\lambda \mu}^{\nu}(a)$ with the sequence a specialized as follows:

$$
a_{-m+1}=-t_{1}, \quad \ldots, \quad a_{n}=-t_{N}
$$

and $a_{i}=0$ for all remaining values of i.

Corollary. We have

$$
\sigma_{\lambda} \sigma_{\mu}=\sum_{\nu} d_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

where $d_{\lambda \mu}^{\nu}=c_{\lambda \mu}^{\nu}(a)$ with the sequence a specialized as follows:

$$
a_{-m+1}=-t_{1}, \quad \ldots, \quad a_{n}=-t_{N}
$$

and $a_{i}=0$ for all remaining values of i.

The $d_{\lambda \mu}^{\nu}$ are polynomials in the $t_{i}-t_{j}, i>j$ with positive integer coefficients (the positivity property, Graham '01).

The coefficients $d_{\lambda \mu}^{\nu}$, regarded as polynomials in the a_{i}, are independent of n and m, as soon as the inequalities
$n \geqslant \lambda_{1}^{\prime}+\mu_{1}^{\prime}$ and $m \geqslant \lambda_{1}+\mu_{1}$ hold (the stability property).

The coefficients $d_{\lambda \mu}^{\nu}$, regarded as polynomials in the a_{i}, are independent of n and m, as soon as the inequalities
$n \geqslant \lambda_{1}^{\prime}+\mu_{1}^{\prime}$ and $m \geqslant \lambda_{1}+\mu_{1}$ hold (the stability property).

Remark. The puzzle rule of Knutson and Tao (2003) gives a manifestly positive formula for the $d_{\lambda \mu}^{\nu}$ while the tableau rule is manifestly stable.

Example. For any $n \geqslant 3$ and $m \geqslant 4$ we have

$$
\begin{aligned}
\sigma_{(2)} \sigma_{(2,1)} & =\sigma_{(4,1)}+\sigma_{(3,2)}+\sigma_{(3,1,1)}+\sigma_{(2,2,1)} \\
& +\left(t_{m}-t_{m-1}\right) \sigma_{(2,1,1)}+\left(t_{m+2}-t_{m-1}\right) \sigma_{(2,2)} \\
& +\left(t_{m+2}-t_{m-1}+t_{m}-t_{m-2}\right) \sigma_{(3,1)} \\
& +\left(t_{m+2}-t_{m-1}\right)\left(t_{m}-t_{m-1}\right) \sigma_{(2,1)}
\end{aligned}
$$

