Fusion procedure for the symmetric group

Alexander Molev
University of Sydney
GL07, July 2007

Schur-Weyl duality

The symmetric group \mathfrak{S}_{k} acts naturally on the tensor product space

$$
\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}, \quad k \text { factors }
$$

by permuting the factors. On the other hand, \mathbb{C}^{N} carries the vector representation of the Lie algebra $\mathfrak{g l}_{N}$ so that the tensor product space is a representation of $\mathfrak{g l}_{N}$.

Schur-Weyl duality

The symmetric group \mathfrak{S}_{k} acts naturally on the tensor product space

$$
\mathbb{C}^{N} \otimes \mathbb{C}^{N} \otimes \ldots \otimes \mathbb{C}^{N}, \quad k \text { factors }
$$

by permuting the factors. On the other hand, \mathbb{C}^{N} carries the vector representation of the Lie algebra $\mathfrak{g l}_{N}$ so that the tensor product space is a representation of $\mathfrak{g l}_{N}$.

The actions of \mathfrak{S}_{k} and $\mathfrak{g l}_{N}$ commute with each other.

Irreducible decomposition of the $\mathfrak{g l}_{N}$-module

$$
\left(\mathbb{C}^{N}\right)^{\otimes k} \cong \underset{\lambda}{\bigoplus} f_{\lambda} L(\lambda)
$$

where λ runs over partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$,
$\lambda_{1} \geqslant \cdots \geqslant \lambda_{N} \geqslant 0$ such that $\lambda_{1}+\cdots+\lambda_{N}=k$,

Irreducible decomposition of the $\mathfrak{g l}_{N}$-module

$$
\left(\mathbb{C}^{N}\right)^{\otimes k} \cong \underset{\lambda}{\oplus} f_{\lambda} L(\lambda)
$$

where λ runs over partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$,
$\lambda_{1} \geqslant \cdots \geqslant \lambda_{N} \geqslant 0$ such that $\lambda_{1}+\cdots+\lambda_{N}=k$,
$L(\lambda)$ is the irreducible representation of $\mathfrak{g l} l_{N}$ with the highest weight λ,

Irreducible decomposition of the $\mathfrak{g l}_{N}$-module

$$
\left(\mathbb{C}^{N}\right)^{\otimes k} \cong \underset{\lambda}{\oplus} f_{\lambda} L(\lambda)
$$

where λ runs over partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$,
$\lambda_{1} \geqslant \cdots \geqslant \lambda_{N} \geqslant 0$ such that $\lambda_{1}+\cdots+\lambda_{N}=k$,
$L(\lambda)$ is the irreducible representation of $\mathfrak{g l} l_{N}$ with the highest weight λ,
f_{λ} is the dimension of the irreducible representation of \mathfrak{S}_{k} associated with λ.
f_{λ} equals the number of standard λ-tableaux \mathcal{U}.
Let $\lambda=(5,3,1), \quad \lambda \vdash 9$. The following λ-tableau \mathcal{U} is standard

1	3	4	6	8
2	5	7		
9				
y				

f_{λ} equals the number of standard λ-tableaux \mathcal{U}.
Let $\lambda=(5,3,1), \quad \lambda \vdash 9$. The following λ-tableau \mathcal{U} is standard

1	3	4	6	8
2	5	7		
9				

Refined decomposition

$$
\left(\mathbb{C}^{N}\right)^{\otimes k} \cong \underset{\lambda \vdash k \operatorname{sh}(\mathcal{U})=\lambda}{\oplus} \Phi_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

where each subspace $\quad L_{\mathcal{U}}=\Phi_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes k}$
is a $\mathfrak{g l}_{N}$-submodule isomorphic to $L(\lambda)$.

If $\mathcal{U}=\mathcal{U}^{r}$ is the row tableau of shape λ, then the subspace $L_{\mathcal{U}^{r}}$ coincides with the image of the Young symmetrizer,

$$
L_{\mathcal{U}^{r}}=H_{\mathcal{U}^{r}} A_{\mathcal{U}^{r}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

where $H_{\mathcal{U}^{r}}$ and $A_{\mathcal{U}^{r}}$ are the row symmetrizer and column anti-symmetrizer of \mathcal{U}^{r}.

If $\mathcal{U}=\mathcal{U}^{r}$ is the row tableau of shape λ, then the subspace $L_{\mathcal{U}^{r}}$ coincides with the image of the Young symmetrizer,

$$
L_{\mathcal{U}^{r}}=H_{\mathcal{U}^{r}} A_{\mathcal{U}^{r}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

where $H_{\mathcal{U}^{r}}$ and $A_{\mathcal{U}}$ are the row symmetrizer and column anti-symmetrizer of \mathcal{U}^{r}.

Problem: Find an explicit formula for the element

$$
\phi_{\mathcal{U}} \in \mathbb{C}\left[\mathfrak{S}_{k}\right]
$$

whose image in the representation of \mathfrak{S}_{k} coincides with $\Phi_{\mathcal{U}}$.

Young basis

Given a partition λ of k denote the corresponding irreducible representation of \mathfrak{S}_{k} by V_{λ}. The vector space V_{λ} is equipped with an \mathfrak{S}_{k}-invariant inner product $($,$) .$

Young basis

Given a partition λ of k denote the corresponding irreducible representation of \mathfrak{S}_{k} by V_{λ}. The vector space V_{λ} is equipped with an \mathfrak{S}_{k}-invariant inner product $($,$) .$

The orthonormal Young basis $\left\{v_{\mathcal{U}}\right\}$ of V_{λ} is parameterized by the set of standard λ-tableaux \mathcal{U}.

For any $i \in\{1, \ldots, k-1\}$ set $s_{i}=(i, i+1)$. We have

$$
s_{i} \cdot v_{\mathcal{U}}=d v_{\mathcal{U}}+\sqrt{1-d^{2}} v_{s_{i} \mathcal{U}}
$$

where $\quad d=\left(c_{i+1}-c_{i}\right)^{-1}, \quad c_{i}=c_{i}(\mathcal{U})$ is the content $b-a$ of the cell (a, b) occupied by i in a standard λ-tableau \mathcal{U}, and the tableau $s_{i} \mathcal{U}$ is obtained from \mathcal{U} by swapping the entries i and $i+1$.

The group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ is isomorphic to the direct sum of matrix algebras

$$
\mathbb{C}\left[\mathfrak{S}_{k}\right] \cong \underset{\lambda \vdash k}{\oplus} \operatorname{Mat}_{\tau_{\lambda}}(\mathbb{C})
$$

where $f_{\lambda}=\operatorname{dim} V_{\lambda}$. The matrix units $e_{\mathcal{U U}^{\prime}} \in \operatorname{Mat}_{t_{\lambda}}(\mathbb{C})$ are parameterized by pairs of standard λ-tableaux \mathcal{U} and \mathcal{U}^{\prime}.

The group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ is isomorphic to the direct sum of matrix algebras

$$
\mathbb{C}\left[\mathfrak{S}_{k}\right] \cong \underset{\lambda \vdash k}{\oplus} \operatorname{Mat}_{f_{\lambda}}(\mathbb{C})
$$

where $f_{\lambda}=\operatorname{dim} V_{\lambda}$. The matrix units $e_{\mathcal{U u}^{\prime}} \in \operatorname{Mat}_{\lambda_{\lambda}}(\mathbb{C})$ are parameterized by pairs of standard λ-tableaux \mathcal{U} and \mathcal{U}^{\prime}. Identify $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ with the direct sum of matrix algebras by

$$
e_{\mathfrak{u u}^{\prime}}=\frac{f_{\lambda}}{k!} \phi_{\mathfrak{u ̛}^{\prime}},
$$

where $\phi_{\mathcal{U u}^{\prime}}$ is the matrix element corresponding to the basis vectors $v_{\mathcal{U}}$ and $v_{\mathcal{U}^{\prime}}$ of the representation V_{λ},

$$
\phi_{\mathcal{U u}^{\prime}}=\sum_{s \in \mathfrak{S}_{k}}\left(s \cdot v_{\mathcal{H}}, v_{\mathcal{U}^{\prime}}\right) \cdot s^{-1} \in \mathbb{C}\left[\mathfrak{S}_{k}\right] .
$$

For the diagonal elements we write

$$
e_{\mathcal{U}}=e_{\mathcal{U U}} \quad \text { and } \quad \phi_{\mathcal{U}}=\phi_{\mathcal{U U}} .
$$

For the diagonal elements we write

$$
e_{\mathcal{U}}=e_{\mathcal{U U}} \quad \text { and } \quad \phi_{\mathcal{U}}=\phi_{\mathcal{U U}} .
$$

Since $e_{\mathcal{U}} e_{\mathcal{V}}=0$ for $\mathcal{U} \neq \mathcal{V}, \quad e_{\mathcal{U}}^{2}=e_{\mathcal{U}}, \quad$ and

$$
1=\sum_{\lambda \vdash k} \sum_{\operatorname{sh}(\mathcal{U})=\lambda} e_{\mathcal{U}}
$$

For the diagonal elements we write

$$
e_{\mathcal{U}}=e_{\mathcal{U U}} \quad \text { and } \quad \phi_{\mathcal{U}}=\phi_{\mathcal{U} \mathcal{U}} .
$$

Since $e_{\mathcal{U}} e_{\mathcal{V}}=0$ for $\mathcal{U} \neq \mathcal{V}, \quad e_{\mathcal{U}}^{2}=e_{\mathcal{U}}, \quad$ and

$$
1=\sum_{\lambda \vdash k} \sum_{\operatorname{sh}(\mathcal{U})=\lambda} e_{\mathcal{U}}
$$

the elements we want are $\phi_{\mathcal{U}}$ (or $e_{\mathcal{U}}$), yielding

$$
\left(\mathbb{C}^{N}\right)^{\otimes k} \cong \underset{\lambda \vdash k \operatorname{sh}(\mathcal{U})=\lambda}{\oplus} \Phi_{\mathcal{U}}\left(\mathbb{C}^{N}\right)^{\otimes k}
$$

The Jucys-Murphy elements of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ are defined by

$$
x_{1}=0, \quad x_{i}=(1 i)+(2 i)+\cdots+(i-1 i), \quad i=2, \ldots, k
$$

They generate a commutative subalgebra of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$. Moreover, x_{k} commutes with all elements of \mathfrak{S}_{k-1}.

The Jucys-Murphy elements of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ are defined by

$$
x_{1}=0, \quad x_{i}=(1 i)+(2 i)+\cdots+(i-1 i), \quad i=2, \ldots, k
$$

They generate a commutative subalgebra of $\mathbb{C}\left[\mathfrak{S}_{k}\right]$. Moreover, x_{k} commutes with all elements of \mathfrak{S}_{k-1}.

The vectors of the Young basis are eigenvectors for the action of x_{i} on V_{λ}. For any standard λ-tableau \mathcal{U} we have

$$
x_{i} \cdot v_{\mathcal{U}}=c_{i}(\mathcal{U}) v_{\mathcal{U}}, \quad i=1, \ldots, k
$$

The branching properties of the Young basis imply the corresponding properties of the matrix units. If \mathcal{V} is a given standard tableau with the entries $1, \ldots, k-1$ then

$$
e_{\mathcal{V}}=\sum_{\mathcal{V} \rightarrow \mathcal{U}} e_{\mathcal{U}}
$$

where $\mathcal{V} \rightarrow \mathcal{U}$ means that the standard tableau \mathcal{U} is obtained from \mathcal{V} by adding one cell with the entry k.

Furthermore,

$$
x_{i} e_{\mathcal{U}}=e_{\mathcal{U}} x_{i}=c_{i}(\mathcal{U}) e_{\mathcal{U}}, \quad i=1, \ldots, k
$$

for any standard λ-tableau \mathcal{U},

Furthermore,

$$
x_{i} e_{\mathcal{U}}=e_{\mathcal{U}} x_{i}=c_{i}(\mathcal{U}) e_{\mathcal{U}}, \quad i=1, \ldots, k
$$

for any standard λ-tableau \mathcal{U},
and we have the identity in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
x_{k}=\sum_{\lambda \vdash k} \sum_{\operatorname{sh}(\mathcal{U})=\lambda} c_{k}(\mathcal{U}) e_{\mathcal{U}},
$$

so that x_{k} can be viewed as a diagonal matrix.

Now let $k \geqslant 2$ and let λ be a partition of k. Fix a standard λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Now let $k \geqslant 2$ and let λ be a partition of k. Fix a standard
λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Murphy's formula. We have the relation in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{k}-a_{1}\right) \ldots\left(x_{k}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}
$$

where a_{1}, \ldots, a_{l} are the contents of all addable cells of μ except for α, while c is the content of the latter.

Now let $k \geqslant 2$ and let λ be a partition of k. Fix a standard
λ-tableau \mathcal{U} and denote by \mathcal{V} the standard tableau obtained from \mathcal{U} by removing the cell α occupied by k. Denote the shape of \mathcal{V} by μ.

Murphy's formula. We have the relation in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
e_{\mathcal{U}}=e_{\mathcal{V}} \frac{\left(x_{k}-a_{1}\right) \ldots\left(x_{k}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)}
$$

where a_{1}, \ldots, a_{l} are the contents of all addable cells of μ except for α, while c is the content of the latter.

Equivalently,

$$
e_{\mathcal{U}}=\left.e_{\mathcal{V}} \frac{u-c}{u-x_{k}}\right|_{u=c}
$$

Proof.

Write

$$
e_{\mathcal{V}}=\sum_{\mathcal{V} \rightarrow \mathcal{U}^{\prime}} e_{\mathcal{U}^{\prime}}
$$

Then $x_{k} e_{\mathcal{U}^{\prime}}=a_{i} e_{\mathcal{U}^{\prime}}$ for some i if $\mathcal{U}^{\prime} \neq \mathcal{U}$ while $x_{k} e_{\mathcal{U}}=c e_{\mathcal{U}}$.

Proof.

Write

$$
e_{\mathcal{V}}=\sum_{\mathcal{V} \rightarrow \mathcal{U}^{\prime}} e_{\mathcal{U}^{\prime}}
$$

Then $x_{k} e_{\mathcal{U}^{\prime}}=a_{i} e_{\mathcal{U}^{\prime}}$ for some i if $\mathcal{U}^{\prime} \neq \mathcal{U}$ while $x_{k} e_{\mathcal{U}}=c e_{\mathcal{U}}$.

Similarly,
$e_{\mathcal{V}} \frac{u-c}{u-x_{k}}=\sum_{\mathcal{V} \rightarrow \mathcal{U}^{\prime}} e_{\mathcal{U}^{\prime}} \frac{u-c}{u-c_{k}\left(\mathcal{U}^{\prime}\right)}=e_{\mathcal{U}}+\sum_{\mathcal{V} \rightarrow \mathcal{U}^{\prime}, \mathcal{U}^{\prime} \neq \mathcal{U}} e_{\mathcal{U}^{\prime}} \frac{u-c}{u-c_{k}\left(\mathcal{U}^{\prime}\right)}$.
Since $c_{k}\left(\mathcal{U}^{\prime}\right) \neq c$ for all standard tableaux \mathcal{U}^{\prime} distinct from \mathcal{U}, the value of this rational function at $u=c$ is $e_{\mathcal{U}}$.

Corollary

We have

$$
\phi_{\mathcal{U}}=\left.H_{\lambda, \mu} \phi_{\mathcal{V}} \frac{u-c}{u-x_{k}}\right|_{u=c}
$$

with

$$
H_{\lambda, \mu}=\frac{\left(a_{1}-c\right) \ldots\left(a_{p}-c\right)\left(c-a_{p+1}\right) \ldots\left(c-a_{l}\right)}{\left(b_{1}-c\right) \ldots\left(b_{q}-c\right)\left(c-b_{q+1}\right) \ldots\left(c-b_{r}\right)}
$$

where the numbers $a_{1}, \ldots, a_{p}, c, a_{p+1}, \ldots, a_{l}$ are the contents of all addable cells of μ and $b_{1}, \ldots, b_{q}, c, b_{q+1}, \ldots, b_{r}$ are the contents of all removable cells of λ with both sequences written in the decreasing order.

Remark

Consider the character χ_{λ} of V_{λ},

$$
\chi_{\lambda}=\sum_{s \in \mathfrak{S}_{k}} \chi_{\lambda}(s) s \in \mathbb{C}\left[\mathfrak{S}_{k}\right] .
$$

We have

$$
\chi_{\lambda}=\sum_{\operatorname{sh}(\mathcal{U})=\lambda} \phi_{\mathcal{U}},
$$

summed over all standard λ-tableaux \mathcal{U}.

Remark

Consider the character χ_{λ} of V_{λ},

$$
\chi_{\lambda}=\sum_{s \in \mathfrak{S}_{k}} \chi_{\lambda}(s) s \in \mathbb{C}\left[\mathfrak{S}_{k}\right] .
$$

We have

$$
\chi_{\lambda}=\sum_{\operatorname{sh}(\mathcal{U})=\lambda} \phi_{\mathcal{U}},
$$

summed over all standard λ-tableaux \mathcal{U}.

Hence for the normalized characters $\hat{\chi}_{\lambda}=f_{\lambda} \chi_{\lambda} / k$! we have

$$
\widehat{\chi}_{\lambda}=\sum_{\mu \rightarrow \lambda} \hat{\chi}_{\mu} \frac{\left(x_{k}-a_{1}\right) \ldots\left(x_{k}-a_{l}\right)}{\left(c-a_{1}\right) \ldots\left(c-a_{l}\right)} .
$$

For any distinct indices $i, j \in\{1, \ldots, k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ by

$$
\rho_{i j}(u, v)=1-\frac{(i j)}{u-v} .
$$

For any distinct indices $i, j \in\{1, \ldots, k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ by

$$
\rho_{i j}(u, v)=1-\frac{(i j)}{u-v} .
$$

Take k complex variables u_{1}, \ldots, u_{k} and set

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{k}\right) & =\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \ldots \rho_{1 k}\left(u_{1}, u_{k}\right) \rho_{2 k}\left(u_{2}, u_{k}\right) \ldots \rho_{k-1, k}\left(u_{k-1}, u_{k}\right) .
\end{aligned}
$$

For any distinct indices $i, j \in\{1, \ldots, k\}$ introduce the rational function in two variables u, v with values in the group algebra $\mathbb{C}\left[\mathfrak{S}_{k}\right]$ by

$$
\rho_{i j}(u, v)=1-\frac{(i j)}{u-v} .
$$

Take k complex variables u_{1}, \ldots, u_{k} and set

$$
\begin{aligned}
\phi\left(u_{1}, \ldots, u_{k}\right) & =\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \ldots \rho_{1 k}\left(u_{1}, u_{k}\right) \rho_{2 k}\left(u_{2}, u_{k}\right) \ldots \rho_{k-1, k}\left(u_{k-1}, u_{k}\right) .
\end{aligned}
$$

Motivation: The image of $\rho_{i j}(u, v)$ in $\operatorname{End}\left(\mathbb{C}^{N}\right)^{\otimes k}$ is the Yang R-matrix.

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard λ-tableau. Set $c_{i}=c_{i}(\mathcal{U})$ for $i=1, \ldots, k$.

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard
λ-tableau. Set $c_{i}=c_{i}(\mathcal{U})$ for $i=1, \ldots, k$.
Then the consecutive evaluations

$$
\left.\left.\left.\phi\left(u_{1}, \ldots, u_{k}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{k}=c_{k}}
$$

of the rational function $\phi\left(u_{1}, \ldots, u_{k}\right)$ are well-defined. The corresponding value coincides with the matrix element $\phi_{\mathcal{U}}$,

Theorem

Suppose that λ is a partition of k and let \mathcal{U} be a standard
λ-tableau. Set $c_{i}=c_{i}(\mathcal{U})$ for $i=1, \ldots, k$.
Then the consecutive evaluations

$$
\left.\left.\left.\phi\left(u_{1}, \ldots, u_{k}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{k}=c_{k}}
$$

of the rational function $\phi\left(u_{1}, \ldots, u_{k}\right)$ are well-defined. The corresponding value coincides with the matrix element $\phi_{\mathcal{U}}$,

$$
\phi_{\mathcal{U}}=\left.\left.\left.\phi\left(u_{1}, \ldots, u_{k}\right)\right|_{u_{1}=c_{1}}\right|_{u_{2}=c_{2}} \cdots\right|_{u_{k}=c_{k}} .
$$

Example: $\lambda=(k)$. Then

$$
\mathcal{U}=\quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & k \\
\hline
\end{array} \quad c_{i}=i-1
$$

Example: $\lambda=(k)$. Then

$$
\mathcal{U}=\quad \begin{array}{l|l|l|l|}
\hline 1 & 2 & \cdots & k \\
\hline
\end{array}
$$

and

$$
\phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \sigma,
$$

is the symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$.

Example: $\lambda=(k)$. Then

$$
\mathcal{U}=\quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & k \\
\hline
\end{array} \quad c_{i}=i-1,
$$

and

$$
\phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \sigma,
$$

is the symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$. By the theorem,

$$
\begin{aligned}
\phi_{\mathcal{U}} & =\left(1+\frac{(12)}{1}\right)\left(1+\frac{(13)}{2}\right)\left(1+\frac{(23)}{1}\right) \\
& \times \ldots\left(1+\frac{(1 k)}{k-1}\right)\left(1+\frac{(2 k)}{k-2}\right) \ldots\left(1+\frac{(k-1 k)}{1}\right) .
\end{aligned}
$$

Example: $\lambda=\left(1^{k}\right)$. Then

$$
\mathcal{U}=\begin{array}{|c|}
\hline \frac{1}{2} \\
\hline \vdots \\
\hline k \\
\hline
\end{array} \quad c_{i}=-i+1
$$

Example: $\lambda=\left(1^{k}\right)$. Then

$$
\mathcal{U}=\begin{array}{|c|}
\hline \frac{1}{2} \\
\hline \vdots \\
\hline k \\
\hline
\end{array} \quad c_{i}=-i+1
$$

and $\quad \phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot \sigma \quad$ is the anti-symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

Example: $\lambda=\left(1^{k}\right)$. Then

$$
\mathcal{U}=\begin{array}{|c|}
\hline \frac{1}{2} \\
\hline \vdots \\
\hline k \\
\hline
\end{array} \quad c_{i}=-i+1
$$

and $\quad \phi_{\mathcal{U}}=\sum_{\sigma \in \mathfrak{S}_{k}} \operatorname{sgn} \sigma \cdot \sigma \quad$ is the anti-symmetrizer in $\mathbb{C}\left[\mathfrak{S}_{k}\right]$,

$$
\begin{aligned}
\phi_{\mathcal{U}} & =\left(1-\frac{(12)}{1}\right)\left(1-\frac{(13)}{2}\right)\left(1-\frac{(23)}{1}\right) \\
& \times \ldots\left(1-\frac{(1 k)}{k-1}\right)\left(1-\frac{(2 k)}{k-2}\right) \ldots\left(1-\frac{(k-1 k)}{1}\right)
\end{aligned}
$$

Example: $\quad \lambda=(2,1)$,

$$
\mathcal{U}=\begin{array}{|l|}
\hline 1 \\
\hline 3 \\
\hline
\end{array}
$$

$$
\mathcal{V}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}
$$

Example: $\quad \lambda=(2,1)$,

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

$$
\mathcal{V}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}
$$

Then $\quad c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1$ for \mathcal{U}, \quad and

$$
\phi_{\mathcal{U}}=(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right)
$$

Example: $\quad \lambda=(2,1)$,

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

$$
\mathcal{V}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}
$$

Then $\quad c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1$ for \mathcal{U}, \quad and

$$
\phi_{\mathcal{U}}=(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right)
$$

while $\quad c_{1}=0, \quad c_{2}=-1, \quad c_{3}=1$ for \mathcal{V}, \quad and

$$
\phi_{\mathcal{V}}=(1-(12))(1+(13))\left(1+\frac{(23)}{2}\right)
$$

Example: $\lambda=\left(2^{2}\right)$,

$$
\begin{aligned}
& \phi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \rho_{14}\left(u_{1}, u_{4}\right) \rho_{24}\left(u_{2}, u_{4}\right) \rho_{34}\left(u_{3}, u_{4}\right)
\end{aligned}
$$

Example: $\lambda=\left(2^{2}\right)$,

$$
\begin{aligned}
& \phi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \rho_{14}\left(u_{1}, u_{4}\right) \rho_{24}\left(u_{2}, u_{4}\right) \rho_{34}\left(u_{3}, u_{4}\right)
\end{aligned}
$$

Take the standard λ-tableau

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

Example: $\lambda=\left(2^{2}\right)$,

$$
\begin{aligned}
& \phi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\rho_{12}\left(u_{1}, u_{2}\right) \rho_{13}\left(u_{1}, u_{3}\right) \rho_{23}\left(u_{2}, u_{3}\right) \\
& \times \rho_{14}\left(u_{1}, u_{4}\right) \rho_{24}\left(u_{2}, u_{4}\right) \rho_{34}\left(u_{3}, u_{4}\right)
\end{aligned}
$$

Take the standard λ-tableau

$$
\mathcal{U}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

The contents are $\quad c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1, \quad c_{4}=0$.

Taking $\quad u_{1}=0, \quad u_{2}=1, \quad u_{3}=-1, \quad u_{4}=u \quad$ we get

$$
\begin{aligned}
\phi(0,1,-1, u) & =(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right) \\
& \times\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
\end{aligned}
$$

Taking $\quad u_{1}=0, \quad u_{2}=1, \quad u_{3}=-1, \quad u_{4}=u \quad$ we get

$$
\begin{aligned}
\phi(0,1,-1, u) & =(1+(12))(1-(13))\left(1-\frac{(23)}{2}\right) \\
& \times\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
\end{aligned}
$$

By the theorem, this rational function is regular at $u=0$ and the corresponding value coincides with $\phi_{\mathcal{U}}$.

We have

$$
\phi(0,1,-1, u)=\phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
$$

We have

$$
\phi(0,1,-1, u)=\phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right)
$$

where

$$
\mathcal{V}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array}
$$

Next step:

$$
\begin{aligned}
& \phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right) \\
& =\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{v} \frac{u-c_{4}}{u-x_{4}}
\end{aligned}
$$

Next step:

$$
\begin{aligned}
& \phi_{\mathcal{V}}\left(1+\frac{(14)}{u}\right)\left(1+\frac{(24)}{u-1}\right)\left(1+\frac{(34)}{u+1}\right) \\
& =\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}
\end{aligned}
$$

where $c_{1}=0, \quad c_{2}=1, \quad c_{3}=-1, \quad c_{4}=0 \quad$ and

$$
x_{4}=(14)+(24)+(34)
$$

Finally, apply Murphy's formula to get

$$
\left.\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}\right|_{u=c_{4}}=\phi_{\mathcal{U}}
$$

Finally, apply Murphy's formula to get

$$
\left.\prod_{i=1}^{3}\left(1-\frac{1}{\left(u-c_{i}\right)^{2}}\right) \frac{u}{u-c_{4}} \cdot \phi_{\mathcal{V}} \frac{u-c_{4}}{u-x_{4}}\right|_{u=c_{4}}=\phi_{\mathcal{U}} .
$$

Thus,

$$
\begin{aligned}
\phi_{\mathcal{U}} & =\phi(0,1,-1,0) \\
& =\frac{1}{2}(1+(12))(1-(13))(2-(23)) \\
& \times(2-(14)-(24)-(34))(2+(14)+(24)+(34)) .
\end{aligned}
$$

