MATHEMATICS IV HONOURS 2017 ALGEBRAIC NUMBER THEORY ASSIGNMENT 1

GUS LEHRER

Question 1.

(1) Suppose $x \in \mathbb{C}$ is integral over \mathbb{Z} . Show that if the minimal polynomial of x over \mathbb{Q} is written

(1)
$$f(t) = t^n + a_1 t^{n-1} + \dots + a_n,$$

then f(t) is irreducible in $\mathbb{Q}[t]$, and $a_i \in \mathbb{Z}$ for all i.

- (2) Describe the integers in $\mathbb{Q}(\sqrt{-7})$.
- (3) Write down the minimal polynomial of an arbitrary integer in the form (1).

Question 2.

- (1) Define the discriminant $\Delta_{K/\mathbb{Q}}(x_1,\ldots,x_n)$ of a basis x_1,\ldots,x_n of the algebraic number field, define the discriminant of K, and show that it is unambiguously defined.
- (2) Compute the disciminant of $\mathbb{Q}(\sqrt{m})$, where m is square free and congruent to 1 mod 4.
- (3) Let p be an odd prime, and let K be the cyclotomic field of degree p-1. Show that the discriminant of K is $(-1)^{\frac{p-1}{2}}p^{p-2}$.

Question 3.

- (1) Describe the ring A of integers in $K := \mathbb{Q}(\sqrt{-5})$.
- (2) Show that A is not a UFD, and therefore not a PID.
- (3) Let \mathcal{A} be the ideal $(2, 1 + \sqrt{-5})$. Calculate the norm $N(\mathcal{A})$.
- (4) Give the factorisation of principal the ideal (6) into prime ideals.
- (5) Can you determine the class group of K?

Question 4. Let K be an algebraic number field of degree n over \mathbb{Q} , and write $\sigma_1, \ldots, \sigma_n$ for the distinct \mathbb{Q} -isomorphisms: $K \hookrightarrow \mathbb{C}$. Write A for the ring of integers of K.

- (1) If \widetilde{K} is the normal closure of K (obtained by adjoining to K all conjugates of a generator of K over \mathbb{Q}), show that for each $i, \sigma_i : K \to \widetilde{K} \subseteq \mathbb{C}$ may be extended to an automorphism $\widetilde{\sigma}_i$ of \widetilde{K} .
 - [Hint: $\widetilde{K} = K(\beta)$ for some β . Compose σ_i with an appropriate map $\widetilde{K} \to \widetilde{K} \subseteq \mathbb{C}$.]
- (2) Show that if $x \in A$ is such that $\widetilde{\sigma}_i(x) = x$ for i = 1, 2, ..., n, then $x \in \mathbb{Z}$.
- (3) Show that for each i, there is a unique permutation $\omega_i \in \operatorname{Sym}_n$ of $\{1, \ldots, n\}$ such that for all $x \in K$, we have $\widetilde{\sigma}_i(\sigma_j(x)) = \sigma_{\omega_i(j)}(x)$.

2 GUS LEHRER

Question 5. Maintain the notation of Question 4.

(1) Define the discriminant of K, and show that if $\alpha_1, \ldots, \alpha_n$ is a (\mathbb{Z} -)basis of the ring A of integers in K, then if $d = \operatorname{discrim}(K)$, then

$$d = \det \left(\sigma_i(\alpha_i)\right)^2.$$

- (2) For $\pi \in \operatorname{Sym}_n$ (the symmetric group of degree n) let $t_{\pi} = \prod_{i=1}^n \sigma_i(\alpha_{\pi(i)})$. Show
- that in the notation of Question 4(3), we have $\widetilde{\sigma}_i(t_\pi) = t_{\omega_i^{-1}\pi}$, for any i and π . (3) Let $T_0 = \sum_{\pi:\varepsilon(\pi)=1} t_\pi$ and $T_1 = \sum_{\pi:\varepsilon(\pi)=-1} t_\pi$, where ε is the alternating character of Sym_r (whose value at π is the sign of π). Show that

$$d = (T_0 + T_1)^2 - 4T_0T_1.$$

- (4) Using Question 4(2), show that $T_0 + T_1 \in \mathbb{Z}$ and $T_0 T_1 \in \mathbb{Z}$. [Hint Show that these are stable under each automorphism $\widetilde{\sigma}_{i}$.
- (5) Deduce that the discriminant $d \equiv 0, 1 \pmod{4}$.

(This is Stickelberger's Theorem)

Question 6. Let $\alpha = \sqrt[3]{2}$ be the real cube root of 2, and let $K = \mathbb{Q}(\alpha)$.

- (1) Describe the \mathbb{Q} -embeddings $K \hookrightarrow \mathbb{C}$.
- (2) Show that the discriminant $\Delta_{K/\mathbb{Q}}(1,\alpha,\alpha^2) = -108$. (3) Show that $N_{K/\mathbb{Q}}(a+b\alpha+c\alpha^2) = a^3+2b^3+4c^3-6abc$. Deduce that $1+\alpha+\alpha^2$ is an integer unit in K.

School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia $E ext{-}mail\ address: gustav.lehrer@sydney.edu.au}$