The Calderón Problem -

From the Past to the Present

Leo Tzou, ARC Future Fellow

University of Sydney

FINLANDS AKADEMI

Part I - The Classical Problem on \mathbb{R}^{n}

1. Calderón's Impedance Tomography Problem
2. Anisotropic Medium and Non-uniqueness
3. Sylvester-UhImann Solution for Isotropic Medium

- Boundary Integral Identity
- Complex Geometric Optics

Part II - The Manifold Setting

1. Geometric Aspects of PDE
2. Some Geometric Techniques

conductivity $=\gamma(x)$

- Material Ω with conductivity $\gamma(x)$
- In general the material is anisotropic (muscle, timber, etc.)
- Conductivity depends on direction
- $\gamma(x)$ an $n \times n$ positive definite matrix
- Special isotropic cases (water, breast tissue), $\gamma(x)=\underbrace{\gamma(x)}_{\text {scalar }} I_{n \times n}$

How do we determine $\gamma(x)$ in a non-invasive way?

This question is relevant in:

- Breast tumour detection
- Detecting impurities in steel
- Gas/oil exploration

Electric Impedance Tomography (EIT):

We apply a voltage on the boundary.

Electric Impedance Tomography (EIT):

This surface voltage induces an internal voltage.

Electric Impedance Tomography (EIT):

The voltage then gives a surface electric flux (current)

which we can measure.

Electric Impedance Tomography (EIT):

The lab technician can only measure what happens on the outside.

and record the resulting data:

Input Voltage	f_{1}	f_{2}	f_{3}	etc...
Output Current	c_{1}	c_{2}	c_{3}	etc...

Electric Impedance Tomography (EIT):

- The data depend on the conductivity γ.
- From the recorded data we recover the conductivity

A real life experiment. Data collected with 32 electrodes:

The machine is in Rensselaer Polytechnic Institute, USA.

Numerical reconstruction from data:

Courtesy of Dr. Siltanen of Finnish Centre of Excellence in Inverse Problems Research

- The pictures look reasonable but....
- Two different conductivities could potentially give identical measurements.
- Need to prove that this doesn't happen.

Mathematical Formulation

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $\gamma(x)$ be a positive definite conductivity matrix.

Mathematical Formulation

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $\gamma(x)$ be a positive definite conductivity matrix.

- For all boundary voltage $f \in C^{\infty}(\partial \Omega)$, the induced internal voltage u_{f} solves the conductivity equation

$$
\nabla \cdot \gamma \nabla u_{f}=0,\left.\quad u_{f}\right|_{\partial \Omega}=f
$$

Mathematical Formulation

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $\gamma(x)$ be a positive definite conductivity matrix.

- For all boundary voltage $f \in C^{\infty}(\partial \Omega)$, the induced internal voltage u_{f} solves the conductivity equation

$$
\nabla \cdot \gamma \nabla u_{f}=0,\left.\quad u_{f}\right|_{\partial \Omega}=f
$$

- Define the linear operator $\wedge_{\gamma}: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)$ by

$$
\Lambda_{\gamma}: \underbrace{f}_{\text {boundary voltage }} \longmapsto \underbrace{\left.\left(\hat{n} \cdot \gamma \nabla u_{f}\right)\right|_{\partial \Omega}}_{\text {boundary current }}
$$

Mathematical Formulation

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $\gamma(x)$ be a positive definite conductivity matrix.

- For all boundary voltage $f \in C^{\infty}(\partial \Omega)$, the induced internal voltage u_{f} solves the conductivity equation

$$
\nabla \cdot \gamma \nabla u_{f}=0,\left.\quad u_{f}\right|_{\partial \Omega}=f
$$

- Define the linear operator $\wedge_{\gamma}: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)$ by

$$
\Lambda_{\gamma}: \underbrace{f}_{\text {boundary voltage }} \longmapsto \underbrace{\left.\left(\hat{n} \cdot \gamma \nabla u_{f}\right)\right|_{\partial \Omega}}_{\text {boundary current }}
$$

- \wedge_{γ} is the Dirichlet-Neumann (voltage-current) map.

Mathematical Formulation

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $\gamma(x)$ be a positive definite conductivity matrix.

- For all boundary voltage $f \in C^{\infty}(\partial \Omega)$, the induced internal voltage u_{f} solves the conductivity equation

$$
\nabla \cdot \gamma \nabla u_{f}=0,\left.\quad u_{f}\right|_{\partial \Omega}=f
$$

- Define the linear operator $\wedge_{\gamma}: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)$ by

$$
\Lambda_{\gamma}: \underbrace{f}_{\text {boundary voltage }} \longmapsto \underbrace{\left.\left(\hat{n} \cdot \gamma \nabla u_{f}\right)\right|_{\partial \Omega}}_{\text {boundary current }}
$$

- \wedge_{γ} is the Dirichlet-Neumann (voltage-current) map.
- Dependence of Λ_{γ} on γ NONLINEAR.

Calderón's Problem:

Does the operator Λ_{γ} uniquely determine γ ?
(ie. $\Lambda_{\gamma_{1}}=\Lambda_{\gamma_{2}} \Longrightarrow \gamma_{1}=\gamma_{2}$?)

Calderón's Problem:

Does the operator \wedge_{γ} uniquely determine γ ?
(ie. $\wedge_{\gamma_{1}}=\wedge_{\gamma_{2}} \Longrightarrow \gamma_{1}=\gamma_{2}$?)

For general anisotropic (matrix valued) γ the answer is NO.

Counter-example:

- Let $F: \Omega \rightarrow \Omega$ be a diffeomorphism with $\left.F\right|_{\partial \Omega}=I d$.

Counter-example:

- Let $F: \Omega \rightarrow \Omega$ be a diffeomorphism with $\left.F\right|_{\partial \Omega}=I d$.
- Define $\tilde{\gamma}=F_{*} \gamma:=\frac{D F \gamma D F^{T}}{|\operatorname{det} D F|} \circ F^{-1}$.

Counter-example:

- Let $F: \Omega \rightarrow \Omega$ be a diffeomorphism with $\left.F\right|_{\partial \Omega}=I d$.
- Define $\tilde{\gamma}=F_{*} \gamma:=\frac{D F \gamma D F^{T}}{|\operatorname{det} D F|} \circ F^{-1}$.
- Then $\wedge_{\tilde{\gamma}}=\wedge_{\gamma}$

Counter-example:

- Let $F: \Omega \rightarrow \Omega$ be a diffeomorphism with $\left.F\right|_{\partial \Omega}=I d$.
- Define $\tilde{\gamma}=F_{*} \gamma:=\frac{D F \gamma D F^{T}}{|\operatorname{det} D F|} \circ F^{-1}$.
- Then $\wedge_{\tilde{\gamma}}=\wedge_{\gamma}$
- Intuition from differential geometry
- Harmonic functions are invariant under pull-back by isometries.

Counter-example:

- Let $F: \Omega \rightarrow \Omega$ be a diffeomorphism with $\left.F\right|_{\partial \Omega}=I d$.
- Define $\tilde{\gamma}=F_{*} \gamma:=\frac{D F \gamma D F^{T}}{\mid \operatorname{detDF|}} \circ F^{-1} .$.
- Then $\wedge_{\tilde{\gamma}}=\wedge_{\gamma}$
- Intuition from differential geometry
- Harmonic functions are invariant under pull-back by isometries.

Is this the only non-uniqueness?

Conjecture

Suppose $\wedge_{\gamma_{1}}=\wedge_{\gamma_{2}}$. Then there exists a diffeomorphism

$$
F: \Omega \rightarrow \Omega,\left.\quad F\right|_{\partial \Omega}=I d
$$

such that $\gamma_{2}=F_{*} \gamma_{1}$.

- Only known to be true if $\Omega \subset \mathbb{R}^{2}$ (Nachman, Sylvester, Astala-Lassas-Päivärinta).
- $n \geq 3$ open.

Isotropic Conductivities

Now suppose a-priori that γ is isotropic (a scalar function).

Theorem (Sylvester-UhImann)
Let $\Omega \subset \mathbb{R}^{n}$ for $n \geq 3$. Suppose γ_{1} and γ_{2} are two smooth scalar conductivities such that

$$
\wedge_{\gamma_{1}}=\Lambda_{\gamma_{2}}
$$

then $\gamma_{1}=\gamma_{2}$.

- Non-constant coefficient $\nabla \cdot \gamma \nabla$ is not so nice.
- The proof considers an auxiliary problem for the Schrödinger operator $\Delta+V$.

Schrödinger Operator $\Delta+V$ and its Dirichlet-Neumann map

- Let $V \in L^{\infty}(\Omega)$ be the potential.
- Assume for all $f \in C^{\infty}(\partial \Omega), \exists!u_{f}$ solving

$$
\begin{gathered}
(\Delta+V) u_{f}=0 \text { on } \Omega \\
u_{f}=f \text { on } \partial \Omega
\end{gathered}
$$

- Define Dirichlet-Neumann map $\wedge_{V}: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)$ by

$$
\Lambda_{V}: f \longmapsto \partial_{\nu} u_{f}
$$

- $\wedge_{V_{1}}=\wedge_{V_{2}} \Rightarrow V_{1}=V_{2}$? Yes
($n \geq 3$ Sylvester-UhImann, $n=2$ Bukgheim)
- For isotropic conductivity, $\nabla \cdot \gamma \nabla$ is a special case of $\Delta+V$
- Take $V=\frac{-\Delta \sqrt{\gamma}}{\sqrt{\gamma}}$ and make a change of variable.

The Sylvester-UhImann Result $n \geq 3$

- Prove: $\wedge_{V_{1}}=\wedge_{V_{2}} \Longrightarrow V_{1}=V_{2}$.
- Two steps:

The Sylvester-UhImann Result $n \geq 3$

- Prove: $\wedge_{V_{1}}=\wedge_{V_{2}} \Longrightarrow V_{1}=V_{2}$.
- Two steps:

1. Derive integral identity relating Λ_{V} to V.

The Sylvester-UhImann Result $n \geq 3$

- Prove: $\Lambda_{V_{1}}=\wedge_{V_{2}} \Longrightarrow V_{1}=V_{2}$.
- Two steps:

1. Derive integral identity relating Λ_{V} to V.
2. Probe identity with special solutions.

1. Boundary Integral Identity

Suppose u_{1}, u_{2} solves $\left(\Delta+V_{j}\right) u_{j}=0$

1. Boundary Integral Identity

Suppose u_{1}, u_{2} solves $\left(\Delta+V_{j}\right) u_{j}=0$ then by Green's theorem

1. Boundary Integral Identity

Suppose u_{1}, u_{2} solves $\left(\Delta+V_{j}\right) u_{j}=0$ then by Green's theorem

$$
\int_{\Omega} u_{1}\left(V_{1}-V_{2}\right) \overline{u_{2}}=\int_{\partial \Omega} \overline{u_{2}}\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right) u_{1}=0
$$

1. Boundary Integral Identity

Suppose u_{1}, u_{2} solves $\left(\Delta+V_{j}\right) u_{j}=0$ then by Green's theorem

$$
\int_{\Omega} u_{1} \underbrace{\left(V_{1}-V_{2}\right)}_{\text {info we want }} \overline{u_{2}}=\int_{\partial \Omega} \overline{u_{2}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{\text {info given }} u_{1}=0
$$

1. Boundary Integral Identity

Suppose u_{1}, u_{2} solves $\left(\Delta+V_{j}\right) u_{j}=0$ then by Green's theorem

$$
\int_{\Omega} u_{1} \underbrace{\left(V_{1}-V_{2}\right)}_{\text {info we want }} \overline{u_{2}}=\int_{\partial \Omega} \overline{u_{2}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{\text {info given }} u_{1}=0
$$

Are products of solutions dense?
Will show products of solutions "look like" Fourier Transforms.

1. Boundary Integral Identity

Suppose u_{1}, u_{2} solves $\left(\Delta+V_{j}\right) u_{j}=0$ then by Green's theorem

$$
\int_{\Omega} u_{1} \underbrace{\left(V_{1}-V_{2}\right)}_{\text {info we want }} \overline{u_{2}}=\int_{\partial \Omega} \overline{u_{2}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{\text {info given }} u_{1}=0
$$

Are products of solutions dense?

Will show products of solutions "look like" Fourier Transforms.

Construct "Complex Geometric Optics"

2. Probing Identity With Special Solutions

- Recall Fourier Transform of a function:

$$
\mathcal{F}(f)(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f d x
$$

2. Probing Identity With Special Solutions

- Recall Fourier Transform of a function:

$$
\mathcal{F}(f)(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f d x
$$

- Construct solutions of the form

$$
u=e^{\zeta \cdot x}(1+r)
$$

2. Probing Identity With Special Solutions

- Recall Fourier Transform of a function:

$$
\mathcal{F}(f)(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f d x
$$

- Construct solutions of the form

$$
u=e^{\zeta \cdot x}(1+r)
$$

- $\zeta \in \mathbb{C}^{n}$ large, $\zeta \cdot \zeta=0, r$ small as $|\zeta| \rightarrow \infty$.

2. Probing Identity With Special Solutions

- Recall Fourier Transform of a function:

$$
\mathcal{F}(f)(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f d x
$$

- Construct solutions of the form

$$
u=e^{\zeta \cdot x}(1+r)
$$

- $\zeta \in \mathbb{C}^{n}$ large, r small as $|\zeta| \rightarrow \infty$.
- Choose ζ such that the product

$$
u_{1} \bar{u}_{2}=e^{i \xi \cdot x}+r
$$

. for a chosen $\xi \in \mathbb{R}^{n}$ and r small.

2. Probing Identity With Special Solutions

- Recall Fourier Transform of a function:

$$
\mathcal{F}(f)(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f d x
$$

- Construct solutions of the form

$$
u=e^{\zeta \cdot x}(1+r)
$$

- $\zeta \in \mathbb{C}^{n}$ large, r small as $|\zeta| \rightarrow \infty$.
- Choose ζ such that the product

$$
u_{1} \bar{u}_{2}=\underbrace{e_{\text {Transform }}^{i \xi \cdot x}}_{\text {Fourier }}+r
$$

for a chosen $\xi \in \mathbb{R}^{n}$ and r small.

Plug

$$
u_{1} \bar{u}_{2}=e^{i \xi \cdot x}+r
$$

into

$$
\int_{\Omega} u_{1}\left(V_{1}-V_{2}\right) \overline{u_{2}}=0
$$

we have

$$
\int_{\Omega} e^{i \xi \cdot x}\left(V_{1}-V_{2}\right)=0
$$

Caveats

- This idea needs $n \geq 3$
- Choice of $\zeta \in \mathbb{C}^{n}$ requires THREE mutually perpendicular vectors in \mathbb{R}^{n}.
- Idea only works on flat space.

Part II - The Manifold Setting

Part II - The Manifold Setting

First talk about geometry

Part II - The Manifold Setting

First talk about geometry then analysis.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

Dimensions $n \geq 3$
Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\wedge_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

Dimensions $n \geq 3$

Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

- $M=M^{\prime} \times[0,1], g=\left(\begin{array}{cc}1 & 0 \\ 0 & g^{\prime}\left(x^{\prime}\right)\end{array}\right)$
- $\left(M^{\prime}, g^{\prime}\right)$ a simple manifold

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\wedge_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

Dimensions $n \geq 3$
Ferreira-Kenig-Salo-Uhlmann proved the analogous assuming:

- $M=M^{\prime} \times[0,1], g=\left(\begin{array}{cc}1 & 0 \\ 0 & g^{\prime}\left(x^{\prime}\right)\end{array}\right)$
- $\left(M^{\prime}, g^{\prime}\right)$ a simple manifold

Ferreira-Kurylev-Lassas-Salo recently relaxed the assumption on M^{\prime}.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\wedge_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

In $n=2$ we can do even better.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

So far we have been able to make measurements on the entire boundary.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\wedge_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

What if part of the boundary is inaccessible?

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

Can only measure on $\Gamma \subset \partial M$ small open subset.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\wedge_{V_{1}} f\right|_{\Gamma}=\left.\wedge_{V_{2}} f\right|_{\Gamma}, \forall f$, then $V_{1}=V_{2}$.

Can only measure on $\Gamma \subset \partial M$ small open subset.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Can only measure on $\Gamma \subset \partial M$ small open subset.

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

So far we recovered V from the DN map for the operator

$$
d^{*} d+V
$$

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

What if we make the following change

$$
d^{*} d+V
$$

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

What if we make the following change

$$
(d+i A)^{*}(d+i A)+V
$$

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

A a real valued 1-form.

$$
(d+i A)^{*}(d+i A)+V
$$

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

Connection Laplacian on complex line bundle $E=C \times M$

$$
(d+i A)^{*}(d+i A)+V
$$

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

Connection Laplacian on complex line bundle $E=C \times M$

$$
(d+i A)^{*}(d+i A)+V
$$

What information does its DN map $\wedge_{A, V}$ give about A and V ?

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}\left(\ulcorner)\right.$, then $V_{1}=V_{2}$.

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}\left(\ulcorner)\right.$, then $V_{1}=V_{2}$.

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature

```
analytic }\mp@subsup{\underbrace}{\mathrm{ quantity}}{dA
```

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)

Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\ulcorner }=\left.\Lambda_{V_{2}} f\right|_{\ulcorner,}, \forall f \in C_{0}^{\infty}\left(\ulcorner)\right.$, then $V_{1}=V_{2}$.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $\underbrace{d A}_{\text {analytic }}$ quantity and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Dimensions $n=2$
Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\ulcorner }=\left.\Lambda_{V_{2}} f\right|_{\ulcorner,}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $\underbrace{d A}_{\text {analytic }}$ quantity and

$$
\underbrace{\int_{\gamma} A \bmod 2 \pi \mathbb{Z}}_{\text {algrebraic }}
$$

for all closed curves γ.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Further generalization

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)

Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let $\pi: E \rightarrow M$ be a Hermitian bundle over surface M and ∇ a Hermitian connection acting on E. Then the DN map of the connection Laplacian

$$
\nabla^{*} \nabla+V
$$

determines V and ∇ up to unitary equivalence.

Dimensions $n=2$

Theorem(Guillarmou - LT, Duke Math J 2011)

Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let $\pi: E \rightarrow M$ be a Hermitian bundle over surface M and ∇ a Hermitian connection acting on E. Then the DN map of the connection Laplacian

$$
\nabla^{*} \nabla+V
$$

determines V and ∇ up to unitary equivalence.

Dimensions $n=2$

Theorem(Guillarmou - LT, GAFA 2011)
The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Dimensions $n=2$

Theorem(Guillarmou - LT, GAFA 2011)

 The DN map of$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Why is this interesting?

Dimensions $n=2$

Theorem(Guillarmou - LT, GAFA 2011) The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Short answer:

Dimensions $n=2$

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Short answer:
Analysis/PDE

Dimensions $n=2$

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Short answer:
Analysis/PDE
Topology/Geometry

Dimensions $n=2$

Theorem(Guillarmou - LT, GAFA 2011)

The DN map of

$$
(d+i A)^{*}(d+i A)
$$

determines both the connection curvature $d A$ and

$$
\int_{\gamma} A \bmod 2 \pi \mathbb{Z}
$$

for all closed curves γ.

Short answer:
Analysis/PDE \leftrightarrows Topology/Geometry

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=(d+i A)^{*}(d+i A) u=0
$$

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} \frac{(d+i A)}{A=0} u=0
$$

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} \frac{(d+i A)}{A=0} u=0
$$

- A is a real valued 1 -form (magnetic potential).

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} \frac{(d+i A)}{A=0} u=0
$$

- A is a real valued 1 -form (magnetic potential).
- The curl $d A$ is the magnetic field.

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} \frac{(d+i A)}{A=0} u=0
$$

- For all $f \in C^{\infty}(\partial M)$

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} \quad u=0
$$

- For all $f \in C^{\infty}(\partial M)$ solve $L_{A} u_{f}=0,\left.u\right|_{\partial M}=f$

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} A=0,0
$$

- For all $f \in C^{\infty}(\partial M)$ solve $L_{A} u_{f}=0,\left.u\right|_{\partial M}=f$
- Define $\wedge_{A}: f \mapsto i_{\nu}(d+i A) u_{f}$.

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} A=0
$$

- For all $f \in C^{\infty}(\partial M)$ solve $L_{A} u_{f}=0,\left.u\right|_{\partial M}=f$
- Define $\wedge_{A}: f \mapsto i_{\nu}(d+i A) u_{f}$.
- $\wedge_{A_{1}}=\wedge_{A_{2}}$ implies $A_{1}=A_{2}$?

The Magnetic Schrödinger Equation

Consider the magnetic Schrödinger equation:

$$
L_{A} u:=\underbrace{(d+i A)^{*}(d+i A)}_{=\Delta} A=0
$$

- For all $f \in C^{\infty}(\partial M)$ solve $L_{A} u_{f}=0,\left.u\right|_{\partial M}=f$
- Define $\wedge_{A}: f \mapsto i_{\nu}(d+i A) u_{f}$.
- $\wedge_{A_{1}}=\wedge_{A_{2}}$ implies $A_{1}=A_{2}$? NO

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$
- If $L_{A} u=0$ then $L_{A+d \phi} e^{-i \phi} u=0$.

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$
- If $L_{A} u=0$ then $L_{A+d \phi} e^{-i \phi} u=0$.
- So $\wedge_{A}=\wedge_{A+d \phi}$.

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$
- If $L_{A} u=0$ then $L_{A+d \phi} e^{-i \phi} u=0$.
- So $\wedge_{A}=\wedge_{A+d \phi}$.

Natural Conjecture (false in general): If $\Lambda_{A_{1}}=\wedge_{A_{2}}$ then $A_{1}-A_{2}$ is exact.

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$
- If $L_{A} u=0$ then $L_{A+d \phi} e^{-i \phi} u=0$.
- So $\wedge_{A}=\wedge_{A+d \phi}$.

Natural Conjecture (false in general): If $\Lambda_{A_{1}}=\Lambda_{A_{2}}$ then $A_{1}-A_{2}$ is exact.

This holds only on simply connected domains.

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$
- If $L_{A} u=0$ then $L_{A+d \phi} e^{-i \phi} u=0$.
- So $\wedge_{A}=\wedge_{A+d \phi}$.

Natural Conjecture (false in general): If $\Lambda_{A_{1}}=\Lambda_{A_{2}}$ then $A_{1}-A_{2}$ is exact.

This holds only on simply connected domains.

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0
$$

Gauge Invariance

- Let $\phi \in C^{\infty}(M)$ be a real function with $\left.\phi\right|_{\partial M}=0$.
- Consider the operator $L_{A+d \phi}=(d+i A+i d \phi)^{*}(d+i A+i d \phi)$
- If $L_{A} u=0$ then $L_{A+d \phi} e^{-i \phi} u=0$.
- So $\wedge_{A}=\wedge_{A+d \phi}$.

Natural Conjecture (false in general): If $\Lambda_{A_{1}}=\Lambda_{A_{2}}$ then $A_{1}-A_{2}$ is exact.

This holds only on simply connected domains.

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \underset{\text { s.c. }}{\Rightarrow} A_{1}-A_{2}=d \phi
$$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0
$$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact.

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,

$$
A_{1}-A_{2} \text { is exact } \Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}}
$$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,

$$
\begin{aligned}
& A_{1}-A_{2} \text { is exact } \Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}} \\
& A_{1}-A_{2} \text { is closed } \Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}
\end{aligned}
$$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,
$A_{1}-A_{2}$ is exact $\Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}}$ cohomology of M
$A_{1}-A_{2}$ is closed $\Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,
$A_{1}-A_{2}$ is exact $\Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}}$
our result fills this gap
$A_{1}-A_{2}$ is closed $\Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,

$$
\begin{aligned}
& A_{1}-A_{2} \text { is exact } \Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}} \\
& \left(A_{1}-A_{2}\right) \in H_{1}(M, \partial M ; \mathbb{Z}) \Leftrightarrow \wedge_{A_{1}}=\wedge_{A_{2}} \\
& A_{1}-A_{2} \text { is closed } \Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}
\end{aligned}
$$

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,

$$
\begin{aligned}
& A_{1}-A_{2} \text { is exact } \Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}} \\
& \left(A_{1}-A_{2}\right) \in H_{1}(M, \partial M ; \mathbb{Z}) \Leftrightarrow \wedge_{A_{1}}=\wedge_{A_{2}} \\
& A_{1}-A_{2} \text { is closed } \Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}
\end{aligned}
$$

Corollary
$\Lambda_{A}=\Lambda_{0}$ IFF $d A=0$ and $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ for all loops γ.

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,
$A_{1}-A_{2}$ is exact $\Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}}$
$\left(A_{1}-A_{2}\right) \in H_{1}(M, \partial M ; \mathbb{Z}) \Leftrightarrow \Lambda_{A_{1}}=\wedge_{A_{2}}$
$A_{1}-A_{2}$ is closed $\Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}$
Corollary
$\wedge_{A}=\Lambda_{0}$ IFF $d A=0$ and $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ for all loops γ.
What motivated us to this condition?

Topological Obstructions

- On a surface M with genus similar analytic techniques will obtain

$$
\wedge_{A_{1}}=\wedge_{A_{2}} \Rightarrow d\left(A_{1}-A_{2}\right)=0 \quad \text { discuss later in talk }
$$

- However, this does not imply $A_{1}-A_{2}$ is exact. So,
$A_{1}-A_{2}$ is exact $\Rightarrow \wedge_{A_{1}}=\wedge_{A_{2}}$
$\left(A_{1}-A_{2}\right) \in H_{1}(M, \partial M ; \mathbb{Z}) \Leftrightarrow \wedge_{A_{1}}=\wedge_{A_{2}}$
$A_{1}-A_{2}$ is closed $\Leftarrow \wedge_{A_{1}}=\wedge_{A_{2}}$
Corollary
$\Lambda_{A}=\Lambda_{0}$ IFF $d A=0$ and $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ for all loops γ.
What motivated us to this condition?
The answer is in the geometry of connection.

Point of View of Parallel Transport

Point of View of Parallel Transport

Let $E=\mathbb{C} \times M$ be the trivial complex line bundle over M.

Point of View of Parallel Transport

Let $E=\mathbb{C} \times M$ be the trivial complex line bundle over M.

- $\nabla^{A}:=d+i A$ is a connection acting on this line bundle.

Point of View of Parallel Transport

Let $E=\mathbb{C} \times M$ be the trivial complex line bundle over M.

- $\nabla^{A}:=d+i A$ is a connection acting on this line bundle.
- Let γ be a closed loop and $z_{0} \in \gamma$

Point of View of Parallel Transport

Let $E=\mathbb{C} \times M$ be the trivial complex line bundle over M.

- $\nabla^{A}:=d+i A$ is a connection acting on this line bundle.
- Let γ be a closed loop and $z_{0} \in \gamma$
- $\operatorname{Fix} v \in E_{z_{0}}$

Point of View of Parallel Transport

Let $E=\mathbb{C} \times M$ be the trivial complex line bundle over M.

- $\nabla^{A}:=d+i A$ is a connection acting on this line bundle.
- Let γ be a closed loop and $z_{0} \in \gamma$
- Fix $v \in E_{z_{0}}$

Point of View of Parallel Transport

Let $E=\mathbb{C} \times M$ be the trivial complex line bundle over M.

- $\nabla^{A}:=d+i A$ is a connection acting on this line bundle.
- Let γ be a closed loop and $z_{0} \in \gamma$
- Fix $v \in E_{z_{0}}$

- Parallel transport v along γ by ∇^{A}

- to obtain $v^{\prime} \in E_{z_{0}}$

- to obtain $v^{\prime} \in E_{z_{0}}$

- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- to obtain $v^{\prime} \in E_{z_{0}}$

- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- The map $v \mapsto v^{\prime}$ is called the holonomy of ∇^{A} along γ.
- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- The map $v \mapsto v^{\prime}$ is called the holonomy of ∇^{A} along γ.
- $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ iff $v^{\prime}=v$.
- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- The map $v \mapsto v^{\prime}$ is called the holonomy of ∇^{A} along γ.
- $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ iff $v^{\prime}=v$.
- Holonomy of ∇^{A} and ∇^{0} are equal iff

$$
\int_{\gamma} A \in 2 \pi \mathbb{Z}
$$

for all closed loops γ

- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- The map $v \mapsto v^{\prime}$ is called the holonomy of ∇^{A} along γ.
- $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ iff $v^{\prime}=v$.
- Holonomy of ∇^{A} is equal to that of ∇^{0} iff

$$
\int_{\gamma} A \in 2 \pi \mathbb{Z}
$$

for all closed loops γ

- Connections are isomorphic.
- Solving the ODE for parallel transport yields $v^{\prime}=\left(e^{i \int_{\gamma} A}\right) v$
- The map $v \mapsto v^{\prime}$ is called the holonomy of ∇^{A} along γ.
- $\int_{\gamma} A \in 2 \pi \mathbb{Z}$ iff $v^{\prime}=v$.
- Holonomy of ∇^{A} is equal to that of ∇^{0} iff

$$
\int_{\gamma} A \in 2 \pi \mathbb{Z}
$$

for all closed loops γ

- Connections are isomorphic.
- Geometric intuition of our result.

Proof of Result

Consider a closed loop γ on M :

Want to show that $\int_{\gamma} A \in 2 \pi \mathbb{Z}$.

Proof of Result

Consider a closed loop γ on M :

Since $d A=0$ we can choose any representative of the homology class.

Proof of Result

Consider a closed loop γ on M :

So we deform the curve as such so that part of it, Γ_{2}, is on ∂M

Proof of Result

Consider a closed loop γ on M :

We have Dirichlet-Neumann boundary information along Γ_{2} about the operator $L_{A}=(d+i A)^{*}(d+i A)$

Proof of Result

Consider a closed loop γ on M :

We have Dirichlet-Neumann boundary information along Γ_{2} about the operator $L_{A}=(d+i A)^{*}(d+i A)$ which has unique continuation property

Proof of Result

Consider a closed loop γ on M :

This allows us to propagate information along Γ_{1}

Proof of Result

Consider a closed loop γ on M :

This allows us to propagate information along Γ_{1} QED.

Theorem(Albin - Guillarmou - LT, Ann Henri Poincaré 2013)
Let $\pi: E \rightarrow M$ be a Hermitian bundle over surface M and ∇ a Hermitian connection acting on E. Then the DN map of the connection Laplacian

$$
\nabla^{*} \nabla+V
$$

determines V and ∇ up to unitary equivalence.

Cauchy-Riemann Operator and Holomorphic Structure

We start with a connection on complex bundle E : ∇

Cauchy-Riemann Operator and Holomorphic Structure

Which determines a Cauchy-Riemann operator: $\nabla \rightarrow \pi_{1,0} \nabla:=\partial^{\nabla}$

Cauchy-Riemann Operator and Holomorphic Structure

Which induces a compatible holomorphic structure on E (Kobayashi): $\nabla \rightarrow \pi_{1,0} \nabla:=\partial^{\nabla} \rightarrow\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right)$

Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F : $\nabla \rightarrow \pi_{1,0} \nabla:=\partial^{\nabla} \rightarrow\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right) \rightarrow\left(F: E \rightarrow M \times \mathbb{C}^{n}\right)$

Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F :
$\nabla \rightarrow \pi_{1,0} \nabla:=\bar{\partial}^{\nabla} \rightarrow\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right) \rightarrow\left(F: E \rightarrow M \times \mathbb{C}^{n}\right)$
Play this game for $\nabla^{j}, j=1,2$, we get holomorphic trivializations F_{1} and F_{2} respectively.

Cauchy-Riemann Operator and Holomorphic Structure

Since M has boundary E has a holomorphic trivialization F : $\nabla \rightarrow \pi_{1,0} \nabla:=\bar{\partial}^{\nabla} \rightarrow\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right) \rightarrow\left(F: E \rightarrow M \times \mathbb{C}^{n}\right)$

Play this game for $\nabla^{j}, j=1,2$, we get holomorphic trivializations F_{1} and F_{2} respectively.

Having the Dirichlet-Neumann map of ∇^{1} and ∇^{2} agree means we can choose holomorphic trivializations F_{1} and F_{2} such that they agree on ∂M.

The Analysis Part

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as DN map of $\Delta+V$ determines V

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as DN map of $\Delta+V$ determines V
- Start with

$$
\int_{M} u_{1} \bar{u}_{2}\left(V_{1}-V_{2}\right)=\int_{\partial M} \bar{u}_{2}\left(\Lambda_{V_{1}}-\wedge_{V_{2}}\right) u_{1}
$$

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as DN map of $\Delta+V$ determines V
- Start with

$$
\int_{M} u_{1} \bar{u}_{2}\left(V_{1}-V_{2}\right)=\int_{\partial M} \bar{u}_{2}\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right) u_{1}
$$

for solutions u_{1} and u_{2} solving $\left(\Delta+V_{j}\right) u_{j}=0$.

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as DN map of $\Delta+V$ determines V
- Start with

$$
\int_{M} u_{1} \bar{u}_{2}\left(V_{1}-V_{2}\right)=\int_{\partial M} \bar{u}_{2} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{1}
$$

for solutions u_{1} and u_{2} solving $\left(\Delta+V_{j}\right) u_{j}=0$.

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as DN map of $\Delta+V$ determines V
- Start with

$$
\int_{M} u_{1} \bar{u}_{2}\left(V_{1}-V_{2}\right)=\int_{\partial M} \bar{u}_{2} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{1}
$$

for solutions u_{1} and u_{2} solving $\left(\Delta+V_{j}\right) u_{j}=0$.

- On M how do we show density of products of solutions?

The Analysis Part

- Show that DN map of $(d+i A)^{*}(d+i A)$ determines $d A$.
- Uses the same idea as DN map of $\Delta+V$ determines V
- Start with

$$
\int_{M} u_{1} \bar{u}_{2}\left(V_{1}-V_{2}\right)=\int_{\partial M} \bar{u}_{2} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{1}
$$

for solutions u_{1} and u_{2} solving $\left(\Delta+V_{j}\right) u_{j}=0$.

- On M how do we show density of products of solutions?
- In \mathbb{R}^{n} use Fourier Transform.

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

1. Integral identity

$$
\int_{\mathbb{D}} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial \mathbb{D}} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

1. Integral identity

$$
\int_{\mathbb{D}} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial \mathbb{D}} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

1. Integral identity

$$
\int_{\mathbb{D}} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial \mathbb{D}} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

1. Integral identity

$$
\int_{\mathbb{D}} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial \mathbb{D}} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

1. Integral identity

$$
\int_{\mathbb{D}} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial \mathbb{D}} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

3. Plug $u_{1}=e^{\Phi / h}\left(1+r_{h}\right)$ and $u_{2}=e^{-\Phi / h}\left(1+r_{h}\right)$ into the integral identity

$$
\int_{\mathbb{D}} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial \mathbb{D}} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

4. Note that real part of the phase cancel we get

$$
\int_{\mathbb{D}} \underbrace{e^{i \psi / h}\left(V_{1}-V_{2}\right)}_{\text {principal part }}+o(h)=0
$$

5. $\psi(x, y)=x y$ has a unique non-degenerate critical point at 0 .

$$
\underbrace{\int_{\mathbb{D}} e^{i \psi / h}\left(V_{1}-V_{2}\right)}_{h\left(V_{1}-V_{2}\right)(0)+o(h)}+o(h)=0
$$

by stationary phase.
6. $V_{1}(0)=V_{2}(0)$. But there is nothing special about the origin. We can put critical point anywhere we like.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)

Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\wedge_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

In $n=2$ we can do even better.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\Lambda_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

So far we have been able to make measurements on the entire boundary.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\wedge_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

What if part of the boundary is inaccessible?

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\Lambda_{V_{1}} f=\wedge_{V_{2}} f, \forall f$, then $V_{1}=V_{2}$.

Can only measure on $\Gamma \subset \partial M$ small open subset.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f$, then $V_{1}=V_{2}$.

Can only measure on $\Gamma \subset \partial M$ small open subset.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Can only measure on $\Gamma \subset \partial M$ small open subset.

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Challenges

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)

Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$

Challenges

- No explicit expression for holomorphic functions

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\wedge_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Challenges

- No explicit expression for holomorphic functions
- Placement of critical points

General Surfaces

Theorem(Guillarmou - LT, Duke Math J 2011)
Let M be a Riemann surface with boundary. Suppose $V_{1}, V_{2} \in C^{\infty}(\bar{M})$ satisfy $\left.\Lambda_{V_{1}} f\right|_{\Gamma}=\left.\Lambda_{V_{2}} f\right|_{\Gamma}, \forall f \in C_{0}^{\infty}(\Gamma)$, then $V_{1}=V_{2}$.

Challenges

- No explicit expression for holomorphic functions
- Placement of critical points
- Limited data

Bukgheim's Result for $(M, g)=(\mathbb{D}, e)$

Bukgheim's Result for $(M, g)=(\mathbb{D}, e), \Lambda_{V_{1}}=\Lambda_{V_{2}}$ on ∂M

Bukgheim's Result for $(M, g)=(\mathbb{D}, e), \Lambda_{V_{1}}=\Lambda_{V_{2}}$ on ∂M

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

General Surfaces, $\Lambda_{V_{1}}=\Lambda_{V_{2}}$ on ∂M

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

General Surfaces, $\wedge_{V_{1}}=\Lambda_{V_{2}}$ on $\Gamma \subset \partial M$

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

General Surfaces, $\wedge_{V_{1}}=\Lambda_{V_{2}}$ on $\Gamma \subset \partial M$

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0 \text { in }\ulcorner } u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0$.
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

General Surfaces, $\wedge_{V_{1}}=\Lambda_{V_{2}}$ on $\Gamma \subset \partial M$

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \overline{u_{1}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0 \text { in }\ulcorner } u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0 . u_{j} \mid \Gamma^{c}=0$
2. Construct CGO solutions of $(\Delta+V) u=0$ of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)})
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

General Surfaces, $\wedge_{V_{1}}=\Lambda_{V_{2}}$ on $\Gamma \subset \partial M$

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \underbrace{\overline{u_{1}}}_{=0} \Gamma^{c} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0 \text { in } \Gamma} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0 .\left.u_{j}\right|_{\Gamma c}=0$
2. Construct CGO solutions of $(\Delta+V) u=0$, of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)}),\left.u\right|_{\Gamma c}=0
$$

- $\Phi(z)=\phi(z)+i \psi(z)=z^{2}$ so that $\Delta e^{\Phi / h}=0$.
- Φ is holomorphic and Morse
- Unique critical point at origin

General Surfaces, $\Lambda_{V_{1}}=\wedge_{V_{2}}$ on $\ulcorner\subset \partial M$

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \underbrace{\overline{u_{1}}}_{=0} \Gamma^{c} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0 \text { in } \Gamma} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0 .\left.u_{j}\right|_{\Gamma c}=0$
2. Construct CGO solutions of $(\Delta+V) u=0$, of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)}),\left.u\right|_{\Gamma c}=0
$$

- $\Phi(z)=\phi+i \psi$ holomorphic so that $\Delta e^{\Phi / h}=0$.
- Φ is Morse
- Unique critical point at a given point $p \in M$.

General Surfaces, $\Lambda_{V_{1}}=\wedge_{V_{2}}$ on $\ulcorner\subset \partial M$

1. Integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=\int_{\partial M} \underbrace{\overline{u_{1}}}_{=0 \text { in } \Gamma^{c}} \underbrace{\left(\Lambda_{V_{1}}-\Lambda_{V_{2}}\right)}_{=0 \text { in } \Gamma} u_{2}
$$

for u_{1}, u_{2} solving $\left(\Delta_{g}+V_{j}\right) u_{j}=0 .\left.u_{j}\right|_{\Gamma^{c}=}=0$
2. Construct CGO solutions of $(\Delta+V) u=0$, of the form

$$
u(z)=e^{ \pm \Phi(z) / h}(1+\underbrace{r_{h}}_{o(h)}),\left.u\right|_{\Gamma_{c}=0}
$$

- $\Phi(z)=\phi+i \psi$ holomorphic so that $\Delta e^{\Phi / h}=0$.
- Φ is Morse
- Unique critical point at a given point $p \in M$.
- Φ needs to be constructed using abstract machinery

3. Plug $u_{1}=e^{\Phi / h}\left(1+r_{h}\right)$ and $u_{2}=e^{-\Phi / h}\left(1+r_{h}\right)$ into the integral identity

$$
\int_{M} \overline{u_{1}}\left(V_{1}-V_{2}\right) u_{2}=0
$$

4. Note that real part of the phase cancel we get

$$
\int_{M} \underbrace{e^{i \psi / h}\left(V_{1}-V_{2}\right)}_{\text {principal part }}+o(h)=0
$$

5. ψ has a unique non-degenerate critical point at p.

$$
\underbrace{\int_{M} e^{i \psi / h}\left(V_{1}-V_{2}\right)}_{h\left(V_{1}-V_{2}\right)(p)+o(h)}+o(h)=0
$$

by stationary phase.
6. $V_{1}(p)=V_{2}(p)$ at the critical point p of Φ. Move the critical point around and we have it for all points on M.

Construction of Special Solutions

We want to construct $\left(\Delta_{g}+V\right) u=0$

$$
\begin{gathered}
u=\underbrace{\text { exponential leading term }}_{\text {geometry }}+\underbrace{\text { remainder }}_{\text {analysis }} \\
\left.u\right|_{\Gamma^{c}=0}
\end{gathered}
$$

We first consider "free solutions" of this form when $V=0$.

Reflected Waves (Imanuvilov-UhImann-Yamamoto

Suppose Φ and a are holomorphic with

$$
\left.\left.\Phi\right|_{\Gamma c \in \mathbb{R}} \quad a\right|_{\Gamma c} \in \mathbb{R}
$$

then

$$
\tilde{u}:=\underbrace{e^{\Phi / h_{a}}}_{\text {incoming wave }}-\underbrace{e^{\bar{\Phi} / h_{\bar{a}}}}_{\text {reflected wave }}
$$

is harmonic with

$$
\left.\tilde{u}\right|_{\Gamma^{c}}=0
$$

Once such a free solution is constructed, we can use Carleman estimates to solve for the remainder to get

$$
\begin{gathered}
u=\tilde{u}+\text { remainder } \\
\left(\Delta_{g}+V\right) u=0
\end{gathered}
$$

Conditions for Φ

So Φ has to satisfy

- $\bar{\partial} \Phi=0$
- $\left.\Phi\right|_{\Gamma c} \in \mathbb{R}$
- Φ is MORSE

Recall that we can conclude $V_{1}(p)=V_{2}(p)$ ONLY IF p is the critical point of such a Φ.

So for all $p \in M$ we need such a Φ such that $\partial \Phi(p)=0$.
(Holomorphic functions are very rigid!!)

Geometrical Point of View

We look for a section of the trivial bundle

$$
E=M \times \mathbb{C}
$$

- which is purely real on $\Gamma^{c} \subset \partial M$
- and is in the kernel of $\bar{\partial}$ operator.

So we are interested in understanding $\operatorname{Ker}(\bar{\partial})$ in the space

$$
H_{F}^{k}(M):=\left\{u: M \rightarrow \mathbb{C}|u|_{\partial M} \in F\right\}
$$

where $\left.F \subset E\right|_{\partial M}$ is a (real) rank 1 sub-bundle such that $\left.F\right|_{\Gamma^{c}=}=\Gamma^{c} \times \mathbb{R}$.

Maslov Index and $\operatorname{Ker}(\bar{\partial})$, Range $(\bar{\partial})$
Let $E=M \times \mathbb{C}$ be the trivial bundle and

$$
\left.F \subset E\right|_{\partial M}
$$

be a (real) rank 1 sub-bundle over ∂M.
The MASLOV INDEX $\mu(F, E)$ measures the winding number of F.
Let $\operatorname{Ker}_{F}(\bar{\partial}):=\operatorname{Ker}(\bar{\partial}) \cap H_{F}^{k}(M)$. Then for $\mu(F, E)+2 \chi(M)>0$,

$$
\begin{gathered}
\operatorname{dim}\left(\operatorname{Ker}_{F}(\bar{\partial})\right)=\mu(F, E) \\
\bar{\partial}: H_{F}^{k}(M) \rightarrow \text { holomorphic } 1-\text { forms }
\end{gathered}
$$

is surjective.

- In our case, we require that $\left.F\right|_{\Gamma^{c}=} \Gamma^{c} \times \mathbb{R}$.
- However, on $\Gamma \subset \partial M$ we have no requirements.
- So by letting F wind on Γ, we can make $\mu(F, E)$ as large as we wish

Therefore we have as many holomorphic functions satisfying our boundary condition as we like.

Using surjectivity, we can control the series expansion of our holomorphic function at any given point.

Consider the Map

$$
\begin{gathered}
\underbrace{\operatorname{Ker}_{F}(\bar{\partial})}_{\operatorname{dim\sim \mu }(F, E)} \rightarrow \underbrace{\mathbb{C} T_{p}^{*} M}_{\operatorname{dim}=4} \\
u \mapsto d u(p)
\end{gathered}
$$

The kernel of this map is very large.

Proposition

For all $p \in M$ there exists a nontrivial holomorphic function Φ such that $\partial \Phi(p)=0$ and $\left.\Phi\right|_{\Gamma_{c} \in \mathbb{R}}$.

