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Some tools for studying immersed planar curves

We are looking at the images of immersed (embedded) closed
curves Γ : S2 → R2 in R2. We have some basic tools which will
need to be understood before any geometric analysis takes
place. We define:

ds = |Γu| du as the Euclidean arc length element of Γ,
L (Γ) =

∫
Γ ds as the length of Γ,

A (Γ) = −1
2

∫
Γ 〈Γ, ν〉ds as the enclosed area, and

I (Γ) = L2 (Γ) /4πA (Γ) ≥ 1 as the isoperimetric ratio.
Equality holds for circles!
Also, Kosc (Γ) = L

∫
Γ (κ− κ̄)2 ds is the normalised

oscillation of curvature [1]. Here we have used
κ̄ = 1

L

∫
Γ κds for the averaged total curvature.

This last energy is the key for the methods we use today.
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The Flow Equation

We looked at a general class of flows, which we dub the
polyharmonnic curve flows. To be more specific, our curvature
equation reads as:{

∂Γ
∂t = (−1)p κs2p · ν, p ∈ N\ {0} , t ∈ [0,T ) .

Γ0 = Γ (·,0) ∈ C∞ is closed.
(PCF)

Here:
κ = 〈Γss, ν〉 is the regular Euclidean curvature.
The Subscript s2p means that we are taking 2p repeated
derivatives of κ w.r.t s for p ∈ N i.e κs2p := ∂2pκ

∂s2p .
When p = 1 we have the curve diffusion flow.�� ��(PCF ) is a system of quasilinear parabolic eqns of order 2p + 2.
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A Note on Short Time Existence

Now, by Mantegazza and Martinazzi [4], any problem of the
form {

∂u
∂t = Q [u]

u (·,0) = u0 ∈ C∞ (Σ) ,

(where Q is a smooth quasilinear, locally elliptic operator [5] of
even order) admits a smooth solution on some time interval
[0,T ). Moreover, the solution is unique and depends
continuously on u0. So. . .

We split Γ up into its x and y components.
The problem (PCF ) becomes a pair of equations
ẋ = Q1 [x ] , ẏ = Q2 [y ] where Q1,Q2 are both smooth,
quasilinear, and locally elliptic.
BINGO! Short time existence for (PCF ).
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The Main Result

Theorem 1 (Exponential Convergence to Circles)

Suppose that Γ : S1 × [0,T )→ R2 is a 1−parameter family of
solutions to (PCF ) with

∫
Γ0
κds = 2π and A (Γ0) > 0. Then

there exists an ε0 = ε0 (p, Γ0) > 0 such that if

Kosc (Γ0) < ε0 and I (Γ0) < exp
(
ε0/8π2

)
then T =∞ and Γ

(
S1) approaches a round circle with radius√

A (Γ0) /π. Moreover the convergence is exponentially fast.
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Notes on the main theorem and Kosc

The condition
∫

Γ0
κds = 2π = 2ωπ implies that the turning

number ω of Γ0 is 1 (so, no loops!), but does not rule out
figure 8’s etc.
Although not stated explicitly, the smallness of Kosc (Γ0) will
imply that Γ0 is simple. Indeed, Theorem 16 of Wheeler [1]
implies that if

∫
Γ κds = 2π and m (Γ) is the maximal

number of self-intersections a curve has, then
Kosc (Γ) ≥ 16m2 − 4π2.
Hence if Kosc (Γ) < 64− 4π2 ≈ 24.52, then Γ is embedded.
We will show that if Kosc (Γ0) is small enough, then it acts
as a Lyupanov functional, and remains small for the entire
of the flow (which implies embeddedness is preserved!)
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The Evolution of Basic Geometric Quantities

Before we begin, we need to see how various quantities evolve
under the flow (PCF ). We present them without proof (for
brevity):
(a) L̇ (Γ) = −

∫
Γ κ

2
sp ds = −‖κsp‖22 ≤ 0,

(b) Ȧ (Γ) = 0,
(c) İ (Γ) = −2I (Γ) /L (Γ) ·

∫
Γ κ

2
sp ds ≤ 0.

(d) d
dt

∫
Γ κds = 0 =⇒

∫
Γ κds ≡ 2ωπ.

Moreover, for a general function f with the same period as Γ,
we have
(e) d

dt

∫
Γ f ds =

∫
Γ ḟ + (−1)p+1 f · κ · κs2p ds.
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Some Useful Supporting Lemmas

We will introduce a few lemmas that will be used ad nauseum
throughout this talk:

Lemma 2

Let f : R→ R be an absolutely continuous and periodic function
of period P. Then, if

∫ P
0 f dx = 0 we have∫ P

0
f 2 dx ≤ P2/4π2

∫ P

0
f 2
x dx .

Lemma 3

Let f : R→ R satisfy the same conditions as the previous
lemma. Then

‖f‖2∞ ≤ P/2π
∫ P

0
f 2
x dx .
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Another Useful Supporting Lemma

Lemma 4 (Dziuk,Kuwert,Schätzle [3])

Let Γ : S1 → R2 be sufficiently smooth, and closed. Then∫
Γ

∣∣∣P j,l−1
i (κ− κ̄)

∣∣∣ds

≤ c (i , j , l) L1−i−j (Kosc)
i−η

2

(
L2l+1

∫
Γ

(κ− κ̄)2
sl ds

) η
2

.

Here P j,l−1
i (φ) refers to a polynomial in φ that contains i terms

with a total of j derivatives, of highest order l − 1. Also,
η := (j + i/2− 1) /l .

Note that Lemma 2 helps us to establish an L1 bound for Kosc in
time. Indeed, by applying Lemma 2 and (a), we have�
�

�
�∫ T

0 Kosc dτ ≤ L2(p+1) (0) /2 (p + 1) (2π)2p < c (Γ0,p) .(1)
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Providing Control of Kosc

Lemma 5

Suppose that Γ : S1 × [0,T )→ R2 solves (PCF ). Then

d
dt

(
Kosc + 8π2 ln L

)
+
‖κsp‖22

L
Kosc

+ L
(

2− c1Kosc − c2
√

Kosc

)
‖κsp+1‖22 ≤ 0

for some constant c1, c2 > 0. Moreover if for t ∈ [0,T ∗) we have

Kosc (t) ≤
(

8c1 + 2c2
2 − 2c2

√
8c1 + c2

2

)
/4c2

1 =: 2K ?,

then during this time the following inequality holds:

Kosc + 8π2 ln L+ ≤ Kosc (Γ0) + 8π2 ln L (Γ0). (2)
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Providing Control of Kosc

Proof.
Applying (e) from our evolution equations, and performing
integration by parts (A LOT!!), we get

d
dt

(
Kosc + 8π2 ln L

)
+
‖κsp‖22

L
Kosc + 2L ‖κsp+1‖22

= L
∫

Γ

[
(κ− κ̄)3 + κ̄ (κ− κ̄)2

]
sp

(κ− κ̄)sp ds. (3)

Next we control the P−style terms via the last lemma, to get

L
∫

Γ

[
(κ− κ̄)3 + κ̄ (κ− κ̄)2

]
sp

(κ− κ̄)sp ds

≤ L
∫

Γ

∣∣∣P2p,p
4 (κ− κ̄)

∣∣∣ds + 2
∫

Γ

∣∣∣P2p,p
3 (κ− κ̄)

∣∣∣ds

≤
(

c1Kosc + c2
√

Kosc

)
‖κsp+1‖22 . (4)
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Providing Control of Kosc

Proof (Cont.)

Substituting this into (3) and absorbing into the LHS gives the
first statement. The second statement follows immediately by
integrating the first.
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Providing Control of Kosc

Corollary 6

Let Γ : S1 × [0,T )→ R2 solve (PCF ), and suppose that Γ0 is a
simple closed curve satisfying

Kosc (Γ0) ≤ K ? and I (Γ0) ≤ exp
(

K ?/8π2
)
, (5)

where K ? is the parameter from the previous lemma. Then

Kosc (Γt ) ≤ 2K ? for t ∈ [0,T ) .

Proof (Rough.)
This is proved by contradiction:
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Providing Better Control of Kosc

Proof (Cont.)
We assume there is a maximal T ∗ < T such that
Kosc ≤ 2K ? on [0,T ?).
The circularity assumptions and (2) can be combined to
show that for t ∈ [0,T ∗),

Kosc ≤ Kosc (Γ0) + 8π2 ln
√

I (Γ0) ≤ 3K ?/2 < 2K ?.

This contradicts the maximality of T ∗. We conclude the
result.�� ��This corollary gives us control over Kosc for the entirety of the flow!
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Long Time Existence and Proof of the Main Theorem

Lemma 7

Let Γ : S1 × [0,T )→ R2 be a maximal solution to (PCF ). If
T <∞, then ∫

Γ
κ2 ds ≥ c (T − t)−1/2(p+1) (6)

Proof.
Assume T <∞. By using the P−style estimation as before, it
is possible to arrive at the inequality

d
dt

∫
Γ
κ2

sm ds +

∫
Γ
κ2

sm+p+1 ds ≤ c (m,p)

(∫
Γ
κ2 ds

)2(m+p)+3

(7)

for any m ∈ N0. In particular, for m = 0 we conclude that

d
dt

∫
Γ
κ2 ds ≤ c (p)

(∫
Γ
κ2 ds

)2p+3

. (8)
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Proof (Cont.)

Now if lim supt→T
∫

Γ κ
2 ds =∞ then integrating (8) and taking

t ↗ T would prove the lemma. So for the sake of contradiction,
we assume

lim sup
t→T

∫
Γ
κ2 ds < % <∞. (9)

Roughly, we proceed as follows:
Note that assuming (9) and integrating (7) gives the
estimate

∫
Γ κ

2
sm ds ≤ cm (Γ0, %,T ) up until time T .

By writing derivatives of κ in terms of derivatives of the
immersion Γ (and with a little bootstrapping), it is possible
to show that ‖∂m

u Γ‖∞ ≤ dm (Γ0, %,T ) up until time T .
Hence Γ is smooth right up until time T , and by short time
existence results the flow can be extended to some interval
[0,T + δ). This contradicts the maximality of T !

Scott Parkins The Generalised Polyharmonic Curve Flow of Closed Planar Curves



Corollary 8 (Long Time Existence)

Suppose Γ : S1 × [0,T )→ R2 solves (PCF ), as well as the
initial “circularity” conditions (5). Then T =∞.

Proof (Rough.)
This is proved by contradiction:

We assume that T <∞. By the previous lemma, this
implies that ‖κ‖22 ↗∞ as t ↗ T ,
Expanding Kosc and using the isoperimetric inequality, this
implies that

Kosc ≥
√

4πA (Γ0)

∫
Γ
κ2 ds − 4π2 ↗∞.

This contradicts Corollary 6 (where we showed
Kosc ≤ 2K ?). Hence T can not be less than∞.

Now to prove the main theorem!
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Proof of the Main Theorem.
Remember that by Corollary 8 if Γ0 satisfies the circularity
conditions (2) then T =∞. Hence by (1) we have∫ ∞

0
Kosc dτ < c (Γ0,p) . (10)

To show convergence to a circle, we aim to show that Kosc ↘ 0.

From (10) it will be enough to establish an absolute bound
on |K ′osc | (to rule out the possibility of “spikes” in time from
occurring!). This is relatively easy:
It is possible to show that d

dt ‖κsp‖22 ≤ c (p, Γ0) Kosc .
Integrating and using (10) gives ‖κsp‖22 ≤ c? (p, Γ0).
Hence by Lemma 5, for ε0 ≤ K ?, we have∣∣∣∣ d
dt

Kosc

∣∣∣∣ ≤ 8π2 − Kosc

L
‖κsp‖22 ≤

8π2√
4πA (Γ0)

c? (Γ0,p)�∞.
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Proof (Exponential Convergence.)

Hence Kosc ↘ 0, and Γ
(
S1, t

)
→ S√A(Γ0)/π

.

The exponential convergence result is a bit fiddly. The key
idea is that if Γ0 satisfies the circularity conditions for ε0
sufficiently small then the following holds:

d
dt

∫
Γ
κ2

sm ds ≤ −
∫

Γ
κ2

sm+p+1 ds

≤ − (2π/L (Γ0))2(p+1)
∫

Γ
κ2

sm ds.

Integrating gives exponential decay in L2.
To get exponential decay in L∞, simply combine the
exponential L2 result with Lemma 3.

FIN
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