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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

We begin with curvature contraction flows of the form

∂X
∂t

(p, t) = −F (W (p, t)) ν (p, t) (1)

with a smooth, compact, strictly convex initial hypersurface
X (Sn,0) = X0 (Sn) = M0 without boundary.
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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

Definition
The principal curvatures κi , i = 1, . . . ,n, are the eigenvalues
of the Weingarten mapW of Mt .

Write κ = {κ1, . . . , κn}.
Basic properties of the speed:

F (W) = f (κ), f symmetric on the positive cone

Γ+ = {κ : κi > 0 for all i = 1, . . . ,n} .

f > 0 (contraction flow), f (1, . . . ,1) = 1 (normalised)
f strictly increasing in each argument, everywhere on Γ+

f is homogeneous of degree α > 0

James McCoy Curvature contraction of convex hypersurfaces
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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

Definition (Homogeneous functions)

A function f (κ) = f (κ1, . . . , κn) is homogeneous of degree α
if for every κ and for all k > 0,

f (kκ) = kαf (κ) .

Theorem (Euler’s homogeneous function theorem)
If f is differentiable and homogeneous of degree α then

n∑
i=1

ḟ iκi :=
n∑

i=1

∂f
∂κi

κi = αf .

Idea of proof: Take ∂
∂k of definition then set k = 1. 2

Note: f (kκ) = kαf (κ)⇔ F (kW) = kαF (W).

James McCoy Curvature contraction of convex hypersurfaces
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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

For any smooth strictly convex initial hypersurface M0 and
speed f smooth and homogeneous of degree 1:

(Huisken, ’84) Under mean curvature flow, F = H
(Chow, ’85) Under flow by F = K 1/n

(Andrews, ’94) Under flows by f either
convex, or
concave and

n = 2
f → 0 as κ→ ∂Γ+, or
supM0

H
F < lim infκ∈∂Γ+

P
i κi

f (κ)
.

(Andrews, ’07) Under flows by f concave and inverse
concave, that is, the function f∗ is concave, where

f∗ (x1, . . . , xn) =
1

f
(

1
x1
, . . . 1

xn

) .

(Andrews, ’10) Under flows by f when n = 2 (surfaces).
James McCoy Curvature contraction of convex hypersurfaces
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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

And more recently
(Andrews, M., Zheng, ’13) Under flows with f inverse
concave and either

f∗ → 0 on ∂Γ+, or
matrix of inverse Weingarten map

(
rij
)

of M0 satisfies

sup
ν∈TzSn,‖ν‖=1

(
r (ν, ν)|z
F∗ (r (z))

)
< lim inf

∂Γ+

inf
ν∈TzSn,‖ν‖=1

r (ν, ν)

f∗ (r)
.

(M., Mofarreh, V-M Wheeler, ’14) M0 axially symmetric
More results for smooth speeds f homogeneous of positive
degree with M0 suitably pointwise ‘curvature pinched’:

(Chow, ’85) Flows by K β, β ≥ 1
n

(Schulze, ’06) F = Hk , k ≥ 1
(Alessandroni-Sinestrari, ’10), F = Rk , k ≥ 1

2
(Andrews, M., ’12) f homogeneous of degree α ≥ 1 (rather
tight pinching).
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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

If n = 2, more results are possible, without curvature pinching,
or convexity of f , by exploiting symmetries of Codazzi
equations:

(Andrews, ’99) F = K (Firey’s conjecture)
(Schnürer, ’05) various speeds of integer homogeneity
between 1 and 6
(Schnürer-Schulze, ’06) F = Hk , k = 1,2,3,4,5
(Andrews, ’10) f homogeneous of degree α ≥ 1
(α-dependent pinching if α > 1)
(Andrews-Chen, ’12) F = K

α
2 , α ∈ [1,2]

Even more results on convergence of smooth convex
hypersurfaces to a point (or not) without roundness.
See, eg (Andrews, M., Zheng ’13).
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The picture
Basic properties of the speed
When does Mt shrink to a ‘round point’ in finite time?
The support function

Definition

Let X : Sn → Rn+1 represent a suitably smooth convex
hypersurface M in Rn+1. The support function of M is given
by

u (x) = 〈X (x) , ν (x)〉 .

Note: The image of M in Rn+1 can be reconstructed via

X̂ (x) = u (x) x +∇u (x) , (2)

where ∇ and σ are the standard gradient and metric on Sn.

Solutions of (1) remain convex and correspond to solutions of
the scalar parabolic equation

∂u
∂t

= −F
((
∇i∇ju + σiju

)−1
)

= −F∗
(
rij
)−1

=: Ψ
(
rij
)

. (3)
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The class of speeds
Approximating speeds

Suppose now F (W) satisfies the following
F (W) = f (κ), f symmetric on Γ+

f > 0, f (1, . . . ,1) = 1
for all κ ∈ Γ+, f (κ+ δei) > f (κ) for all δ > 0 and each i
f is homogeneous of degree 1
f is convex, ie. for all x , y ∈ Γ+ and λ ∈ [0,1],

f (λx + (1− λy)) ≤ λf (x) + (1− λ) f (y) .

Properties:
f is almost everywhere in Γ+ twice differentiable
(Aleksandrov).
f is Lipschitz on compact subsets of Γ+.

James McCoy Curvature contraction of convex hypersurfaces
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The class of speeds
Approximating speeds

Example (n = 2, f (κ) = ακmin + β κmax, β ≥ α > 0, α + β = 1)

f defined on R2 and symmetric, since

κmin = (κ1 + κ2 − |κ1 − κ2|) /2

κmax = (κ1 + κ2 + |κ1 − κ2|) /2

We can rewrite f (κ) = 1
2H +

(
β−α

2

)
|κ1 − κ2|.

f > 0 on Γ+, not differentiable if β > α wherever κ1 = κ2

f is everywhere increasing (by triangle inequality)
f degree 1 homogeneous, convex (triangle inequal, β ≥ α)

Example (Maxima of convex functions)

F = max
(

H
n
, η |A|

)
,

1
n
< η <

1√
n

.

James McCoy Curvature contraction of convex hypersurfaces



Introduction
Nonsmooth convex speeds

The main result
References

The class of speeds
Approximating speeds

For a mollifier jε (x) = ε−nj
(x
ε

)
, such as

j (x) =

{
cn e

1
|x|2−1 for |x | < 1

0 for |x | ≥ 1,

where cn is chosen such that
∫

Rn j (x) dx = 1, set

fε (κ) =
H

f̂ 1
ε

∫
Rn

jε (y) f
( κ

H
− y

)
dy =

1
f̂ 1
ε

∫
Rn

jε (y) f (κ− Hy) dy ,

(4)
where f̂ 1

ε is a normalisation factor.

Lemma
1 For each ε > 0, fε is smooth; fε → f uniformly on Γ̃ ⊂⊂ Γ+.
2 For each ε ∈

(
0,min

(1
n , ε0

))
, fε satisfies the same

properties as f .
3 f (κ)− εH ≤ fε (κ) ≤ f (κ) + εH.
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Theorem (Andrews, Holder, M., G. Wheeler, V.-M. Wheeler,
Williams, ’14)

Given M0 compact, strictly convex C1,β hypersurface and a
convex function f on Γ+ satisfying the above properties, a
solution u ∈ C2,α (Sn × (0,T )) to (3) exists for T <∞. The Mt
contract to a point as t → T . Under rescaling, M̃t approaches
Sn exponentially in C2,α′ for 0 < α′ < α.

Remarks:
1 Cannot estimate curvature derivatives via Schauder

estimates. So to obtain contraction to a point by
contradiction, we need short time existence for C1,β initial
hypersurfaces. Modification of Lieberman, Chapter 14.

2 If the speed is more regular, then the solution is
correspondingly more regular, by boot-strapping.

James McCoy Curvature contraction of convex hypersurfaces
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

We obtain estimates independent of ε for the flows

∂uε

∂t
= −F ε

((
∇i∇juε + σijuε

)−1
)

=: F ε
∗
(
rij
)

, (5)

all with initial hypersurface M0. The speeds are given by

F ε (W) := f ε (κ (W)) ;

we will denote by κεi the curvatures of the Mε
t , etc.

Let ρ−, ρ+ denote the inner and outer radius of M0.

Lemma (maximal time estimate)

ρ2
−
2
≤ T ≤

ρ2
+

2
.
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Proof: The radius r ε (t) of a sphere evolving under (5) satisfies

d
dt

r ε (t) = −f ε
(

1
r ε
, . . . ,

1
r ε

)
= −f ε (1, . . . ,1)

1
r ε

= − 1
r ε

.

With a condition r ε (t0) = r0, independent of ε, the ODE has
solution

r ε (t) =
√

r2
0 − 2 (t − t0).

The sphere shrinks to a point at time t = t0 + r2(t0)
2 .

Since M0 encloses Bρ− and is enclosed by Bρ+ ,

ρ2
−
2
≤ Tε ≤

ρ2
+

2

for all ε. 2
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Lemma (lower bound on speed and mean curvature)

Under (3), Hε ≥ H0 > 0 and F ε ≥ 1
n H0 remain true,

independent of ε.

Proof: Solutions of (5) satisfy

∂

∂t
Hε = LεHε + F̈ kl,rs

ε ∇i
εh
ε
kl∇

ε
i hεrs + Ḟ kl

ε hεkmhm
ε lH

ε,

where Lε = Ḟ ij
ε∇εi∇

ε
j . Since the Fε are convex,

min
Mt

Hε ≥ min
M0

H =: H0 > 0

independent of ε.

Any convex F satisfies F ≥ 1
n H, the result follows. 2
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Using Hamilton’s maximum principle for tensors,

Lemma (preservation of convexity, curvature pinching)
Under (3),

1 hi
ε j > 0,

2 hi
ε j − ηF εδi

j ≥ 0, for any constant η ≤ min
M0

n κmin

n f (κ) + H
.

Proof: For any constant η,

∂

∂t

(
hi
ε j − ηF εδi

j

)
= Lε

(
hi
ε j − ηF εδi

j

)
+ F̈ kl,rs

ε ∇i
εh
ε
kl∇

ε
j hεrs

+ Ḟ kl
ε hεkmhm

ε l

(
hi
ε j − ηF εδi

j

)
.

so if the inequality holds initially, then it is preserved under the
flow (5). Choice of η follows from estimate of fε in terms of f
and H. 2
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Remark: Taking ε ≤ ε0 = η
n , the argument of the convolution fε

remains within Γ+.

Lemma (upper speed bound, while inradius remains positive)
Fix t0 < T . Then for any r > 0 such that u ≥ r at time t0, we
have on [0, t0]:

F ε (x , t) ≤ 2ρ+ max
{

maxM0 F
r

,
2
r2

}
.

Idea of proof: A method of Chou (’85); choose origin such that
Br (O) is enclosed by Mε

t0 . Then uε (x , t) ≥ r for all x ∈ Sn and
t ∈ [0, t0]. The function Qε = Fε

2uε−r satisfies

∂

∂t
Qε ≤ LεQε + 4Ḟ kl

ε

∇εkuε

2uε − r
∇εl Qε + Q2

ε

(
2− r2Qε

)
.

2
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Lemma (equation (5) is uniformly parabolic)

C δ ≤ f (κ+ δei)− f (κ) ≤ C δ.

Idea of proof: Upper and lower bounds on F and curvature
pinching give that κ remains within a compact K ⊂ Γ+. 2

We have now shown that the solutions uε to (5) are bounded in
C2,α, independent of ε, as long as the inradius is positive.
Taking ε→ 0 we obtain a C2 solution to (3).

Specifically, in view of our estimates independent of ε, using the
method of continuity and mollification as in Lieberman Chapter
14, we obtain

Theorem (short-time existence of solution to (1))

For any u0 ∈ C1,α (Sn) there exists a δ > 0 and a unique
solution u ∈ C2,1 (Sn × (0, δ)) ∩ C (Sn × [0, δ)).

James McCoy Curvature contraction of convex hypersurfaces
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

Theorem (contraction to a point)
The images Mt shrink to a point as t → T <∞.

Proof:
1 Suppose ρ− 6→ 0 as t → T .
2 Speed bounds and curvature pinching imply bounds above

and below on the principal curvatures.
3 These imply convergence to u (·,T ), generating a C1,1

hypersurface M̃T .
4 M̃T could then be used as initial data in the short-time

existence theorem, contradicting the maximality of T .
5 Therefore ρ− → 0 as t → T and, via curvature pinching,
ρ+ → 0 also. 2

Moreover, by standard arguments we get u ∈ C2,α (Sn × (0,T )).

James McCoy Curvature contraction of convex hypersurfaces
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The natural rescaling of the solution to (1) is

X̃ (x , t) =
1√

2 (T − t)
(X (x , t)− p) ,

where Mt contracts to the point p ∈ Rn+1 at time T . The
rescaled time parameter is

τ = −1
2

ln
(

1− t
T

)
∈ [0,∞) .

The rescaled immersions M̃τ evolve according to

∂

∂τ
X̃ (x , τ) = −F

(
W̃ (x , τ)

)
ν̃ (x , τ) + X̃ (x , τ) , (6)

with initial condition

X̃ (x ,0) =
1√
2T

(X0 − p) .
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The main theorem
The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

By standard arguments, solutions to (6) have
uniform positive lower and upper bounds on F ;
curvature pinching (homogeneous degree zero estimate).

Consequently, (6) is uniformly parabolic and C2,α regularity of
X̃ then follows by standard arguments for fully nonlinear
equations (Krylov, Safanov).

For asymptotic sphericity, we need a geometric quantity
whose extremum characterises a sphere, and whose
monotonicity survives in the limit ε→ 0. Consider the family of
flows

∂

∂τ
X̃ ε (x , τε) = −F ε

(
W̃ε (x , τε)

)
ν̃ε (x , τε) + X̃ ε (x , τε) , (7)

with initial condition

X̃ ε (x ,0) =
1√
2Tε

(X0 − pε) .
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The estimates
Existence and convergence to a point
Rescaling and asymptotic sphericity

For G̃ε
0 := G̃0

(
W̃ε
)

smooth, positive, increasing, concave,
degree-one homogeneous and normalised, set

G̃ε := G̃ε
0 + kH̃ε ⇐⇒ g̃ε := g̃ε0 + k

∑
κ̃εi

and Q̃ε
α := G̃ε − αF̃ ε ⇐⇒ q̃εα := g̃ε − αf ε, for numbers k and α.

Since G̃ is concave and F̃ is convex, the function G̃
F̃

has only

one local maximum on Γ+ ∩
{∣∣∣Ãε∣∣∣ = 1

}
, at (1, . . . ,1), implying

the structural bound G̃
F̃
≤ 1.

Lemma
For any α there is an absolute constant k0 = k0(α) such that,
under the rescaled flow (7), for any α ≤ α and k ≥ k0 > 0,

∂

∂τε
Q̃ε
α ≥ L̃εQ̃ε

α +
(

˙̃F pq
ε h̃ε m

p h̃εmq − 1
)

Q̃ε
α. (8)
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We compute

∂

∂τε
Q̃ε
α = L̃εQ̃α +

(
˙̃Qε ij
α

¨̃F pq,mn
ε − ˙̃F ij

ε
¨̃Qε pq,mn
α

)
∇̃i

ε
h̃εpq∇̃j

ε
h̃εmn

+
(

˙̃F pq
ε h̃ε m

p h̃εmq − 1
)

Q̃ε
α . (9)

We wish to choose k > 0 such that the whole ∇̃Aε term in (9) is
nonnegative. This requires the matrix inequality ˙̃Qε

α ≥ 0.

We have in coordinates that diagonalise the Weingarten map

∂q̃εα
∂κ̃i

=
∂g̃ε0
∂κ̃i

+ k − α∂ f̃ ε

∂κ̃i
> k0 − αC.

Taking k0 = αC meets the requirement. 2
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Using the properties of G̃ε and the lower speed bound, we have

Lemma

There exists an absolute constant Ĉ > 0 such that(
Ĉ − α

)
F̃ ε ≤ Q̃ε

α ≤ (1− α) F̃ ε. (10)

Completion of proof of asymptotic sphericity

Consider Q̃ε
αm on the time interval [m,m + 1] for m ≥ 1. Fix

α = 1 and choose α = α0 such that

min
M0

Q̃ε
α0

= 0 .

The lower bound in (10) implies α0 > 0, moreover, there is an
upper bound on α0 beyond which

min
Mt ,t∈[m,m+1]

Q̃ε
αm < 0.
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The sequence {αm}m∈N0 is now generated by choosing on
each interval [m,m + 1] the corresponding α = αm such that

min
Mtm

Q̃ε
αm = 0 .

For all m we have αm ≤ 1 since otherwise, by (10),

max
Mt ,t∈[m,m+1]

Q̃ε
αm < 0.

The evolution equation (8) implies that on [m,m + 1] the
quantity Q̃ε

αm is non-negative.

We show that in fact minMt Q̃ε
αm increases using the parabolic

Harnack inequality.
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First rewrite (8) in a local coordinate system around Bρ(x) for
any x ∈ M,

∂

∂τε
Q̃ε
αm ≥

˙̃F ij
ε

(
∂2

∂xi∂xj
Q̃ε
αm − Γk

ij
∂

∂xk
Q̃ε
αm

)
+
(

˙̃F pq
ε h̃ε m

p h̃εmq − 1
)

Q̃ε
αm .

Using the ellipticity constants, we derive, for λ to be chosen,

∂

∂τε

(
eλt
√

Q̃ε
αm

)
≥ ˙̃F ij

ε

∂2

∂xi∂xj

(
eλt
√

Q̃ε
αm

)
+

1
2

(
˙̃F pq
ε h̃εm

p h̃εmq −
1
2

C
2

C
|Γ|2 − 1 + λ

)(
eλt
√

Q̃ε
αm

)
.
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Since the rescaled curvatures are bounded, there is a positive
λ = λ0 such that for

Z̃ ε
αm =

(
eλ0t

√
Q̃ε
αm

)
,(

∂

∂τε
− ˙̃F ij

ε

∂2

∂xi∂xj

)
Z̃ ε
αm ≥ 0

in the local coordinate chart. The weak parabolic Harnack
inequality implies, for each x ∈ M,

min
Bρ/2(x)×[m+1,m+2]

Z̃ ε
αm ≥ c

∫ m

m−1

(
1

|Bρ(x)|

∫
Bρ(x)

|Z̃ ε
αm |

σdx

) 1
σ

dτ .

for absolute positive σ and bounded c, independent of x .
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Since X̃ε ∈ C2,α, Z̃ ε
αm ∈ C0,α and therefore

min
Bρ/2(x)×[m+1,m+2]

Z̃ ε
αm ≥ c max

Bρ(x)×[m−1,m]
Z̃ ε
αm ,

where c depends on the absolute constants σ and α.

A parabolic chaining argument gives

min
M×[m+1,m+2]

Z̃ ε
αm ≥ c max

M×[m−1,m]
Z̃ ε
αm .

Absorbing the exponential factor and squaring gives

min
M×[m+1,m+2]

Q̃ε
αm ≥ c max

M×[m−1,m]
Q̃ε
αm , (11)

where c > 0 is an absolute constant.
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Estimating the maximum in (11) implies the recurrence relation

1− αm+1 ≤ −c(1− αm) + (1− αm) ≤ (1− c)(1− αm) .

Since αm < 1 observe that 1− c > 0 and so 1− c ∈ (0,1).

Iterating the recurrence relation, we have, for
C = (1− α0) ∈ (0,1) and γ = − log (1− c) ∈ (0,∞),

0 < 1−αm+1 ≤ (1−c)m(1−α0) = (1−α0)em log(1−c) ≤ Ce−γm .

This holds for t ∈ [m,m + 1] and implies, for all t ≥ 0,

0 < 1−min
Mt

G̃ε

F̃ ε
≤ Ce−γt .

This implies, in turn, for all ε, uniform exponential convergence
of G̃ε

F̃ε
to 1, a value of the ratio that is obtained only on a

sphere. 2
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