Gaussian heat kernel estimates : from functions to forms

Thierry Coulhon, Australian National University, Canberra

Geometry and Analysis meets PDE, WOMASY, 1 October 2014

The setting

Let M be a connected, complete, non-compact Riemannian manifold

The setting

Let M be a connected, complete, non-compact Riemannian manifold d the geodesic distance, μ the Riemannian measure ∇ the gradient, Δ the (nonnegative) Laplace-Beltrami operator

The setting

Let M be a connected, complete, non-compact Riemannian manifold d the geodesic distance, μ the Riemannian measure ∇ the gradient, Δ the (nonnegative) Laplace-Beltrami operator

$$
\int_{M} \nabla f \cdot \nabla g d \mu=\int_{M} f \Delta g d \mu
$$

$\mathcal{E}(f):=<\Delta f, f>$ the Dirichlet form

The setting

Let M be a connected, complete, non-compact Riemannian manifold d the geodesic distance, μ the Riemannian measure ∇ the gradient, Δ the (nonnegative) Laplace-Beltrami operator

$$
\int_{M} \nabla f \cdot \nabla g d \mu=\int_{M} f \Delta g d \mu
$$

$\mathcal{E}(f):=<\Delta f, f>$ the Dirichlet form
$\left(e^{-t \Delta}\right)_{t>0}$ is a Markov semigroup, acts on $L^{p}(M, \mu), 1 \leq p \leq+\infty$

The setting

Let M be a connected, complete, non-compact Riemannian manifold d the geodesic distance, μ the Riemannian measure ∇ the gradient, Δ the (nonnegative) Laplace-Beltrami operator

$$
\int_{M} \nabla f \cdot \nabla g d \mu=\int_{M} f \Delta g d \mu
$$

$\mathcal{E}(f):=<\Delta f, f>$ the Dirichlet form
$\left(e^{-t \Delta}\right)_{t>0}$ is a Markov semigroup, acts on $L^{p}(M, \mu), 1 \leq p \leq+\infty$
$e^{-t \Delta}$ has a smooth kernel $p_{t}(x, y)=p_{t}(y, x)>0$:

$$
e^{-t \Delta} f(x)=\int_{M} p_{t}(x, y) f(y) d \mu(y), f \in L^{2}(M, \mu), \forall x \in M
$$

The setting

Let M be a connected, complete, non-compact Riemannian manifold d the geodesic distance, μ the Riemannian measure ∇ the gradient, Δ the (nonnegative) Laplace-Beltrami operator

$$
\int_{M} \nabla f \cdot \nabla g d \mu=\int_{M} f \Delta g d \mu
$$

$\mathcal{E}(f):=<\Delta f, f>$ the Dirichlet form
$\left(e^{-t \Delta}\right)_{t>0}$ is a Markov semigroup, acts on $L^{p}(M, \mu), 1 \leq p \leq+\infty$
$e^{-t \Delta}$ has a smooth kernel $p_{t}(x, y)=p_{t}(y, x)>0$:

$$
e^{-t \Delta} f(x)=\int_{M} p_{t}(x, y) f(y) d \mu(y), f \in L^{2}(M, \mu), \forall x \in M
$$

In order to do analysis on M, one would like to estimate $p_{t}(x, y)$ from above and below

The setting

Let M be a connected, complete, non-compact Riemannian manifold d the geodesic distance, μ the Riemannian measure ∇ the gradient, Δ the (nonnegative) Laplace-Beltrami operator

$$
\int_{M} \nabla f \cdot \nabla g d \mu=\int_{M} f \Delta g d \mu
$$

$\mathcal{E}(f):=<\Delta f, f>$ the Dirichlet form
$\left(e^{-t \Delta}\right)_{t>0}$ is a Markov semigroup, acts on $L^{p}(M, \mu), 1 \leq p \leq+\infty$ $e^{-t \Delta}$ has a smooth kernel $p_{t}(x, y)=p_{t}(y, x)>0$:

$$
e^{-t \Delta} f(x)=\int_{M} p_{t}(x, y) f(y) d \mu(y), f \in L^{2}(M, \mu), \forall x \in M
$$

In order to do analysis on M, one would like to estimate $p_{t}(x, y)$ from above and below

No curvature assumptions, rather direct geometric properties of M

Uniform bounds of the heat kernel: the polynomial case

Assume $\left(e^{-t L}\right)_{t>0}$ is uniformly bounded on $L^{1}(M, \mu)\left(L^{\infty}(M, \mu)\right)$

$$
\sup _{x, y \in M} p_{t}(x, y) \leq C t^{-D / 2}, \quad \forall t>0, x \in M, \text { some } D>0,
$$

is equivalent to:

Uniform bounds of the heat kernel: the polynomial case

Assume $\left(e^{-t L}\right)_{t>0}$ is uniformly bounded on $L^{1}(M, \mu)\left(L^{\infty}(M, \mu)\right)$

$$
\sup _{x, y \in M} p_{t}(x, y) \leq C t^{-D / 2}, \quad \forall t>0, x \in M, \text { some } D>0,
$$

is equivalent to:

- the Sobolev inequality:

$$
\|f\|_{\alpha D /(D-\alpha p)} \leq C\left\|L^{\alpha / 2} f\right\|_{p}, \quad \forall f \in \mathcal{D}_{p}\left(L^{\alpha / 2}\right)
$$

for $p>1$ and $0<\alpha p<D$ [Varopoulos 1984, C. 1990].

Uniform bounds of the heat kernel: the polynomial case

Assume $\left(e^{-t L}\right)_{t>0}$ is uniformly bounded on $L^{1}(M, \mu)\left(L^{\infty}(M, \mu)\right)$

$$
\sup _{x, y \in M} p_{t}(x, y) \leq C t^{-D / 2}, \quad \forall t>0, x \in M, \text { some } D>0,
$$

is equivalent to:

- the Sobolev inequality:

$$
\|f\|_{\alpha D /(D-\alpha p)} \leq C\left\|L^{\alpha / 2} f\right\|_{p}, \quad \forall f \in \mathcal{D}_{p}\left(L^{\alpha / 2}\right)
$$

for $p>1$ and $0<\alpha p<D$ [Varopoulos 1984, C. 1990].

- the Nash inequality:

$$
\|f\|_{2}^{2+(4 / D)} \leq C\|f\|_{1}^{4 / D} \mathcal{E}(f), \quad \forall f \in \mathcal{F}
$$

[Carlen-Kusuoka-Stroock 1987]

Uniform bounds of the heat kernel: the polynomial case

Assume $\left(e^{-t L}\right)_{t>0}$ is uniformly bounded on $L^{1}(M, \mu)\left(L^{\infty}(M, \mu)\right)$

$$
\sup _{x, y \in M} p_{t}(x, y) \leq C t^{-D / 2}, \quad \forall t>0, x \in M, \text { some } D>0
$$

is equivalent to:

- the Sobolev inequality:

$$
\|f\|_{\alpha D /(D-\alpha p)} \leq C\left\|L^{\alpha / 2} f\right\|_{p}, \quad \forall f \in \mathcal{D}_{p}\left(L^{\alpha / 2}\right)
$$

for $p>1$ and $0<\alpha p<D$ [Varopoulos 1984, C. 1990].

- the Nash inequality:

$$
\|f\|_{2}^{2+(4 / D)} \leq C\|f\|_{1}^{4 / D} \mathcal{E}(f), \quad \forall f \in \mathcal{F} .
$$

[Carlen-Kusuoka-Stroock 1987] -the Gagliardo-Nirenberg type inequalities, for instance

$$
\|f\|_{q}^{2} \leq C\|f\|_{2}^{2-\frac{q-2}{q} D} \mathcal{E}(f)^{\frac{q-2}{2 q} D}, \quad \forall f \in \mathcal{F},
$$

for $q>2$ such that $\frac{q-2}{2 q} D<1$ [C. 1992].

Extrapolation

In the Sobolev and in the Gagliardo-Nirenberg case (not in the Nash case), one needs:

Lemma (C., 1990)

Assume $\left(e^{-t L}\right)_{t>0}$ is uniformly bounded on $L^{1}(M, \mu)$ and there exist $1 \leq p<q \leq+\infty, \alpha>0$ such that

$$
\left\|e^{-t L}\right\|_{p \rightarrow a} \leq C t^{-\alpha}, \forall t>0
$$

Then

$$
\left\|e^{-t L}\right\|_{1 \rightarrow \infty} \leq C t^{-\beta}, \forall t>0
$$

where $\beta=\frac{\alpha}{\frac{\alpha}{p}-\frac{1}{q}}$.

Real life heat kernel estimates are not uniform !

To do analysis on (M, μ), one needs estimates of $p_{t}(x, x)$ and even of $p_{t}(x, y)$: $\sup _{x, y \in M} p_{t}(x, y)$ is not enough

Real life heat kernel estimates are not uniform !

To do analysis on (M, μ), one needs estimates of $p_{t}(x, x)$ and even of $p_{t}(x, y)$: $\sup _{x, y \in M} p_{t}(x, y)$ is not enough
Indeed, for instance on manifolds with non-negative Ricci curvature, $p_{t}(x, x) \simeq \frac{1}{V(x, \sqrt{t})}$, where $V(x, r)=\mu(B(x, r))$, and $V(x, r)$ does vary with r

Real life heat kernel estimates are not uniform !

To do analysis on (M, μ), one needs estimates of $p_{t}(x, x)$ and even of $p_{t}(x, y)$: $\sup _{x, y \in M} p_{t}(x, y)$ is not enough
Indeed, for instance on manifolds with non-negative Ricci curvature, $p_{t}(x, x) \simeq \frac{1}{V(x, \sqrt{t})}$, where $V(x, r)=\mu(B(x, r))$, and $V(x, r)$ does vary with r
We have to assume doubling (D) :

$$
\begin{equation*}
V(x, 2 r) \leq C V(x, r), \forall x \in M, r>0 \tag{1}
\end{equation*}
$$

Real life heat kernel estimates are not uniform !

To do analysis on (M, μ), one needs estimates of $p_{t}(x, x)$ and even of $p_{t}(x, y)$: $\sup _{x, y \in M} p_{t}(x, y)$ is not enough
Indeed, for instance on manifolds with non-negative Ricci curvature, $p_{t}(x, x) \simeq \frac{1}{V(x, \sqrt{ })}$, where $V(x, r)=\mu(B(x, r))$, and $V(x, r)$ does vary with r We have to assume doubling (D) :

$$
\begin{equation*}
V(x, 2 r) \leq C V(x, r), \forall x \in M, r>0 \tag{1}
\end{equation*}
$$

It follows easily that there exists $\nu>0$ such that

$$
\frac{V(x, r)}{V(x, s)} \lesssim\left(\frac{r}{s}\right)^{\nu}, \quad \forall x \in M, r \geq s>0
$$

Real life heat kernel estimates are not uniform !

To do analysis on (M, μ), one needs estimates of $p_{t}(x, x)$ and even of $p_{t}(x, y)$: $\sup _{x, y \in M} p_{t}(x, y)$ is not enough
Indeed, for instance on manifolds with non-negative Ricci curvature, $p_{t}(x, x) \simeq \frac{1}{V(x, \sqrt{t})}$, where $V(x, r)=\mu(B(x, r))$, and $V(x, r)$ does vary with r We have to assume doubling (D) :

$$
\begin{equation*}
V(x, 2 r) \leq C V(x, r), \forall x \in M, r>0 \tag{1}
\end{equation*}
$$

It follows easily that there exists $\nu>0$ such that

$$
\frac{V(x, r)}{V(x, s)} \lesssim\left(\frac{r}{s}\right)^{\nu}, \quad \forall x \in M, r \geq s>0
$$

It is known that if M is connected, non-compact, and satisfies (1), then the following reverse doubling condition holds: there exist $0<\nu^{\prime} \leq \nu$ such that, for all $r \geq s>0$ and $x \in M$,

$$
\left(\frac{r}{s}\right)^{\nu^{\prime}} \lesssim \frac{V(x, r)}{V(x, s)}
$$

Heat kernel estimates under volume doubling 1

The basic upper on-diagonal estimate

Heat kernel estimates under volume doubling 1

The basic upper on-diagonal estimate
(DUE)

$$
p_{t}(x, x) \leq \frac{C}{V(x, \sqrt{t})}, \forall t>0, x \in M
$$

Heat kernel estimates under volume doubling 1

The basic upper on-diagonal estimate
(DUE)

$$
p_{t}(x, x) \leq \frac{C}{V(x, \sqrt{t})}, \forall t>0, x \in M
$$

Self-improves into
(UE) $\quad p_{t}(x, y) \leq \frac{C}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{C t}\right), \forall t>0, x, y \in M$

Heat kernel estimates under volume doubling 1

The basic upper on-diagonal estimate
(DUE)

$$
p_{t}(x, x) \leq \frac{C}{V(x, \sqrt{t})}, \forall t>0, x \in M
$$

Self-improves into
(UE) $\quad p_{t}(x, y) \leq \frac{C}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{C t}\right), \forall t>0, x, y \in M$
which implies the on-diagonal lower Gaussian estimate
(DLE)

$$
p_{t}(x, x) \geq \frac{c}{V(x, \sqrt{t})}, \forall x \in M, t>0
$$

Heat kernel estimates under volume doubling 2

Full Gaussian lower estimate
(LE) $\quad p_{t}(x, y) \geq \frac{c}{V(x, \sqrt{t})} \exp \left(-C \frac{d^{2}(x, y)}{t}\right), \forall x, y \in M, t>0$

Heat kernel estimates under volume doubling 2

Full Gaussian lower estimate
(LE)

$$
p_{t}(x, y) \geq \frac{c}{V(x, \sqrt{t})} \exp \left(-C \frac{d^{2}(x, y)}{t}\right), \forall x, y \in M, t>0
$$

Gradient upper estimate

$$
\begin{equation*}
\left|\nabla_{x} p_{t}(x, y)\right| \leq \frac{C}{\sqrt{t} V(y, \sqrt{t})}, \forall x, y \in M, t>0 \tag{G}
\end{equation*}
$$

Heat kernel estimates under volume doubling 2

Full Gaussian lower estimate
(LE)

$$
p_{t}(x, y) \geq \frac{c}{V(x, \sqrt{t})} \exp \left(-C \frac{d^{2}(x, y)}{t}\right), \forall x, y \in M, t>0
$$

Gradient upper estimate

$$
\begin{equation*}
\left|\nabla_{x} p_{t}(x, y)\right| \leq \frac{C}{\sqrt{t} V(y, \sqrt{t})}, \forall x, y \in M, t>0 \tag{G}
\end{equation*}
$$

All this is true on manifolds with non-negative Ricci curvature

Heat kernel estimates under volume doubling 3

Theorem

$$
\begin{gathered}
(D U E) \Leftrightarrow(U E) \Rightarrow(D L E) \nRightarrow(L E) \nRightarrow(G) \\
(G) \Rightarrow(L E) \Rightarrow(D U E)
\end{gathered}
$$

Davies, Grigor'yan, [Coulhon-Sikora, Proc. London Math. Soc. 2008 and Colloq. Math. 2010] [Grigory'an-Hu-Lau, CPAM, 2008], [Boutayeb, Tbilissi Math. J. 2009]

Three levels:

- (UE)
- $(U E)+(L E)=(L Y)=$ parabolic Harnack
- (G)

Application: Riesz transform

Theorem

Let M be a complete non-compact Riemannian manifold satisfying (D) and (DUE). Then
$\left(R_{p}\right)$

$$
\||\nabla f|\|_{p} \leq C\left\|\Delta^{1 / 2} f\right\|_{p}, \forall f \in \mathcal{C}_{0}^{\infty}(M),
$$

$$
\text { for } 1<p<2
$$

[Coulhon, Duong, T.A.M.S. 1999]

Theorem

Let M be a complete non-compact Riemannian manifold satisfying (D) and (G). Then the equivalence
$\left(E_{p}\right)$

$$
\||\nabla f|\|_{p} \simeq\left\|\Delta^{1 / 2} f\right\|_{p}, \forall f \in \mathcal{C}_{0}^{\infty}(M)
$$

holds for $1<p<\infty$.
[Auscher, Coulhon, Duong, Hofmann, Ann. Sc. E.N.S. 2004]

Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.

Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.
(M, d, μ) a metric measure space satisfying the doubling volume property (D)

Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.
(M, d, μ) a metric measure space satisfying the doubling volume property (D) Dirichlet form $\mathcal{E}(f, f)$

Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.
(M, d, μ) a metric measure space satisfying the doubling volume property (D)
Dirichlet form $\mathcal{E}(f, f)$
Markov semigroup $\left(e^{-t \Delta}\right)_{t>0}$ on $L^{2}(M, \mu)$

Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.
(M, d, μ) a metric measure space satisfying the doubling volume property (D)
Dirichlet form $\mathcal{E}(f, f)$
Markov semigroup $\left(e^{-t \Delta}\right)_{t>0}$ on $L^{2}(M, \mu)$ $v: M \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying
$\left(D_{v}\right)$

$$
v(x, 2 r) \leq \operatorname{Cv}(x, r), \forall r>0, \mu-\text { a.e. } x \in M
$$

and

Pointwise heat kernel upper estimates revisited 1

Joint work with Salahaddine Boutayeb and Adam Sikora, 2013.
(M, d, μ) a metric measure space satisfying the doubling volume property (D)
Dirichlet form $\mathcal{E}(f, f)$
Markov semigroup $\left(e^{-t \Delta}\right)_{t>0}$ on $L^{2}(M, \mu)$
$v: M \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying
$\left(D_{v}\right)$

$$
v(x, 2 r) \leq \operatorname{Cv}(x, r), \forall r>0, \mu-\text { a.e. } x \in M
$$

and
$\left(D_{v}^{\prime}\right)$

$$
v(y, r) \leq C v(x, r), \forall x, y \in M, r>0, d(x, y) \leq r
$$

v may NOT be the volume function V; in fact $v \gtrsim V$, slow decays allowed

Pointwise heat kernel upper estimates revisited 2

$\left(D U E^{v}\right):\left(e^{-t \Delta}\right)_{t>0}$ has a measurable kernel p_{t}, that is

$$
e^{-t \Delta} f(x)=\int_{M} p_{t}(x, y) f(y) d \mu(y), t>0, f \in L^{2}(M, \mu), \mu-\text { a.e. } x \in M
$$

and

$$
p_{t}(x, y) \leq \frac{C}{\sqrt{v(x, \sqrt{t}) v(y, \sqrt{t})}}, \text { for all } t>0, \mu-\text { a.e. } x, y \in M .
$$

Pointwise heat kernel upper estimates revisited 3

Denote

$$
v_{r}(x):=v(x, r), r>0, x \in M .
$$

Pointwise heat kernel upper estimates revisited 3

Denote

$$
v_{r}(x):=v(x, r), r>0, x \in M .
$$

Introduce
$\left(N^{v}\right)$

$$
\|f\|_{2}^{2} \lesssim\left\|f v_{r}^{-1 / 2}\right\|_{1}^{2}+r^{2} \mathcal{E}(f), \quad \forall r>0, \quad \forall f \in \mathcal{F} .
$$

(equivalent to Nash if $v(x, r) \simeq r^{D}$) and

Pointwise heat kernel upper estimates revisited 3

Denote

$$
v_{r}(x):=v(x, r), r>0, x \in M .
$$

Introduce
$\left(N^{v}\right)$

$$
\|f\|_{2}^{2} \lesssim\left\|f v_{r}^{-1 / 2}\right\|_{1}^{2}+r^{2} \mathcal{E}(f), \quad \forall r>0, \quad \forall f \in \mathcal{F} .
$$

(equivalent to Nash if $v(x, r) \simeq r^{D}$) and for $q>2$ (not too big)
$\left(G N_{q}^{v}\right)$

$$
\left\|f v_{r}^{\frac{1}{2}-\frac{1}{a}}\right\|_{q}^{2} \lesssim\|f\|_{2}^{2}+r^{2} \mathcal{E}(f), \quad \forall r>0, \quad \forall f \in \mathcal{F}
$$

(equivalent to Gagliardo-Nirenberg if $v(x, r) \simeq r^{D}$)

Pointwise heat kernel upper estimates revisited 3

Denote

$$
v_{r}(x):=v(x, r), r>0, x \in M
$$

Introduce
$\left(N^{v}\right) \quad\|f\|_{2}^{2} \lesssim\left\|f v_{r}^{-1 / 2}\right\|_{1}^{2}+r^{2} \mathcal{E}(f), \quad \forall r>0, \quad \forall f \in \mathcal{F}$.
(equivalent to Nash if $v(x, r) \simeq r^{D}$) and for $q>2$ (not too big)
$\left(G N_{q}^{v}\right) \quad\left\|f v_{r}^{\frac{1}{2}-\frac{1}{a}}\right\|_{q}^{2} \lesssim\|f\|_{2}^{2}+r^{2} \mathcal{E}(f), \quad \forall r>0, \quad \forall f \in \mathcal{F}$,
(equivalent to Gagliardo-Nirenberg if $v(x, r) \simeq r^{D}$)

Theorem

Assume that (M, d, μ, L) satisfies (D) and Davies-Gaffney and that v satisfies $\left(D_{v}\right)$ and $\left(D_{v}^{\prime}\right)$. Then $\left(D U E^{v}\right)$ is equivalent to $\left(N^{v}\right)$ and to $\left(G N_{q}^{v}\right)$ for $q>2$ small enough.

Idea of the proof

Introduce weighted $L^{p}-L^{q}$ inequalities: $1 \leq p \leq q \leq+\infty, \gamma, \delta$ real numbers such that $\gamma+\delta=\frac{1}{p}-\frac{1}{q}$

$$
\sup _{t>0}\left\|v_{\sqrt{t}}^{\gamma} e^{-t \Delta} v_{\sqrt{t}}^{\delta}\right\|_{p \rightarrow q}<+\infty
$$

$$
\left(v E v_{p, q, \gamma}\right)
$$

Idea of the proof

Introduce weighted $L^{p}-L^{q}$ inequalities: $1 \leq p \leq q \leq+\infty, \gamma, \delta$ real numbers such that $\gamma+\delta=\frac{1}{p}-\frac{1}{q}$

$$
\sup _{t>0}\left\|v_{\sqrt{t}}^{\gamma} e^{-t \Delta} v_{\sqrt{t}}^{\delta}\right\|_{p \rightarrow q}<+\infty
$$

$\left(D U E^{v}\right)=v_{\sqrt{t}}^{1 / 2}(x) p_{t}(x, y) v_{\sqrt{t}}^{1 / 2}(y) \leq C$ is equivalent to $(v E v)_{1, \infty, 1 / 2}$ or
$\left(v E_{2, \infty}\right) \sup _{t>0}\left\|v_{\sqrt{t}}^{\frac{1}{2}} e^{-t \Delta}\right\|_{2 \rightarrow \infty}<+\infty$

Idea of the proof

Introduce weighted $L^{p}-L^{q}$ inequalities: $1 \leq p \leq q \leq+\infty, \gamma, \delta$ real numbers such that $\gamma+\delta=\frac{1}{p}-\frac{1}{q}$

$$
\sup _{t>0}\left\|v_{\sqrt{t}}^{\gamma} e^{-t \Delta} v_{\sqrt{t}}^{\delta}\right\|_{p \rightarrow q}<+\infty
$$

$$
\left(v E v_{p, q, \gamma}\right)
$$

$\left(D U E^{\vee}\right)=v_{\sqrt{t}}^{1 / 2}(x) p_{t}(x, y) v_{\sqrt{t}}^{1 / 2}(y) \leq C$ is equivalent to $(v E v)_{1, \infty, 1 / 2}$ or
$\left(v E_{2, \infty}\right) \sup _{t>0}\left\|v_{\sqrt{t}}^{\frac{1}{2}} e^{-t \Delta}\right\|_{2 \rightarrow \infty}<+\infty$
$\left(G N_{q}^{v}\right)$ is equivalent to
$\left(v E_{2, q}\right) \sup _{t>0}\left\|v_{\sqrt{t}}^{\frac{1}{2}-\frac{1}{q}} e^{-t \Delta}\right\|_{2 \rightarrow q}<+\infty$
Finite propagation speed of the associated wave equation \Rightarrow commutation between the semigroup and the volume: for p, q fixed, equivalence between $\left(v E v_{p, q, \gamma}\right) \Rightarrow$ extrapolation: pass from q to ∞.

Idea of the proof

Introduce weighted $L^{p}-L^{q}$ inequalities: $1 \leq p \leq q \leq+\infty, \gamma, \delta$ real numbers such that $\gamma+\delta=\frac{1}{p}-\frac{1}{q}$

$$
\sup _{t>0}\left\|v_{\sqrt{t}}^{\gamma} e^{-t \Delta} v_{\sqrt{t}}^{\delta}\right\|_{p \rightarrow q}<+\infty
$$

$\left(D U E^{v}\right)=v_{\sqrt{t}}^{1 / 2}(x) p_{t}(x, y) v_{\sqrt{t}}^{1 / 2}(y) \leq C$ is equivalent to $(v E v)_{1, \infty, 1 / 2}$ or
$\left(v E_{2, \infty}\right) \sup _{t>0}\left\|v_{\sqrt{t}}^{\frac{1}{2}} e^{-t \Delta}\right\|_{2 \rightarrow \infty}<+\infty$
$\left(G N_{q}^{v}\right)$ is equivalent to
$\left(v E_{2, q}\right) \sup _{t>0}\left\|v_{\sqrt{t}}^{\frac{1}{2}-\frac{1}{q}} e^{-t \Delta}\right\|_{2 \rightarrow q}<+\infty$
Finite propagation speed of the associated wave equation \Rightarrow commutation between the semigroup and the volume: for p, q fixed, equivalence between $\left(v E v_{p, q, \gamma}\right) \Rightarrow$ extrapolation: pass from q to ∞.
Conclusion: $\left(G N_{q}^{v}\right) \Rightarrow\left(D U E^{\vee}\right)$

Heat kernel on one-forms 1

d, δ

$$
\vec{\Delta}=d \delta+\delta d
$$

Heat kernel on one-forms 1

d, δ

$$
\vec{\Delta}=d \delta+\delta d
$$

Bochner's formula:

$$
\vec{\Delta}=\nabla^{*} \nabla+\text { Ric. }
$$

$$
\begin{equation*}
\left|\vec{p}_{t}(x, y)\right| \lesssim \frac{1}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{C t}\right), \quad \forall t>0, \text { a.e. } x, y \in M \tag{UE}
\end{equation*}
$$

for some $C>0$. Here $\vec{p}_{t}(x, y)$ is a linear operator from $T_{y}^{*} M$ to $T_{x}^{*} M$, endowed with the Riemannian metrics at y and x, and $|\cdot|$ is its norm.

Heat kernel on one-forms 1

d, δ

$$
\vec{\Delta}=d \delta+\delta d
$$

Bochner's formula:

$$
\vec{\Delta}=\nabla^{*} \nabla+\text { Ric. }
$$

$$
\begin{equation*}
\left|\vec{p}_{t}(x, y)\right| \lesssim \frac{1}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{C t}\right), \quad \forall t>0, \text { a.e. } x, y \in M \tag{UE}
\end{equation*}
$$

for some $C>0$. Here $\vec{p}_{t}(x, y)$ is a linear operator from $T_{y}^{*} M$ to $T_{x}^{*} M$, endowed with the Riemannian metrics at y and x, and $|\cdot|$ is its norm. Implies (G)

Heat kernel on one-forms 1

d, δ

$$
\vec{\Delta}=d \delta+\delta d
$$

Bochner's formula:

$$
\vec{\Delta}=\nabla^{*} \nabla+\text { Ric. }
$$

$$
\begin{equation*}
\left|\vec{p}_{t}(x, y)\right| \lesssim \frac{1}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{C t}\right), \quad \forall t>0, \text { a.e. } x, y \in M \tag{UE}
\end{equation*}
$$

for some $C>0$. Here $\vec{p}_{t}(x, y)$ is a linear operator from $T_{y}^{*} M$ to $T_{x}^{*} M$, endowed with the Riemannian metrics at y and x, and $|\cdot|$ is its norm. Implies (G)
Manifolds with non-negative Ricci:

$$
\begin{aligned}
& \left|\vec{p}_{t}(x, y)\right| \leq p_{t}(x, y) \\
& \left|e^{-t \vec{\Delta}} \omega\right| \leq e^{-t \Delta}|\omega|
\end{aligned}
$$

Heat kernel on one-forms 1

In general, problem: no positivity, no maximum principle, no Dirichlet form, $e^{-t \vec{\Delta}}$ is a priori not bounded on L^{1} or L^{∞}

Heat kernel on one-forms 1

In general, problem: no positivity, no maximum principle, no Dirichlet form, $e^{-t \vec{\Delta}}$ is a priori not bounded on L^{1} or L^{∞} Joint work with Baptiste Devyver and Adam Sikora, in preparation. A potential $\mathcal{V} \in L_{\text {loc }}^{\infty}$ is said to belong to the Kato class at infinity $K^{\infty}(M)$ if

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \sup _{x \in M} \int_{M \backslash B\left(x_{0}, R\right)} G(x, y)|\mathcal{V}(y)| d \mu(y)=0 \tag{2}
\end{equation*}
$$

for some (all) $x_{0} \in M$.

Theorem

Let M be a complete non-compact connected manifold satisfying (D) and (DUE) and such that \mid Ric_ $\mid \in K^{\infty}(M)$. Let ν^{\prime} be the reverse doubling exponent. If $\nu^{\prime}>4$, the heat kernel of $\vec{\Delta}$ satisfies $(\overrightarrow{U E})$ if and only if $\operatorname{Ker}_{L^{2}}(\vec{\Delta})=\{0\}$.

Consequences

Recall the Gaussian lower bound

$$
\begin{equation*}
p_{t}(x, y) \gtrsim \frac{1}{V(x, \sqrt{t})} \exp \left(-\frac{d^{2}(x, y)}{c t}\right), \quad \forall t>0, \text { a.e. } x, y \in M \tag{LE}
\end{equation*}
$$

Corollary

Under the above assumptions, (LE) holds.

Corollary

Under the above assumptions, $\left(E_{p}\right)$ holds for all $p \in(1,+\infty)$.

Sketch of proof 1

Since Ric_ $\in K^{\infty}(M)$, there is a compact subset K_{0} of M such that

$$
\begin{equation*}
\sup _{x \in M} \int_{M \backslash K_{0}} G(x, y) \mid \text { Ric }_{-} \left\lvert\,(y) d \mu(y)<\frac{1}{2}\right. \tag{3}
\end{equation*}
$$

Sketch of proof 1

Since Ric_ $\in K^{\infty}(M)$, there is a compact subset K_{0} of M such that

$$
\begin{equation*}
\sup _{x \in M} \int_{M \backslash K_{0}} G(x, y) \mid \text { Ric }_{-} \left\lvert\,(y) d \mu(y)<\frac{1}{2} .\right. \tag{3}
\end{equation*}
$$

Let R be the section of the vector bundle $\mathcal{L}\left(T^{*} M\right)$ given by

$$
x \rightarrow R(x)=\operatorname{Ric}_{-}(x) \mathbf{1}_{K_{0}}(x) .
$$

We shall also denote by R the associated operator on one-forms. Set

$$
H=\nabla^{*} \nabla+\text { Ric }_{+}-\left(\text {Ric }_{-}\right) \mathbf{1}_{M \backslash K_{0}},
$$

so that

$$
\vec{\Delta}=H-R .
$$

Sketch of proof 2

Lemma
$\left(e^{-t H}\right)_{t>0}$ satisfies Gaussian estimates.

Sketch of proof 2

Lemma

$\left(e^{-t H}\right)_{t>0}$ satisfies Gaussian estimates.
It follows that

$$
\begin{equation*}
\sup _{t>0}\left\|(I+t H)^{-1} V_{\sqrt{t}}^{1 / p}\right\|_{p \rightarrow \infty}<+\infty \tag{4}
\end{equation*}
$$

Sketch of proof 2

Lemma

$\left(e^{-t h}\right)_{t>0}$ satisfies Gaussian estimates.
It follows that

$$
\begin{equation*}
\sup _{t>0}\left\|(I+t H)^{-1} V_{\sqrt{t}}^{1 / p}\right\|_{p \rightarrow \infty}<+\infty \tag{4}
\end{equation*}
$$

We would like a similar estimate for $\vec{\Delta}$

Sketch of proof 2

Lemma

$\left(e^{-t h}\right)_{t>0}$ satisfies Gaussian estimates.
It follows that

$$
\begin{equation*}
\sup _{t>0}\left\|(I+t H)^{-1} V_{\sqrt{t}}^{1 / p}\right\|_{p \rightarrow \infty}<+\infty \tag{4}
\end{equation*}
$$

We would like a similar estimate for $\vec{\Delta}$

$$
(1+t \vec{\Delta})^{-1}=\left(I-(1+t H)^{-1} t R\right)^{-1}(1+t H)^{-1}
$$

Sketch of proof 2

Lemma

$\left(e^{-t h}\right)_{t>0}$ satisfies Gaussian estimates.
It follows that

$$
\begin{equation*}
\sup _{t>0}\left\|(I+t H)^{-1} V_{\sqrt{t}}^{1 / p}\right\|_{p \rightarrow \infty}<+\infty \tag{4}
\end{equation*}
$$

We would like a similar estimate for $\vec{\Delta}$

$$
(1+t \vec{\Delta})^{-1}=\left(I-(1+t H)^{-1} t R\right)^{-1}(1+t H)^{-1}
$$

Want

$$
\left\|\left(I-(H+\lambda)^{-1} R\right)^{-1}\right\|_{\infty \rightarrow \infty} \leq C .
$$

Sketch of proof 2

Lemma

$\left(e^{-t h}\right)_{t>0}$ satisfies Gaussian estimates.
It follows that

$$
\begin{equation*}
\sup _{t>0}\left\|(I+t H)^{-1} V_{\sqrt{t}}^{1 / p}\right\|_{p \rightarrow \infty}<+\infty \tag{4}
\end{equation*}
$$

We would like a similar estimate for $\vec{\Delta}$

$$
(1+t \vec{\Delta})^{-1}=\left(I-(1+t H)^{-1} t R\right)^{-1}(1+t H)^{-1}
$$

Want

$$
\left\|\left(I-(H+\lambda)^{-1} R\right)^{-1}\right\|_{\infty \rightarrow \infty} \leq C
$$

For $\lambda>0$, we introduce the two operators

$$
A_{\lambda}=R^{1 / 2}(H+\lambda)^{-1} R^{1 / 2}
$$

and

$$
B_{\lambda}=(H+\lambda)^{-1} R
$$

Spectral theory

Lemma

For any $\lambda \in[0, \infty), B_{\lambda}$ is compact on $L^{\infty}, \sup _{\lambda \geq 0}\left\|B_{\lambda}\right\|_{\infty \rightarrow \infty}<\infty$, and the map $\lambda \mapsto B_{\lambda} \in \mathcal{L}\left(L^{\infty}, L^{\infty}\right)$ is continuous on $[0, \infty)$.

Lemma

For every $\lambda \geq 0$, the operator A_{λ} is self-adjoint and compact on L^{2}. Furthermore, $\operatorname{Ker}_{L^{2}}(\vec{\Delta})=\{0\}$ if and only if there is $\eta \in(0,1)$ such that for all $\lambda \geq 0$,

$$
\left\|A_{\lambda}\right\|_{2 \rightarrow 2} \leq 1-\eta .
$$

Lemma

Assume that $\operatorname{Ker}_{L^{2}}(\vec{\Delta})=\{0\}$. If $\eta \in(0,1)$ is as above then the spectral radius of B_{λ} on L^{∞} satisfies

$$
r_{\infty}\left(B_{\lambda}\right) \leq 1-\eta, \forall \lambda \geq 0 .
$$

Weighted $L^{p}-L^{q}$ inequalities again

Start from

$$
\sup _{t>0}\left\|(I+t \vec{\Delta})^{-1} V_{\sqrt{t}}^{1 / p_{0}}\right\|_{p_{0} \rightarrow \infty}<+\infty
$$

By duality and interpolation,

$$
\sup _{t>0}\left\|V_{\sqrt{t}}^{\gamma}(I+t \vec{\Delta})^{-1} V_{\sqrt{t}}^{\delta}\right\|_{p \rightarrow q}<+\infty
$$

for any p, q such that $1 \leq p \leq p_{0}, \frac{1}{p}-\frac{1}{q}=\gamma+\delta=\frac{1}{p_{0}}, \gamma=\frac{1}{\left(p_{0}-1\right) q}$, and $\gamma+\delta=\frac{1}{p}-\frac{1}{q}$.

Weighted $L^{p}-L^{q}$ inequalities again

Start from

$$
\sup _{t>0}\left\|(I+t \vec{\Delta})^{-1} V_{\sqrt{t}}^{1 / p_{0}}\right\|_{p_{0} \rightarrow \infty}<+\infty
$$

By duality and interpolation,

$$
\sup _{t>0}\left\|V_{\sqrt{t}}^{\gamma}(I+t \vec{\Delta})^{-1} V_{\sqrt{t}}^{\delta}\right\|_{p \rightarrow q}<+\infty
$$

for any p, q such that $1 \leq p \leq p_{0}, \frac{1}{p}-\frac{1}{q}=\gamma+\delta=\frac{1}{p_{0}}, \gamma=\frac{1}{\left(p_{0}-1\right) q}$, and
$\gamma+\delta=\frac{1}{p}-\frac{1}{q}$.
Use the finite propagation speed to iterate (instead of extrapolating)

