Singular solutions for divergence-form elliptic equations involving regular variation theory ${ }^{1}$

Ting-Ying Chang

School of Mathematics and Statistics
The University of Sydney
WOMASY - Geometric and Harmonic Analysis meets PDE
University of Sydney

1st October, 2014
${ }^{1}$ This is joint work with Florica C. Cîrstea.
(1) Introduction
(2) On Regular Variation Theory
(3) Definition of solution
(4) Main results: C.-Cîrstea
(5) Solutions with strong singularities
(6) Sketch of proofs
(7) Example
(8) Bibliography

Let $p>1$ and consider nonlinear elliptic equations in divergence form

$$
\begin{equation*}
-\operatorname{div}\left(\mathcal{A}(|x|)|\nabla u|^{p-2} \nabla u\right)+b(x) h(u)=0 \quad \text { in } B^{*}:=B_{1} \backslash\{0\}, \tag{1}
\end{equation*}
$$

where B_{1} denotes the open unit ball centred at 0 in $\mathbb{R}^{N}(N \geq 2)$. Let $\mathcal{A} \in C^{1}(0,1]$ be a positive function such that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{t \mathcal{A}^{\prime}(t)}{\mathcal{A}(t)}=\vartheta \in \mathbb{R} \tag{2}
\end{equation*}
$$

This means that $L_{\mathcal{A}}(t)=\mathcal{A}(t) / t^{\vartheta}$ is a positive $C^{1}(0,1]$ function satisfying $\lim _{t \rightarrow 0^{+}} t L^{\prime}(t) / L(t)=0$. In particular, L is a slowly varying function at 0 .
Assumption A. Let $b \in C\left(\overline{B_{1}} \backslash\{0\}\right)$ be positive with $\lim _{|x| \rightarrow 0} \frac{b(x)}{b_{0}(|x|)}=1$ and $h \in C[0, \infty)$ be a positive non-decreasing function on $(0, \infty)$ such that $h(t) / t^{p-1}$ is bounded for small $t>0$.

Definition 1

A positive measurable function L defined on an interval ($0, c$] for some c >0 is called slowly varying at (the right of) zero if

$$
\lim _{t \rightarrow 0} \frac{L(\lambda t)}{L(t)}=1 \text { for every } \lambda>0
$$

A function f is called regularly varying at 0 with real index ρ, or $f \in R V_{\rho}(0+)$ in short, if $f(t) / t^{\rho}$ is slowly varying at 0 .

Example 2

Non-trivial examples of slowly varying functions L for small $t>0$:
(a) the logarithm $\log (1 / t)$, its m iterates $\log _{m}(1 / t)$ defined as $\log \log _{m-1}(1 / t)$ and powers of $\log _{m}(1 / t)$ for any integer $m \geq 1$;
(b) $\exp \left((\log (1 / t))^{\alpha}\right)$ with $\alpha \in(0,1)$.
(c) $\exp \left(-(\log (1 / t))^{1 / 3} \cos \left((\log (1 / t))^{1 / 3}\right)\right)$.

Definition 3

A function $u \in C^{1}\left(B^{*}\right)$ is said to be a solution (sub-solution) of (1) if for all functions (non-negative functions) $\psi \in C_{c}^{1}\left(B^{*}\right)$, we have

$$
\begin{equation*}
\int_{B_{1}} \mathcal{A}(|x|)|\nabla u|^{p-2} \nabla u \cdot \nabla \psi \mathrm{~d} x+\int_{B_{1}} b(x) h(u) \psi \mathrm{d} x=0 \quad(\leq 0) . \tag{3}
\end{equation*}
$$

Let $\omega_{N}=\operatorname{vol}\left(B_{1}\right)$ and Φ be given by

$$
\begin{equation*}
\Phi(x):=\frac{1}{\left(N \omega_{N}\right)^{1 /(p-1)}} \int_{|x|}^{1}\left(\frac{t^{1-N}}{\mathcal{A}(t)}\right)^{\frac{1}{p-1}} d t \quad \text { for every } x \in B^{*} \tag{4}
\end{equation*}
$$

Assumption B. Let (2) and Assumption A hold. Let $\lim _{r \rightarrow 0} \Phi(r)=\infty$, $b_{0} \in R V_{\sigma}(0+)$ and $h \in R V_{q}(\infty)$ with $q+1>p>\vartheta-\sigma$.

We can see Φ as the fundamental solution of

$$
\begin{equation*}
-\Delta_{\mathcal{A}, p} \Phi:=-\operatorname{div}\left(\mathcal{A}(|x|)|\nabla \Phi|^{p-2} \nabla \Phi\right)=\delta_{0} \quad \text { in } \mathcal{D}^{\prime}\left(B_{1}\right) \tag{5}
\end{equation*}
$$

with homogeneous Dirichlet boundary condition.

A positive solution of (1) is said to have a weak singularity at 0 if $u(x) / \Phi(|x|)$ converges to a positive number as $|x| \rightarrow 0$.

Theorem 4 (Existence of weak singularities, C.-Cîrstea)

Let Assumption B hold. Eq. (1) admits a positive solution with a weak singularity at 0 if and only if $b(x) h(\Phi) \in L^{1}\left(B_{1 / 2}\right)$, or in other words,

$$
\begin{equation*}
\int_{0^{+}} r^{N-1} b_{0}(r) h(\Phi(r)) \mathrm{d} r<\infty \tag{6}
\end{equation*}
$$

From Assumption B, we have $p \leq N+\vartheta$. We set

$$
\begin{equation*}
q_{*}:=\frac{(N+\sigma)(p-1)}{N+\vartheta-p} \text { if } p<N+\vartheta \text { and } q_{*}:=\infty \text { if } p=N+\vartheta \tag{7}
\end{equation*}
$$

(1) If $p=N+\vartheta$, then (6) holds automatically for any $q<\infty$.
(2) If $p<N+\vartheta$ and $q \neq q_{*}$, then (6) holds iff $q<q_{*}$. If $L_{\mathcal{A}}=L_{b}=1$ and $h(t)=t^{q_{*}}(\ln t)^{\alpha}$ for $t>0$ large, then (6) holds iff $\alpha<-1$.

Theorem 5 (Removability, C.-Cîrstea)

Let Assumption B hold. If $b(x) h(\Phi) \notin L^{1}\left(B_{1 / 2}\right)$, then $p<N+\vartheta, q \geq q_{*}$ and every positive solution of (1) can be extended as a positive continuous solution of (1) in B_{1}.

Remark 1

(1) By applying Theorem 5 with $\mathcal{A}=b=1$ and $h(t)=t^{q}$, then we recover the removability result of Brezis-Véron (1980) (for $p=2$) and Vázquez-Véron (1980/1981) (for $1<p<N$).
(2) Theorem 5 in the case $\mathcal{A}=1$ gives a sharp version of Theorem 1.3 in Cîrstea-Du (2010).
(3) The proof of Theorem 5 is crucially based on understanding the solutions with strong singularities and it uses techniques in Cirstea (Memoirs AMS, 2014).

If (6) and Assumption B hold, we prove that \exists positive solutions of (1) satisfying $\lim _{|x| \rightarrow 0} u(x) / \Phi(x)=\infty$.
Case 1: $q<q_{*}$. We define $\tilde{u}(r)$ for $r>0$ small by

$$
\begin{equation*}
\int_{\tilde{u}(r)}^{\infty} \frac{\mathrm{d} t}{[\operatorname{th}(t)]^{\frac{1}{p}}}=\int_{0}^{r}\left[M_{1} \frac{b_{0}(\tau)}{\mathcal{A}(\tau)}\right]^{\frac{1}{p}} \mathrm{~d} \tau \tag{8}
\end{equation*}
$$

where M_{1} is given by

$$
M_{1}:=\frac{p+\sigma-\vartheta}{(N+\sigma)(p-1)-(N+\vartheta-p) q}
$$

Case 2: $q=q_{*}<\infty($ for $p<N+\vartheta)$. We need extra information:
$\left\{\begin{array}{l}\text { either }(\text { a }) t \longmapsto L_{h}\left(e^{t}\right) \text { is regularly varying at } \infty, \\ \text { or (b) } t \longmapsto\left[L_{\mathcal{A}}\left(e^{-t}\right)\right]^{-\frac{q_{*}}{\rho-1}} L_{b}\left(e^{-t}\right) \text { is regularly varying at } \infty .\end{array}\right.$

We introduce $F_{1}:(0, \infty) \rightarrow(0, \infty)$ and $M_{2}>0$ as follows

$$
\left\{\begin{array}{l}
F_{1}(s):=\int_{0}^{\Phi^{-1}(s)} \xi^{N-1} b_{0}(\xi) h(\Phi(\xi)) \mathrm{d} \xi \quad \text { for } s>0 \tag{10}\\
M_{2}:=\frac{N \omega_{N}(\sigma-\vartheta+p)}{N+\vartheta-p}>0
\end{array}\right.
$$

For any $r>0$ small, we define $\tilde{u}(r)$ of the following form

$$
\begin{cases}\tilde{u}(r):=\Phi(r)\left[M_{2} F_{1}(\Phi(r))\right]^{-\frac{1}{q_{*}-p+1}} & \text { if }(9)(a) \text { holds } \tag{11}\\ \int_{c}^{\tilde{u}(r)}\left[M_{2} F_{1}(t)\right]^{\frac{1}{q_{*}-p+1}} \mathrm{~d} t:=\Phi(r) & \text { if }(9)(b) \text { holds }\end{cases}
$$

Theorem 6 (Classification, C.-Cîrstea)

Let Assumption B and (6) hold. Then for every positive solution u of (1), exactly one of the following cases occurs:
(i) u can be extended as a positive continuous solution of (1) in B_{1};
(ii) $\lim _{|x| \rightarrow 0} u(x) / \Phi(x)=\lambda \in(0, \infty)$ and, moreover, u verifies

$$
\begin{equation*}
-\Delta_{\mathcal{A}, p} u+b(x) h(u)=\lambda^{p-1} \delta_{0} \quad \text { in } \mathcal{D}^{\prime}\left(B_{1}\right) \tag{12}
\end{equation*}
$$

(iii) $u(x) \sim \tilde{u}(|x|)$ as $|x| \rightarrow 0$, where \tilde{u} is given by (8) if $q<q_{*}$ and by (11) when $q=q_{*}<\infty$ and (9) holds.

Remark 2

(1) Theorem 6 gives a sharp version of Theorem 1.1 in Cîrstea-Du (2010) (where $\mathcal{A}=1$).
(2) Theorems 4,5 and 6 extend the optimal results in Brandolini-Chiacchio-Cîrstea-Trombetti (2013) ($p=2, b=1$, $\left.h(t)=t^{q}\right)$.

Crucial ingredients

Lemma 7 (A priori estimates)

Let $H(t)=\int_{0}^{t} h(s) d s$. For any $r_{0} \in(0,1 / 2)$, there exists a constant $c=c\left(r_{0}\right)>0$ s.t. for every positive (sub-)solution of (1), we have

$$
\begin{equation*}
\int_{u(x)}^{\infty} \frac{\mathrm{d} t}{\sqrt[p]{H(t)}} \geq c|x|\left(\frac{b(x)}{\mathcal{A}(|x|)}\right)^{\frac{1}{p}} \quad \text { for all } 0<|x| \leq r_{0} . \tag{13}
\end{equation*}
$$

Lemma 8 (A spherical Harnack-type inequality)

Fix $r_{0} \in(0,1 / 2)$. There exists a positive constant K (depending on p, N and r_{0}) such that for every positive solution u of (1), we have

$$
\begin{equation*}
\max _{|x|=r} u(x) \leq K \min _{|x|=r} u(x) \quad \text { for all } 0<r \leq r_{0} / 2 \tag{14}
\end{equation*}
$$

Lemma 9 (A regularity result)

Fix $r_{0} \in(0,1 / 4)$ and $\delta \geq 0$. Let g be a positive continuous function on $(0,1)$ such that $g \in R V_{-\delta}(0+)$. Suppose that u is a positive solution of (1) and C_{0} is a positive constant such that

$$
\begin{equation*}
0<u(x) \leq C_{0} g(|x|) \quad \text { for } 0<|x|<2 r_{0} . \tag{15}
\end{equation*}
$$

Then there exist positive constants $C>0$ and $\alpha \in(0,1)$ such that

$$
\begin{equation*}
|\nabla u(x)| \leq C \frac{g(|x|)}{|x|} \quad \text { and } \quad\left|\nabla u(x)-\nabla u\left(x^{\prime}\right)\right| \leq C \frac{g(|x|)}{|x|^{1+\alpha}\left|x-x^{\prime}\right|^{\alpha}} \tag{16}
\end{equation*}
$$

for any x, x^{\prime} in \mathbb{R}^{N} satisfying $0<|x| \leq\left|x^{\prime}\right|<r_{0}$.

Corollary 10

Assume that u is a positive solution of (1) such that $\lim _{|x| \rightarrow 0} u(x)=\infty$. Then, for every $\epsilon \in(0,1)$, there exists $r_{\epsilon} \in(0,1)$ such that the equation

$$
\begin{equation*}
-\Delta_{\mathcal{A}, p} v+b_{0}(|x|) L_{h}(v) v^{q}=0 \quad \text { in } B_{r_{\epsilon}}^{*}:=B_{r_{\epsilon}} \backslash\{0\} \tag{17}
\end{equation*}
$$

has a positive solution v_{ϵ} satisfying

$$
(1-\epsilon) u \leq v_{\epsilon} \leq(1+\epsilon) u \quad \text { in } B_{r_{\epsilon}}^{*} .
$$

Corollary 11
Let $r_{\epsilon} \in(0,1)$ be arbitrary and v be a positive solution of (17). Then there exist two positive radial solutions of (17) in $B_{r_{\epsilon} / 2}^{*}$, say v_{*} and v^{*}, such that

$$
\begin{equation*}
K^{-1} v \leq v_{*} \leq v \leq v^{*} \leq K v \quad \text { in } B_{r_{\epsilon} / 2}^{*} \tag{18}
\end{equation*}
$$

where $K>1$ is a sufficiently large constant.

Theorem 12 (Strong singularities)

Let Assumption B and (6) hold. If u is any positive solution of (1) with a strong singularity at 0 , then $u(x) \sim \tilde{u}(|x|)$ as $|x| \rightarrow 0$, where \tilde{u} is given by (8) if $q<q_{*}$ and by (11) when $q=q_{*}<\infty$ and and (9) holds.

Proposition 1 (Case $q<q_{*}$)

For any positive radial solution v of (17) with a strong singularity at 0 , we have $v(r) \sim \tilde{u}(r)$ as $r \rightarrow 0^{+}$, where \tilde{u} is defined by (8).

We adapt ideas from Cîrstea-Du (2010, JFA). We first show the following. Lemma 13 (Case $q<q_{*}$)

Let f be a regularly varying function at 0 with index μ.
(a) If $\mu<-(p+\sigma-\vartheta) /(q-p+1)$, then we have $\lim _{r \rightarrow 0^{+}} v(r) / f(r)=0$.
(b) If $\mu>-(p+\sigma-\vartheta) /(q-p+1)$, then $\lim _{r \rightarrow 0^{+}} v(r) / f(r)=\infty$.

We next construct a local family of sub-super-solutions of (17). Let $\theta=M_{1}(p-1)$. Fix $\eta_{0} \in(0,1)$ small. For each $\eta \in\left[0, \eta_{0}\right]$, we define

$$
v_{ \pm \eta}(r)=C_{ \pm \eta}[\tilde{u}(r)]^{1 \pm \eta} \quad \text { for } r \in(0,1)
$$

where $C_{ \pm \eta}$ is a positive constant given by

$$
\begin{equation*}
C_{ \pm \eta}:=\left[(1 \pm \eta)^{p-1}(1 \pm \eta \theta)\right]^{\frac{1}{q-p+1}} \tag{19}
\end{equation*}
$$

Lemma 14 (Case $q<q_{*}$)
For every $\epsilon \in(0,1)$ small, there exists $r_{\epsilon} \in(0,1)$ such that $(1-\epsilon) v_{-\eta}$ and $(1+\epsilon) v_{\eta}$ is a sub-solution and super-solution of (17) in $B_{r_{\epsilon}}^{*}$, respectively, for every $\eta \in\left[0, \eta_{0}\right]$.

By Lemma 13, we find that

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{v(r)}{v_{\eta}(r)}=0 \quad \text { and } \quad \lim _{r \rightarrow 0^{+}} \frac{v(r)}{v_{-\eta}(r)}=\infty \tag{20}
\end{equation*}
$$

Notice that $(1+\epsilon) v_{\eta}(r)+v\left(r_{\epsilon}\right)$ and $v(r)+\tilde{u}\left(r_{\epsilon}\right)$ are super-solutions of (17) in $B_{r_{\epsilon}}^{*}(0)$. Then by the comparison principle,

$$
\begin{equation*}
v(r) \leq(1+\epsilon) v_{\eta}(r)+v\left(r_{\epsilon}\right) \quad \text { and } \quad v(r)+\tilde{u}\left(r_{\epsilon}\right) \geq(1-\epsilon) v_{-\eta}(r) \tag{21}
\end{equation*}
$$

for all $0<r \leq r_{\epsilon}$. By letting $\eta \rightarrow 0^{+}$in (21), we have

$$
\begin{equation*}
v(r) \leq(1+\epsilon) \tilde{u}(r)+v\left(r_{\epsilon}\right) \quad \text { and } \quad v(r)+\tilde{u}\left(r_{\epsilon}\right) \geq(1-\epsilon) \tilde{u}(r) \tag{22}
\end{equation*}
$$

for all $0<r \leq r_{\epsilon}$. By letting $r \rightarrow 0^{+}$in (22), we conclude that

$$
\begin{equation*}
1-\epsilon \leq \liminf _{r \rightarrow 0^{+}} \frac{v(r)}{\tilde{u}(r)} \leq \limsup _{r \rightarrow 0^{+}} \frac{v(r)}{\tilde{u}(r)} \leq 1+\epsilon . \tag{23}
\end{equation*}
$$

Finally, we pass to the limit with $\epsilon \rightarrow 0$ in (23).

Proposition 2 (Critical case $q=q_{*}$ for $p<N+\vartheta$)

If v is a positive radial solution of (17) with a strong singularity at 0 and (9) holds, then $v(r) \sim \tilde{u}(r)$ as $r \rightarrow 0^{+}$, where \tilde{u} is defined by (11).

Main ideas in the proof:

We apply the change of variable $y(s)=v(r)$ with $s=\Phi(r)$ and arrive at

$$
\begin{equation*}
\left|\frac{d y}{d s}\right|^{p-2} \frac{d^{2} y}{d s^{2}}=\frac{\left(N \omega_{N}\right)^{\frac{p}{p-1}}}{p-1} r^{\frac{p(N-1)}{p-1}}[\mathcal{A}(r)]^{\frac{1}{p-1}} b_{0}(r) L_{h}(y(s))[y(s)]^{q} \tag{24}
\end{equation*}
$$

for $s>0$. After many hidden analyses, we have that

$$
\begin{equation*}
\frac{1}{2} \leq \frac{s(d y / d s)}{y(s)} \leq C^{\prime \prime}+2 \quad \forall s \geq s_{0} \text { large. } \tag{25}
\end{equation*}
$$

Step 1: Show that $0<\liminf _{r \rightarrow 0^{+}} \frac{v(r)}{\tilde{u}(r)} \leq \limsup _{r \rightarrow 0^{+}} \frac{v(r)}{\tilde{u}(r)}<\infty$. Define $E_{1}(r)$ and $E_{2}(r)$ for $r \in(0,1)$ as follows

$$
\begin{equation*}
E_{1}(r):=r^{\frac{p(N-1)}{p-1}}[\mathcal{A}(r)]^{\frac{1}{p-1}} b_{0}(r) \text { and } E_{2}(r):=\left[L_{\mathcal{A}}(r)\right]^{-\frac{q_{*}}{p-1}} L_{b}(r) \tag{26}
\end{equation*}
$$

Using (25) into (24), we find positive constants c_{1} and c_{2} so that

$$
\begin{equation*}
c_{1} E_{1}\left(\Phi^{-1}(s)\right) L_{h}(y) s^{q_{*}} \leq\left[\frac{d y}{d s}\right]^{-q_{*}+p-2} \frac{d^{2} y}{d s^{2}} \leq c_{2} E_{1}\left(\Phi^{-1}(s)\right) L_{h}(y) s^{q_{*}} \tag{27}
\end{equation*}
$$

for all $s \geq s_{0}$. For some $\ell>0$, we obtain that

$$
\begin{equation*}
E_{1}(r) \sim \ell[\Phi(r)]^{-q_{*}-1} E_{2}(r) \quad \text { as } r \rightarrow 0^{+} \tag{28}
\end{equation*}
$$

Hence, using (28), \exists positive constants c_{3} and c_{4} s.t. $\forall s \geq s_{0}$

$$
\begin{equation*}
\frac{c_{3}}{s} E_{2}\left(\Phi^{-1}(s)\right) L_{h}(y) \leq\left[\frac{d y}{d s}\right]^{-q_{*}+p-2} \frac{d^{2} y}{d s^{2}} \leq \frac{c_{4}}{s} E_{2}\left(\Phi^{-1}(s)\right) L_{h}(y) \tag{29}
\end{equation*}
$$

Case 1: Assume that (9)(a) holds.
Then, using $\ln y(s) \sim \ln s$, we get that

$$
\begin{equation*}
L_{h}(y(s)) \sim L_{h}(s) \sim h(s) / s^{q_{*}} \quad \text { as } s \rightarrow \infty \tag{30}
\end{equation*}
$$

So, from (27) and (30), there exist positive constants \tilde{c}_{1} and \tilde{c}_{2} such that

$$
\begin{equation*}
\tilde{c}_{1} E_{1}\left(\Phi^{-1}(s)\right) h(s) \leq\left[\frac{d y}{d s}\right]^{-q_{*}+p-2} \frac{d^{2} y}{d s^{2}} \leq \tilde{c}_{2} E_{1}\left(\Phi^{-1}(s)\right) h(s) \text { for } s \geq s_{0} . \tag{31}
\end{equation*}
$$

Using that $y^{\prime}(s) \rightarrow \infty$ as $s \rightarrow \infty$ and integrating (31), we obtain that

$$
\begin{equation*}
c_{5} F_{1}(s) \leq\left[\frac{d y}{d s}\right]^{-q_{*}+p-1} \leq c_{6} F_{1}(s) \quad \text { for all } s \geq s_{0} \tag{32}
\end{equation*}
$$

where c_{5} and c_{6} are positive constants, whilst $F_{1}(s)$ is defined by

$$
\begin{equation*}
F_{1}(s):=\int_{s}^{\infty} E_{1}\left(\Phi^{-1}(t)\right) h(t) \mathrm{d} t=\int_{0}^{\Phi^{-1}(s)} \xi^{N-1} b_{0}(\xi) h(\Phi(\xi)) \mathrm{d} \xi \tag{33}
\end{equation*}
$$

From (25) and (32), \exists positive constants d_{1} and d_{2} such that

$$
d_{1}\left[F_{1}(s)\right]^{-\frac{1}{q_{*}-p+1}} \leq \frac{y(s)}{s} \leq d_{2}\left[F_{1}(s)\right]^{-\frac{1}{q_{*}-p+1}} \quad \text { for all } s \geq s_{0}
$$

or, equivalently, for every $r \in\left(0, \Phi^{-1}\left(s_{0}\right)\right)$, it holds

$$
d_{1}\left[F_{1}(\Phi(r))\right]^{-\frac{1}{q_{*}-p+1}} \leq \frac{v(r)}{\Phi(r)} \leq d_{2}\left[F_{1}(\Phi(r))\right]^{-\frac{1}{q_{*}-p+1}}
$$

Hence, using the definition of \tilde{u} in (11), we conclude Step 1.

Case 2: Assume that (9)(b) holds.
Then, using that $\ln \Phi^{-1}(s) \sim \ln \Phi^{-1}(y(s))$ as $s \rightarrow \infty$, we obtain that

$$
\left[L_{\mathcal{A}}\left(\Phi^{-1}(s)\right)\right]^{-\frac{q_{*}}{p-1}} L_{b}\left(\Phi^{-1}(s)\right) \sim\left[L_{\mathcal{A}}\left(\Phi^{-1}(y(s))\right)\right]^{-\frac{q_{*}}{p-1}} L_{b}\left(\Phi^{-1}(y(s))\right)
$$

as $s \rightarrow \infty$. This, jointly with (28), gives that

$$
\begin{equation*}
E_{2}\left(\Phi^{-1}(s)\right) \sim E_{2}\left(\Phi^{-1}(y(s))\right) \sim \frac{E_{1}\left(\Phi^{-1}(y(s))\right)}{\ell[y(s)]^{-q_{*}-1}} \quad \text { as } s \rightarrow \infty \tag{34}
\end{equation*}
$$

where E_{1} and E_{2} are defined by (26). From (25), (29) and (34), \exists positive constants d_{3} and d_{4} such that

$$
d_{3} E_{1}\left(\Phi^{-1}(y)\right) h(y) \frac{d y}{d s} \leq\left[\frac{d y}{d s}\right]^{-q_{*}+p-2} \frac{d^{2} y}{d s^{2}} \leq d_{4} E_{1}\left(\Phi^{-1}(y)\right) h(y) \frac{d y}{d s}
$$

for all $s \geq s_{0}$. With F_{1} as defined in (33), this gives that
$\left[d_{4}\left(q_{*}-p+1\right)\right]^{-\frac{1}{q_{*}-p+1}} \leq \frac{d}{d s}\left(\int_{y\left(s_{0}\right)}^{y(s)}\left[F_{1}(t)\right]^{\frac{1}{q_{*}-p+1}} \mathrm{~d} t\right) \leq\left[d_{3}\left(q_{*}-p+1\right)\right]^{-}$
for every $s>s_{0}$. Jointly with the definition of \tilde{u} in (11), we thus conclude C+nn $\underset{\text { Ting-Ying Chang (2014) }}{\text { 1 }}$

Step 2: Construction of sub-super-solutions for (17).
Fix $\eta_{0} \in(0,1)$ small. Using M_{2} in (10), we define $C_{ \pm \eta}$ by

$$
\begin{equation*}
C_{ \pm \eta}:=\left(\frac{M_{2}}{1 \pm \eta}\right)^{\frac{1}{1 \pm \eta}}=\left[\frac{\left(q_{*}-p+1\right) N \omega_{N}}{q-1}\right]^{\frac{1}{1 \pm \eta}} \quad \text { for all } \eta \in\left[0, \eta_{0}\right] . \tag{35}
\end{equation*}
$$

If (9)(a) holds, then for any $\eta \in\left[0, \eta_{0}\right]$, we define $v_{ \pm \eta}$ as follows

$$
\begin{equation*}
v_{ \pm \eta}(r):=\int_{s_{0}}^{\Phi(r)}\left[C_{ \pm \eta} F_{1}(t)\right]^{-\frac{1 \pm \eta}{q_{*}-p+1}} \mathrm{~d} t \quad \text { for any } r \in\left(0, \Phi^{-1}\left(s_{0}\right)\right) \tag{36}
\end{equation*}
$$

where $s_{0}>0$ is fixed large enough and F_{1} is given by (33).
If, in turn, (9)(b) is satisfied, we introduce $v_{ \pm \eta}$ in the next identity

$$
\begin{equation*}
\int_{c}^{v_{ \pm \eta}(r)}\left[C_{ \pm \eta} F_{1}(t)\right]^{\frac{1 \pm \eta}{q_{*}-p+1}} \mathrm{~d} t=\Phi(r) \text { for any } r>0 \text { small, } \tag{37}
\end{equation*}
$$

where $c>0$ is a large constant such that $\Phi^{-1}(c)<1$.

Lemma 15

For every $\epsilon \in(0,1)$ small, there exists $r_{\epsilon} \in(0,1)$ such that $(1-\epsilon) v_{-\eta}$ and $(1+\epsilon) v_{\eta}$ is a sub-solution and super-solution of (17) in $B_{r_{\epsilon}}^{*}$, respectively, for every $\eta \in\left[0, \eta_{0}\right]$.

Step 3: Proof of Proposition 2 concluded. In either Case 1 (that is, (9)(a) holds) or Case 2 (when (9)(b) holds), by using the definitions of \tilde{u} and $v_{ \pm \eta}$, we infer that

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\tilde{u}(r)}{v_{\eta}(r)}=0 \text { and } \lim _{r \rightarrow 0^{+}} \frac{\tilde{u}(r)}{v_{-\eta}(r)}=\infty \text { for every } \eta \in\left(0, \eta_{0}\right] \tag{38}
\end{equation*}
$$

From Step 1 and (38), we regain (20). Following the proof of Proposition 1, we obtain (21)-(23), proving that $v(r) \sim \tilde{u}(r)$ as $r \rightarrow 0^{+}$.

Assume that
$\left\{\begin{array}{l}\mathcal{A}(t) \sim t^{\vartheta}(\ln (1 / t))^{\alpha} \quad \text { as } t \rightarrow 0 \quad \text { for some } \alpha \in \mathbb{R} \\ b(x) \sim|x|^{\sigma}(\ln (1 /|x|))^{\beta} \quad \text { as }|x| \rightarrow 0 \quad \text { for some } \beta \in \mathbb{R} \\ h(t) \sim t^{q} \exp \left(-(\log t)^{\nu}\right) \quad \text { as } t \rightarrow \infty \quad \text { for some } q>p-1, \nu \in(0,1) .\end{array}\right.$

Let u be any positive solution of (1).
(A) If $p-1<q<q^{*}$, then exactly one of the following occurs as $|x| \rightarrow 0$:
(i) u can be extended as a positive continuous solution of (1) in the whole ball B_{1}, that is $\lim _{|x| \rightarrow 0} u(x) \in(0, \infty)$ and (3) holds for every $\phi \in C_{c}^{1}\left(B_{1}\right)$.
(ii) u has a weak singularity at 0 , that is $\lim _{|x| \rightarrow 0} u(x) / \Phi(x)=\lambda \in(0, \infty)$ and, moreover, u verifies

$$
\begin{equation*}
-\Delta_{\mathcal{A}, p} u+b(x) h(u)=\lambda^{p-1} \delta_{0} \quad \text { in } \mathcal{D}^{\prime}\left(B_{1}\right) \tag{4}
\end{equation*}
$$

(iii) u has a strong singularity at 0 and moreover, we have

$$
u(x) \sim\left[M_{1} M_{3}^{p}\left(\log \frac{1}{|x|}\right)^{-\alpha+\beta} \exp \left(-\left(M_{3}^{-1} \log \frac{1}{|x|}\right)^{\nu}\right)|x|^{p+\sigma-\vartheta}\right]^{-\frac{1}{q-p+1}} \quad \text { as }|x| \rightarrow 0 .
$$

$$
\text { where } M_{3}=\left(\frac{q-p+1}{p+\sigma-\vartheta}\right)
$$

(B) If $q=q_{*}$, then the conclusions above hold except for (41) which is replaced by

$$
\begin{equation*}
u(x) \sim\left[\frac{M_{3}^{p-1+\nu}}{\nu} \frac{p+\sigma-\vartheta}{N+\vartheta-p}\left(\log \frac{1}{|x|}\right)^{-\alpha+\beta-\nu+1} \exp \left(-\left(M_{3}^{-1} \log \frac{1}{|x|}\right)^{\nu}\right)|x|^{p+\sigma-\vartheta}\right]^{-\frac{1}{q_{*}-p+1}} \tag{42}
\end{equation*}
$$

(C) If $q>q_{*}$, then only case (A)(i) occurs.
[1] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia Math. Appl., vol. 27, Cambridge University Press, Cambridge, 1987.
[2] B. Brandolini, F. Chiacchio, F.C. Cîrstea, C. Trombetti, Local behaviour of singular solutions for nonlinear elliptic equations in divergence form. Calc. Var. Partial Differential Equations, 48, no. 3-4, 367-393 (2013)
[3] H. Brezis, L. Véron, Removable singularities for some nonlinear elliptic equations, Arch. Ration. Mech. Anal. 75 (1980/81), 1-6.
[4] N. Chaudhuri, F.C. Cîrstea, On trichotomy of positive singular solutions associated with the Hardy-Sobolev operator, C. R. Acad. Sci. Paris, Ser. I 347 (2009), 153-158.
[5] F.C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials. Mem. Amer. Math. Soc. 227, no. 1068, in press. DOI: http://dx.doi.org/10.1090/memo/1068
[6] F.C. Cîrstea, Y. Du, Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity, J. Funct. Anal. 250 (2007), 317-346.
[7] F.C. Cîrstea, Y. Du, Isolated singularities for weighted quasilinear elliptic equations, J. Funct. Anal. 259 (2010), 174-202.
[8] A. Friedman, L. Véron, Singular solutions of some quasilinear elliptic equations, Arch. Ration. Mech. Anal. 96 (1986), 359-387.
[9] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics Math., Springer-Verlag, Berlin, 2001.
[10] B. Guerch, L. Véron, Local properties of stationary solutions of some nonlinear singular Schrödinger equations, Revista Matématica Iberoamericana 7 (1991), 65-114.
[11] V. Marić, Regular Variation and Differential Equations, Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000.
[12] E. Seneta, Regularly Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin-New York, 1976.
[13] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302.
[14] J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965), 219-240.
[15] S.D. Taliaferro, Asymptotic behavior of solutions of $y^{\prime \prime}=\phi(t) y^{\lambda}$, J. Math. Anal. Appl. (1978), 95-134.
[16] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747.
[17] J.L. Vázquez, L. Véron, Removable singularities of some strongly nonlinear elliptic equations, Manuscripta Math. 33 (1980/1981), 129-144.
[18] J.L. Vázquez, L. Véron, Isolated singularities of some semilinear elliptic equations, J. Differential Equations 60 (1985), 301-321.
[19] L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981), 225-242.
[20] L. Véron, Weak and strong singularities of nonlinear elliptic equations, in: Nonlinear Functional Analysis and Its Applications, Part 2, Berkeley, CA, 1983, in: Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 477-495.

