# On the free boundary hard phase fluid in Minkowski spacetime 

Shuang Miao<br>Joint with Sohrab Shahshahani (UMass)<br>and Sijue Wu (UMich)

Wuhan University

Asia-Pacific Analysis\&PDE Seminar Sydney
Feb 15, 2021

## Outline

Part 1 Introducing the model

- Ideal fluids in relativistic framework
- The hard phase model with free boundary

Part 2 Main result I-Well-posedness

- Comparison with Newtonian problem
- A priori estimates

Part 3 Main result II-Newtonian limit

- Re-scaled equations
- Uniform estimates


## Relativistic ideal fluids in Minkowski background

- Let $\left(\mathbb{R}^{1+3}, m\right)$ be the standard Minkowski spacetime with

$$
m:=\left(\begin{array}{cc}
-1 & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{3 \times 3}
\end{array}\right) .
$$

- We denote by $m_{\alpha \beta}$ and $m^{\alpha \beta}$ the components for $m$ and $m^{-1}$ respectively.
- All the indices are raised and lowered with respect to $m$ and $m^{-1}$.
- The Greek letters are all from 0 to 3 .
- The d'Alembertian $\square$ for this metric is given by

$$
\square=\partial^{\alpha} \partial_{\alpha}=-\partial_{t}^{2}+\sum_{i=1}^{3} \partial_{i}^{2} .
$$

## Relativistic fluids in Minkowski background

- The motion of the fluid is described by the fluid velocity and several thermodynamical quantities:
- The fluid velocity is denoted by

$$
u=u^{\mu} \frac{\partial}{\partial x^{\mu}}
$$

and satisfies

$$
u^{0}>0, \quad u^{\mu} u_{\mu}=-1
$$

## Relativistic fluids in Minkowski background

- There are five thermodynamic quantities:
$n$ : number density of particles
$p$ : pressure
$\rho$ : energy density
$s$ : entropy per particle
$\theta$ : temperature
- They satisfy the following relation

$$
p=n \frac{\partial \rho}{\partial n}-\rho, \quad \theta=\frac{1}{n} \frac{\partial \rho}{\partial s} .
$$

- The ratio of the sound speed and the speed of light (denoted by $\eta$ ) is given by

$$
\eta:=\sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}}, \quad 0 \leq \eta \leq 1
$$

- Here by choosing appropriate units, we assume the speed of light is 1.


## Relativistic fluids in Minkowski background

- We also need the energy-momentum tensor $T^{\mu \nu}$ and the particle current $I^{\mu}$ which are given by

$$
T^{\mu \nu}:=(p+\rho) u^{\mu} u^{\nu}+p m^{\mu \nu}, \quad I^{\mu}=n u^{\mu} .
$$

- The equation of motion is given by

$$
\begin{equation*}
\nabla_{\mu} T^{\mu \nu}=0, \quad \nabla_{\mu} I^{\mu}=0 \tag{1}
\end{equation*}
$$

- Here $\nabla$ is the canonical Levi-Civita connection of the Minkowski metric $m$.


## Barotropic fluids

In this work we consider barotropic fluids, namely, the pressure $p$ is a function of the energy density $\rho$ only:

$$
p=f(\rho), \quad f^{\prime}>0
$$

Define

$$
F(p):=\int_{0}^{p} \frac{d p^{\prime}}{\rho\left(p^{\prime}\right)+p^{\prime}}, \quad V:=e^{F} u
$$

and

$$
\|V\|:=e^{F}, \quad\|V\|^{2}:=-V^{\mu} V_{\mu}
$$

## Equation of motion-Alternative

The equation of motion (1) becomes

$$
\begin{equation*}
V^{\nu} \nabla_{\nu} V^{\mu}+\frac{1}{2} \nabla^{\mu}\left(\|V\|^{2}\right)=0, \quad \nabla_{\mu}\left(G(\|V\|) V^{\mu}\right)=0 \tag{2}
\end{equation*}
$$

where the function $G$ is defined by

$$
G(\|V\|):=\frac{\rho+p}{\|V\|^{2}}
$$

Note that $p$ and $\rho$ are functions of $\|V\|$.

## The hard phase model-Assumptions

- We assume the fluid is irrotational:

$$
\nabla_{\mu} V_{\nu}-\nabla_{\nu} V_{\mu}=0, \quad \Rightarrow \quad V^{\mu}=\nabla^{\mu} \phi
$$

for a scalar function $\phi$.

- $p$ and $\rho$ are given by

$$
\begin{aligned}
p & =\frac{1}{2}\left(\|V\|^{2}-1\right), \quad \rho=\frac{1}{2}\left(\|V\|^{2}+1\right) \\
\Rightarrow \quad \eta & \equiv 1, \quad G \equiv 1 .
\end{aligned}
$$

- We denote $\sigma^{2}:=\|V\|^{2} . \sigma^{2}$ is the enthalpy.


## The hard phase model with free boundary

We are interested in the following free boundary problem for hard phase model:

- Let $\Omega$ be a spacetime domain in $\left(\mathbb{R}^{1+3}, m\right)$. $\Omega$ will be part of the unknown of our problem.
- The free boundary problem is

$$
\begin{align*}
& \nabla_{\mu} V^{\mu}=0, \quad d V=0, \quad \text { in } \Omega \\
& \sigma^{2}=-V^{\mu} V_{\mu} \equiv 1 \quad \text { on } \quad \partial \Omega  \tag{3}\\
& V \quad \text { tangential to } \quad \partial \Omega .
\end{align*}
$$

- The initial data satisfies

$$
\begin{align*}
& \nabla_{\mu} \sigma^{2} \nabla^{\mu} \sigma^{2}>0 \text { on } \partial \Omega_{0} \\
& \sigma_{0}^{2}>1 \text { in } \Omega_{0} . \tag{4}
\end{align*}
$$

## Main result I: Well-posedness

Theorem (M-Shahshahani-Wu)
Any sufficiently regular data satisfying (4) and certain compatibility conditions leads to a unique local-in-time solution to (3).

- The conditions (4) on initial data is the relativistic Taylor sign condition.
- Since we are solving an initial-boundary value problem for a hyperbolic PDE system, the initial data should satisfy certain compatibility conditions
- Seeking the optimal regularity is not our concern in this work.


## Remarks on the model

- The hard phase model has independent physical interest: It is an idealized model for the physical situation when the mass-energy density exceeds the nuclear saturation density during the gravitational collapse of the degenerate core of a massive star. In this situation, the sound speed is thought to approach the speed of light (Christodoulou, Friedman-Pandharipande, Lichnerowicz, Rezzolla-Zanotti, Walecka, and Zel'dovich, etc.)
- The hard phase model captures main mathematical features of a class of free boundary problems. Our approach in this work can be applied to general barotropic fluids with non-zero vorticity.


## Historical results on related models

- Gaseous models: Makino, Rendall (Existence for a class of solutions), Hadzić-Shkoller-Speck, Jang-LeFloch-Masmoudi (A priori estimates), Disconzi-Ifrim-Tataru (Well-posedness, without Lagrangian approach)
- Liquid models:Trakhinin (Compressible liquids, Existence using Nash-Moser, loss of regularity), Oliynyk (Existence for a similar liquid model using different methods), Ginsberg (A priori estimates for the same model with smallness assumption on initial data).


## Comparison with Newtonian problem

- The Newtonian free boundary problem for incompressible irrotational fluid is

$$
\begin{align*}
& \nabla \cdot \tilde{V}=0, \quad \nabla \times \tilde{V}=0 \quad \text { in } \quad \tilde{\Omega}_{t} \\
& \tilde{V}_{t}+(\tilde{V} \cdot \nabla) \tilde{V}=-\nabla \tilde{P} \quad \text { in } \tilde{\Omega}_{t} \\
& \tilde{P} \equiv 0 \quad \text { on } \quad \partial \tilde{\Omega}_{t}  \tag{5}\\
& (1, \tilde{V}) \quad \text { tangential to } \cup_{t>0}\left(t, \partial \tilde{\Omega}_{t}\right) .
\end{align*}
$$

- Hopf Lemma implies the Taylor sign condition

$$
\begin{equation*}
-\frac{\partial \tilde{P}}{\partial \tilde{n}} \geq c_{t}>0 \quad \text { on } \quad \partial \tilde{\Omega}_{t} \tag{6}
\end{equation*}
$$

- Here $\tilde{P}$ is the pressure. $\tilde{V}$ is the fluid velocity. $\tilde{\Omega}_{t}$ is the unknown domain occupied by fluid at time $t . \tilde{n}$ is the outward unit normal to $\partial \tilde{\Omega}_{t}$.


## Ideas to solve the Newtonian problem: Wu $\left(97^{\prime}, 99^{\prime}\right)$

- Reducing the problem to the boundary.
- Differentiating the momentum equation in (5) with respect to $\tilde{D}_{t}:=\partial_{t}+\tilde{V} \cdot \nabla$ to obtain the system:

$$
\begin{align*}
\left(\tilde{D}_{t}^{2}+\tilde{a} \nabla_{\tilde{n}}\right) \tilde{V} & =-\nabla \tilde{D}_{t} \tilde{p} \quad \text { on } \quad \partial \tilde{\Omega}_{t}  \tag{7}\\
\Delta \tilde{V} & =0 \quad \text { in } \quad \tilde{\Omega}_{t}
\end{align*}
$$

- Here $\nabla_{\tilde{n}}$ is the standard Dirichlet-Neumann operator, and $\tilde{a}:=-\frac{\partial \tilde{P}}{\partial \tilde{n}}$.
- Using singular integrals on the boundary we express ã and $\nabla D_{t} \tilde{p}$ in terms of the boundary values of $\tilde{V}$ and its derivatives.
- It turns out that the first equation in (7) is a quasilinear equation of $\tilde{V}$.


## Ideas to solve the Newtonian problem:

 Christodoulou-Lindblad (00')- Instead of using boundary integrals, one considers the elliptic problems:

$$
\begin{align*}
& \Delta \tilde{P}=-\left(\partial_{i} \tilde{V}^{\ell}\right) \partial_{\ell} \tilde{V}^{i} \quad \text { in } \quad \tilde{\Omega}_{t}, \quad \tilde{P}=0 \quad \text { on } \quad \partial \tilde{\Omega}_{t} \\
& \Delta D_{t} \tilde{P}=G\left(\partial \tilde{V}, \partial^{2} \tilde{P}\right) \quad \text { in } \quad \tilde{\Omega}_{t}, \quad D_{t} \tilde{P}=0 \quad \text { on } \quad \partial \tilde{\Omega}_{t} \tag{8}
\end{align*}
$$

- Here $G\left(\partial \tilde{V}, \partial^{2} \tilde{P}\right)$ consists of the product between $\partial \tilde{V}$ and $\partial^{2} \tilde{P}$, as well as a cubic expression of $\partial \tilde{V}$.
- The elliptic equations (8) recover the regularity of $\tilde{P}$ and $D_{t} \tilde{P}$.


## Back to hard phase model

- Let $D_{V}:=V^{\mu} \partial_{\mu}$, and $n$ be the outward unit normal to $\partial \Omega$.

$$
\begin{aligned}
& \sigma^{2} \equiv 1 \quad \text { on } \quad \partial \Omega \quad \Rightarrow \quad \nabla \sigma^{2}=- \text { an on } \quad \partial \Omega \\
& a=\sqrt{\nabla_{\mu} \sigma^{2} \nabla^{\mu} \sigma^{2}}>0
\end{aligned}
$$

- Differentiating the equation $D_{V} V^{\mu}+\frac{1}{2} \nabla^{\mu} \sigma^{2}=0$ by $D_{V}$ on $\partial \Omega$, the original system (3) becomes

$$
\begin{align*}
\left(D_{V}^{2}+\frac{1}{2} a \nabla_{n}\right) V^{\mu} & =-\frac{1}{2} \nabla^{\mu} D_{V} \sigma^{2} \text { on } \quad \partial \Omega  \tag{9}\\
\square V^{\mu} & =0 \text { in } \Omega .
\end{align*}
$$

## Quasilinear system

- The operator $\nabla_{n}$ in (9) is the hyperbolic Dirichlet-Neumann map. It is not clear at all whether this operator is positive or not.
- $\sigma^{2}$ and $D_{V} \sigma^{2}$ satisfy the following wave equations with Dirichlet boundary data:

$$
\begin{align*}
& \square \sigma^{2}=-2\left(\nabla^{\mu} V^{\nu}\right)\left(\nabla_{\mu} V_{\nu}\right), \quad \sigma^{2} \equiv 1 \quad \text { on } \quad \partial \Omega .  \tag{10}\\
& \square D_{V} \sigma^{2}= 4\left(\nabla^{\mu} V^{\nu}\right)\left(\nabla_{\mu} \nabla_{\nu} \sigma^{2}\right) \\
&+4\left(\nabla^{\lambda} V^{\nu}\right)\left(\nabla_{\lambda} V^{\mu}\right)\left(\nabla_{\nu} V_{\mu}\right) \quad \text { in } \Omega  \tag{11}\\
& D_{V} \sigma^{2} \equiv 0 \text { on } \quad \partial \Omega .
\end{align*}
$$

## Well-posedness: Main ingredients of the proof

- Positivity of the hyperbolic Dirichlet-Neumann operator.
- Higher order regularity: Commuting $D_{V}^{k}$. Note that $D_{V}$ is defined globally both in the interior of $\Omega$ and $\partial \Omega$, and tangential to $\partial \Omega$. Using the equation we show that $D_{V}^{2} \simeq \partial_{x}$.
- Galerkin method to construct approximation sequences and prove the convergence of the sequences.


## Positivity of the hyperbolic DN map

- Main idea: Multiplying both the boundary equation $\left(D_{V}^{2}+\frac{1}{2} a \nabla_{n}\right) V=\ldots$ and the equation $\square V=0$ by $D_{V} V$, and integrate on $\Omega$ and $\partial \Omega$. We obtain the following positive energy

$$
\begin{equation*}
\int_{\Omega_{t}}\left|\partial_{t, x} V\right|^{2} d x+\int_{\partial \Omega_{t}} \frac{1}{a}\left|D_{V} V\right|^{2} d S \tag{12}
\end{equation*}
$$

Here $\Omega_{t}$ and $\partial \Omega_{t}$ are the $x^{0}=t$-slices of $\Omega$ and $\partial \Omega$ respectively.

- Let us illustrate the idea with a simpler model, where $B$ is the unit ball:

$$
\begin{align*}
& \square u=F \quad \text { in } \quad[0, T] \times B \\
& \left(\partial_{t}^{2}+\partial_{r}\right) u=f \quad \text { on } \quad[0, T] \times \partial B \tag{13}
\end{align*}
$$

## Positivity of the hyperbolic DN map

- Multiplying the system (13) by $\partial_{t} u$, we have

$$
\begin{align*}
& \frac{1}{2} \partial_{t}\left(\partial_{t} u\right)^{2}+\left(\partial_{t} u\right)\left(\partial_{r} u\right)=\left(\partial_{t} u\right) f \quad \text { on } \quad \partial B \\
& \frac{1}{2} \partial_{t}\left(\left(\partial_{t} u\right)^{2}+|\nabla u|^{2}\right)-\nabla \cdot\left(\partial_{t} u \nabla u\right)=-F \cdot \partial_{t} u \quad \text { in } B . \tag{14}
\end{align*}
$$

- Integrating the second equation in (14) on $[0, T] \times B$ :

$$
\begin{align*}
& \frac{1}{2} \int_{B}\left|\partial_{t, x} u(T)\right|^{2} d x-\frac{1}{2} \int_{B}\left|\partial_{t, x} u(0)\right|^{2} d x \\
& -\int_{0}^{T} \int_{\partial B}\left(\partial_{t} u\right)\left(\partial_{r} u\right) d S d t=-\int_{0}^{T} \int_{B} F \cdot \partial_{t} u d x d t \tag{15}
\end{align*}
$$

## Positivity of the hyperbolic DN map

- Integrating the first equation in (14) on $[0, T] \times \partial B$ :

$$
\begin{align*}
& \frac{1}{2} \int_{\partial B}\left|\partial_{t} u(T)\right|^{2} d S-\frac{1}{2} \int_{\partial B}\left|\partial_{t} u(0)\right|^{2} d S \\
& +\int_{0}^{T} \int_{\partial B}\left(\partial_{t} u\right)\left(\partial_{r} u\right) d S d t=\int_{0}^{T} \int_{\partial B}\left(\partial_{t} u\right) f d S d t \tag{16}
\end{align*}
$$

- Adding (15) and (16), we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{B}\left|\partial_{t, x} u(T)\right|^{2} d x+\frac{1}{2} \int_{\partial B}\left|\partial_{t} u(T)\right|^{2} d S \\
= & \frac{1}{2} \int_{B}\left|\partial_{t, x} u(0)\right|^{2} d x+\frac{1}{2} \int_{\partial B}\left|\partial_{t} u(0)\right|^{2} d S  \tag{17}\\
& -\int_{0}^{T} \int_{B} F \cdot \partial_{t} u d x d t+\int_{0}^{T} \int_{\partial B}\left(\partial_{t} u\right) f d S d t .
\end{align*}
$$

## $H^{k}\left(\Omega_{t}\right)$-bounds

- To obtain the $L^{\infty}$-control in the a priori estimates, we need the control of $\partial_{x}^{k} V$ in $L^{2}\left(\Omega_{t}\right)$.
- The energy controls $D_{V}^{k} V \in H^{1}\left(\Omega_{t}\right)$ and $D_{V}^{k+1} V \in L^{2}\left(\partial \Omega_{t}\right)$.
- Using the boundary equation $\left(D_{V}^{2}+\frac{1}{2} a \nabla_{n}\right) V=\ldots$ we have

$$
\nabla_{n} V \simeq D_{V}^{2} V+\text { l.o.t. }
$$

The Trace Theorem implies

$$
\begin{equation*}
\left\|\nabla_{n} V\right\|_{H^{\frac{1}{2}}\left(\partial \Omega_{t}\right)} \lesssim\left\|D_{V}^{2} V\right\|_{H^{1}\left(\Omega_{t}\right)} \lesssim \text { "Energy for } D_{V}^{2} V \text { " } \tag{18}
\end{equation*}
$$

## $H^{k}\left(\Omega_{t}\right)$-bounds -conti

- On the other hand, we have

$$
0=\square V=\partial_{t, x} D_{V} V+A V
$$

where $A$ is an elliptic operator on $\Omega_{t}$. This together with (18) gives control on $\|V\|_{H^{2}\left(\Omega_{t}\right)}$ in terms of the energy (i.e., the $H^{1}\left(\Omega_{t}\right)$-norm) for $D_{V}^{2} V$.

- This finally shows $D_{V}^{2} \simeq \nabla_{x}$.


## Newtonian limit-Rescaled quantities

- To study the Newtonian limit as the speed of light approaches infinity, we of course cannot set the speed of light $c=1$ anymore.
- Now the pressure $p$ and energy density $\rho$ are given by

$$
p=\frac{1}{2}\left(\sigma^{2}-c^{4}\right), \quad \rho=\frac{1}{2}\left(\sigma^{2}+c^{4}\right)
$$

- On the boundary $\partial \Omega$ we have $\sigma^{2} \equiv c^{4}$.
- The initial data satisfies

$$
\begin{align*}
& \sigma_{0}^{2} \geq c^{4} \quad \text { in } \quad \Omega_{0} \\
& \sigma_{0}^{2}=c^{4} \quad \text { on } \quad \partial \Omega_{0}  \tag{19}\\
& \nabla_{\mu} \sigma_{0}^{2} \nabla^{\mu} \sigma_{0}^{2} \geq c_{0}^{2} c^{4}>0 \quad \text { on } \quad \partial \Omega_{0}
\end{align*}
$$

## Rescaled quantities and time variable

- Instead of $V, \sigma^{2}$, we work with the rescaled quantities

$$
\begin{equation*}
\bar{V}:=c^{-1} V, \quad \bar{\sigma}^{2}:=c^{-2} \sigma^{2}-c^{2} \tag{20}
\end{equation*}
$$

- Here $\bar{V}, \bar{\sigma}$ are to be shown of order $O(1)$ as $c \rightarrow \infty$.
- In addition to the standard time variable $t$ in the proof of the well-posedness, we also work with the rescaled time variable $t^{\prime}:=c^{-1} t$. Therefore we have

$$
\begin{aligned}
& \frac{\partial}{\partial t}=c^{-1} \frac{\partial}{\partial t^{\prime}} \quad m=-c^{2}\left(d t^{\prime}\right)^{2}+\sum_{i=1}^{3}\left(d x^{i}\right)^{2} \\
& \square=-\frac{1}{c^{2}} \partial_{t^{\prime}}^{2}+\sum_{i=1}^{3} \partial_{i}^{2} .
\end{aligned}
$$

- Note that $\bar{V}^{0} \simeq c$ as $c \rightarrow \infty$


## Rescaled energy

- We strive for an a priori estimate which is independent of $c$. Therefore the energy must be of order $O(1)$ as $c \rightarrow \infty$.
- Systematically, let $E[\bar{V}](t)$ and $E\left[D_{\bar{V}} \bar{\sigma}^{2}\right](t)$ be the energies we bound in the above a priori estimate. A direct observation shows that

$$
E[\bar{V}](t) \simeq c, \quad E\left[D_{\bar{V}} \bar{\sigma}^{2}\right](t) \simeq c, \quad \text { as } \quad c \rightarrow \infty
$$

The reason for this is that $\bar{V}^{0} \simeq c$, which appears in the definition of $E[\bar{V}]$ and $E\left[D_{\bar{V}} \bar{\sigma}^{2}\right]$.

- To get an order $O(1)$ energy, we need to consider the rescaled energies

$$
c^{-1} E[\bar{V}](t), \quad c^{-1} E\left[D_{\bar{V}} \bar{\sigma}^{2}\right](t)
$$

## Sources in the energy estimates

- Systematically, the energy estimates have the following form

$$
c^{-1} E[\bar{V}](T)+c^{-1} E\left[D_{\bar{V}} \bar{\sigma}^{2}\right](T)
$$

$\lesssim$ "Initial data of order $O(1)$ " $+c^{-1} \int_{0}^{T}$ "Nonlinear sources" $d t$

- The "Nonlinear sources" above is of order $O(1)$ as $c \rightarrow \infty$.
- This observation implies that in the time variable $t$, we can extend the solution given by the well-posedness theorem up to the scale $t \simeq c$, and in the time variable $t^{\prime}$ up to the scale $t^{\prime} \simeq 1$.
- This is crucial because eventually $t^{\prime}$ is the time variable for the Newtonian problem.

The discrepancy for energy hierarchy given by the a priori estimates

- Suppose as $c \rightarrow \infty, \Theta$ is a quantity of order $O(1)$. Then $\partial_{t} \Theta$ must be of order $O\left(c^{-1}\right)$ and $\partial_{i} \Theta=O(1)$. However, the a priori estimate gives the same estimate for $\partial_{t} \Theta=O(1)$. In the Newtonian limit, we need the improved estimate $\partial_{t} \Theta=O\left(c^{-1}\right)$.
- To overcome this discrepancy, we look at $\bar{\sigma}^{2}$ :

$$
\begin{equation*}
\bar{\sigma}^{2}=\left(\bar{V}^{0}-c\right)^{2}-\sum_{i=1}^{3}\left(\bar{V}^{i}\right)^{2}+2 c\left(\bar{V}^{0}-c\right) \tag{21}
\end{equation*}
$$

The a priori estimate shows that $\bar{V}^{0}-c, \bar{V}^{i}, \bar{\sigma}^{2}$ remains bounded as $c \rightarrow \infty$, which in turn shows

$$
\bar{V}^{0}-c=O\left(c^{-1}\right) \quad \text { as } \quad c \rightarrow \infty
$$

- Differentiating (21) in $\partial_{t}$, we get

$$
\partial_{t} \bar{V}^{0}=O\left(c^{-1}\right) \quad \text { as } \quad c \rightarrow \infty
$$

## Main result II-Newtonian limit

Finally we have the result on Newtonian limit, which can be roughly stated as following:

Theorem (M-Shahshahani-Wu)
The rescaled solution ( $\bar{V}, \bar{\sigma}$ ) to the free boundary problem (3)-(4) converges to the solution to the free boundary problem (5) as $c \rightarrow \infty$.

Thank you!

