On the free boundary hard phase fluid in Minkowski spacetime

Shuang Miao Joint with Sohrab Shahshahani (UMass) and Sijue Wu (UMich)

Wuhan University

Asia-Pacific Analysis&PDE Seminar Sydney Feb 15, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Part 1 Introducing the model

- Ideal fluids in relativistic framework
- The hard phase model with free boundary

Part 2 Main result I–Well-posedness

- Comparison with Newtonian problem
- A priori estimates

Part 3 Main result II–Newtonian limit

- Re-scaled equations
- Uniform estimates

Relativistic ideal fluids in Minkowski background

• Let (\mathbb{R}^{1+3}, m) be the standard Minkowski spacetime with

$$m := \begin{pmatrix} -1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{3\times 3} \end{pmatrix}$$

- We denote by $m_{\alpha\beta}$ and $m^{\alpha\beta}$ the components for m and m^{-1} respectively.
- ▶ All the indices are raised and lowered with respect to m and m^{-1} .
- ▶ The Greek letters are all from 0 to 3.
- ▶ The d'Alembertian □ for this metric is given by

$$\Box = \partial^{\alpha} \partial_{\alpha} = -\partial_t^2 + \sum_{i=1}^3 \partial_i^2.$$

Relativistic fluids in Minkowski background

- The motion of the fluid is described by the *fluid velocity* and several *thermodynamical quantities*:
- The fluid velocity is denoted by

$$u=u^{\mu}\frac{\partial}{\partial x^{\mu}},$$

and satisfies

$$u^0 > 0, \quad u^{\mu}u_{\mu} = -1.$$

Relativistic fluids in Minkowski background

- There are five thermodynamic quantities:
 - n: number density of particles
 - *p* : pressure
 - ρ : energy density
 - s: entropy per particle
 - θ : temperature
- They satisfy the following relation

$$p = n \frac{\partial \rho}{\partial n} - \rho, \quad \theta = \frac{1}{n} \frac{\partial \rho}{\partial s}.$$

The ratio of the sound speed and the speed of light (denoted by η) is given by

$$\eta := \sqrt{\left(rac{\partial p}{\partial
ho}
ight)_{s}}, \quad 0 \leq \eta \leq 1.$$

► Here by choosing appropriate units, we assume the speed of light is 1. Relativistic fluids in Minkowski background

We also need the energy-momentum tensor T^{μν} and the particle current I^μ which are given by

$$T^{\mu\nu} := (p + \rho)u^{\mu}u^{\nu} + pm^{\mu\nu}, \quad I^{\mu} = nu^{\mu}.$$

The equation of motion is given by

$$\nabla_{\mu}T^{\mu\nu} = 0, \quad \nabla_{\mu}I^{\mu} = 0. \tag{1}$$

Here ∇ is the canonical Levi-Civita connection of the Minkowski metric m.

Barotropic fluids

In this work we consider *barotropic fluids*, namely, the pressure p is a function of the energy density ρ only:

$$p=f(
ho), \quad f'>0.$$

Define

$$F(p) := \int_0^p \frac{dp'}{\rho(p') + p'}, \quad V := e^F u,$$

and

$$\|V\| := e^F, \quad \|V\|^2 := -V^{\mu}V_{\mu}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Equation of motion-Alternative

The equation of motion (1) becomes

$$V^{\nu}\nabla_{\nu}V^{\mu} + \frac{1}{2}\nabla^{\mu}\left(\|V\|^{2}\right) = 0, \quad \nabla_{\mu}\left(G(\|V\|)V^{\mu}\right) = 0, \quad (2)$$

where the function G is defined by

$$G(\|V\|) := rac{
ho +
ho}{\|V\|^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that p and ρ are functions of ||V||.

The hard phase model-Assumptions

We assume the fluid is *irrotational*:

$$abla_{\mu}V_{
u} -
abla_{
u}V_{\mu} = 0, \quad \Rightarrow \quad V^{\mu} =
abla^{\mu}\phi$$

for a scalar function ϕ .

 \blacktriangleright *p* and ρ are given by

$$\begin{split} \rho &= \frac{1}{2} \left(\|V\|^2 - 1 \right), \quad \rho &= \frac{1}{2} \left(\|V\|^2 + 1 \right), \\ \Rightarrow \quad \eta &\equiv 1, \quad G &\equiv 1. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• We denote $\sigma^2 := \|V\|^2$. σ^2 is the *enthalpy*.

The hard phase model with free boundary

We are interested in the following free boundary problem for hard phase model:

Let Ω be a spacetime domain in (ℝ¹⁺³, m). Ω will be part of the unknown of our problem.

The free boundary problem is

$$\nabla_{\mu}V^{\mu} = 0, \quad dV = 0, \quad \text{in} \quad \Omega$$

$$\sigma^{2} = -V^{\mu}V_{\mu} \equiv 1 \quad \text{on} \quad \partial\Omega$$

$$V \quad \text{tangential to} \quad \partial\Omega.$$
(3)

The initial data satisfies

$$\begin{aligned} \nabla_{\mu}\sigma^{2}\nabla^{\mu}\sigma^{2} &> 0 \quad \text{on} \quad \partial\Omega_{0} \\ \sigma_{0}^{2} &> 1 \quad \text{in} \quad \Omega_{0}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main result I: Well-posedness

Theorem (M-Shahshahani-Wu)

Any sufficiently regular data satisfying (4) and certain compatibility conditions leads to a unique local-in-time solution to (3).

- The conditions (4) on initial data is the relativistic Taylor sign condition.
- Since we are solving an initial-boundary value problem for a hyperbolic PDE system, the initial data should satisfy certain compatibility conditions
- Seeking the optimal regularity is not our concern in this work.

Remarks on the model

- The hard phase model has independent physical interest: It is an idealized model for the physical situation when the mass-energy density exceeds the nuclear saturation density during the gravitational collapse of the degenerate core of a massive star. In this situation, the sound speed is thought to approach the speed of light (Christodoulou, Friedman-Pandharipande, Lichnerowicz, Rezzolla-Zanotti, Walecka, and Zel'dovich, etc.)
- The hard phase model captures main mathematical features of a class of free boundary problems. Our approach in this work can be applied to general barotropic fluids with non-zero vorticity.

Historical results on related models

- Gaseous models: Makino, Rendall (Existence for a class of solutions), Hadzić-Shkoller-Speck, Jang-LeFloch-Masmoudi (A priori estimates), Disconzi-Ifrim-Tataru (Well-posedness, without Lagrangian approach)
- Liquid models:Trakhinin (Compressible liquids, Existence using Nash-Moser, loss of regularity), Oliynyk (Existence for a similar liquid model using different methods), Ginsberg (A priori estimates for the same model with smallness assumption on initial data).

Comparison with Newtonian problem

The Newtonian free boundary problem for incompressible irrotational fluid is

$$\nabla \cdot \tilde{V} = 0, \quad \nabla \times \tilde{V} = 0 \quad \text{in} \quad \tilde{\Omega}_{t}
\tilde{V}_{t} + (\tilde{V} \cdot \nabla)\tilde{V} = -\nabla \tilde{P} \quad \text{in} \quad \tilde{\Omega}_{t}
\tilde{P} \equiv 0 \quad \text{on} \quad \partial \tilde{\Omega}_{t}
(1, \tilde{V}) \quad \text{tangential to} \quad \cup_{t>0} (t, \partial \tilde{\Omega}_{t}).$$
(5)

Hopf Lemma implies the Taylor sign condition

$$-rac{\partial ilde{P}}{\partial ilde{n}} \geq c_t > 0 \quad ext{on} \quad \partial ilde{\Omega}_t$$
 (6)

• Here \tilde{P} is the pressure. \tilde{V} is the fluid velocity. $\tilde{\Omega}_t$ is the unknown domain occupied by fluid at time *t*. \tilde{n} is the outward unit normal to $\partial \tilde{\Omega}_t$.

Ideas to solve the Newtonian problem: Wu (97',99')

- Reducing the problem to the boundary.
- Differentiating the momentum equation in (5) with respect to $\tilde{D}_t := \partial_t + \tilde{V} \cdot \nabla$ to obtain the system:

$$\begin{pmatrix} \tilde{D}_t^2 + \tilde{a} \nabla_{\tilde{n}} \end{pmatrix} \tilde{V} = -\nabla \tilde{D}_t \tilde{p} \quad \text{on} \quad \partial \tilde{\Omega}_t$$

$$\Delta \tilde{V} = 0 \quad \text{in} \quad \tilde{\Omega}_t.$$

$$(7)$$

- Here $\nabla_{\tilde{n}}$ is the standard Dirichlet-Neumann operator, and $\tilde{a} := -\frac{\partial \tilde{P}}{\partial \tilde{n}}$.
- ► Using singular integrals on the boundary we express ã and ∇D_tp̃ in terms of the boundary values of Ṽ and its derivatives.
- lt turns out that the first equation in (7) is a quasilinear equation of \tilde{V} .

Ideas to solve the Newtonian problem: Christodoulou-Lindblad (00')

Instead of using boundary integrals, one considers the elliptic problems:

$$\begin{split} \Delta \tilde{P} &= -(\partial_i \tilde{V}^\ell) \partial_\ell \tilde{V}^i \quad \text{in} \quad \tilde{\Omega}_t, \quad \tilde{P} = 0 \quad \text{on} \quad \partial \tilde{\Omega}_t \\ \Delta D_t \tilde{P} &= G(\partial \tilde{V}, \partial^2 \tilde{P}) \quad \text{in} \quad \tilde{\Omega}_t, \quad D_t \tilde{P} = 0 \quad \text{on} \quad \partial \tilde{\Omega}_t. \end{split}$$
(8)

- ► Here $G(\partial \tilde{V}, \partial^2 \tilde{P})$ consists of the product between $\partial \tilde{V}$ and $\partial^2 \tilde{P}$, as well as a cubic expression of $\partial \tilde{V}$.
- The elliptic equations (8) recover the regularity of \tilde{P} and $D_t \tilde{P}$.

Back to hard phase model

Let D_V := V^μ∂_μ, and n be the outward unit normal to ∂Ω.

$$\begin{split} \sigma^2 &\equiv 1 \quad \text{on} \quad \partial \Omega \quad \Rightarrow \quad \nabla \sigma^2 = -an \quad \text{on} \quad \partial \Omega \\ a &= \sqrt{\nabla_\mu \sigma^2 \nabla^\mu \sigma^2} > 0. \end{split}$$

• Differentiating the equation $D_V V^{\mu} + \frac{1}{2} \nabla^{\mu} \sigma^2 = 0$ by D_V on $\partial \Omega$, the original system (3) becomes

$$\left(D_V^2 + \frac{1}{2} a \nabla_n \right) V^\mu = -\frac{1}{2} \nabla^\mu D_V \sigma^2 \quad \text{on} \quad \partial\Omega$$

$$\Box V^\mu = 0 \quad \text{in} \quad \Omega.$$
(9)

Quasilinear system

- ► The operator ∇_n in (9) is the hyperbolic Dirichlet-Neumann map. It is not clear at all whether this operator is positive or not.
- σ² and D_Vσ² satisfy the following wave equations with Dirichlet boundary data:

$$\Box \sigma^2 = -2(\nabla^{\mu} V^{\nu})(\nabla_{\mu} V_{\nu}), \quad \sigma^2 \equiv 1 \quad \text{on} \quad \partial\Omega. \tag{10}$$

$$\begin{aligned} \Box D_V \sigma^2 = & 4 (\nabla^\mu V^\nu) (\nabla_\mu \nabla_\nu \sigma^2) \\ &+ 4 (\nabla^\lambda V^\nu) (\nabla_\lambda V^\mu) (\nabla_\nu V_\mu) \quad \text{in} \quad \Omega \end{aligned} \tag{11} \\ & D_V \sigma^2 \equiv 0 \quad \text{on} \quad \partial \Omega. \end{aligned}$$

Well-posedness: Main ingredients of the proof

- Positivity of the hyperbolic Dirichlet-Neumann operator.
- Higher order regularity: Commuting D^k_V. Note that D_V is defined globally both in the interior of Ω and ∂Ω, and tangential to ∂Ω. Using the equation we show that D²_V ≃ ∂_x.
- Galerkin method to construct approximation sequences and prove the convergence of the sequences.

Positivity of the hyperbolic DN map

• Main idea: Multiplying both the boundary equation $(D_V^2 + \frac{1}{2}a\nabla_n) V = \dots$ and the equation $\Box V = 0$ by $D_V V$, and integrate on Ω and $\partial\Omega$. We obtain the following positive energy

$$\int_{\Omega_t} |\partial_{t,x} V|^2 \, dx + \int_{\partial \Omega_t} \frac{1}{a} |D_V V|^2 \, dS. \tag{12}$$

Here Ω_t and $\partial \Omega_t$ are the $x^0 = t$ -slices of Ω and $\partial \Omega$ respectively.

Let us illustrate the idea with a simpler model, where B is the unit ball:

$$\Box u = F \quad \text{in} \quad [0, T] \times B$$

$$\left(\partial_t^2 + \partial_r\right) u = f \quad \text{on} \quad [0, T] \times \partial B$$
(13)

Positivity of the hyperbolic DN map

• Multiplying the system (13) by $\partial_t u$, we have

$$\frac{1}{2}\partial_t(\partial_t u)^2 + (\partial_t u)(\partial_r u) = (\partial_t u)f \quad \text{on} \quad \partial B$$

$$\frac{1}{2}\partial_t \left((\partial_t u)^2 + |\nabla u|^2 \right) - \nabla \cdot (\partial_t u \nabla u) = -F \cdot \partial_t u \quad \text{in} \quad B.$$

(14)

• Integrating the second equation in (14) on $[0, T] \times B$:

$$\frac{1}{2} \int_{B} |\partial_{t,x} u(T)|^{2} dx - \frac{1}{2} \int_{B} |\partial_{t,x} u(0)|^{2} dx$$

$$- \int_{0}^{T} \int_{\partial B} (\partial_{t} u) (\partial_{r} u) dS dt = - \int_{0}^{T} \int_{B} F \cdot \partial_{t} u dx dt$$
(15)

Positivity of the hyperbolic DN map

• Integrating the first equation in (14) on $[0, T] \times \partial B$:

$$\frac{1}{2} \int_{\partial B} |\partial_t u(T)|^2 \, dS - \frac{1}{2} \int_{\partial B} |\partial_t u(0)|^2 \, dS + \int_0^T \int_{\partial B} (\partial_t u) (\partial_r u) \, dS \, dt = \int_0^T \int_{\partial B} (\partial_t u) f \, dS \, dt$$
(16)

Adding (15) and (16), we obtain

$$\frac{1}{2} \int_{B} |\partial_{t,x} u(T)|^{2} dx + \frac{1}{2} \int_{\partial B} |\partial_{t} u(T)|^{2} dS$$

$$= \frac{1}{2} \int_{B} |\partial_{t,x} u(0)|^{2} dx + \frac{1}{2} \int_{\partial B} |\partial_{t} u(0)|^{2} dS \qquad (17)$$

$$- \int_{0}^{T} \int_{B} F \cdot \partial_{t} u \, dx \, dt + \int_{0}^{T} \int_{\partial B} (\partial_{t} u) f \, dS \, dt.$$

(ロ) (型) (E) (E) (E) (O)(C)

$H^k(\Omega_t)$ -bounds

- To obtain the L[∞]-control in the a priori estimates, we need the control of ∂^k_x V in L²(Ω_t).
- The energy controls $D_V^k V \in H^1(\Omega_t)$ and $D_V^{k+1} V \in L^2(\partial \Omega_t)$.
- Using the boundary equation $\left(D_V^2 + \frac{1}{2}a\nabla_n\right)V = ...$ we have

$$abla_n V \simeq D_V^2 V + \text{l.o.t.}$$

The Trace Theorem implies

$$\|\nabla_n V\|_{H^{\frac{1}{2}}(\partial\Omega_t)} \lesssim \|D_V^2 V\|_{H^1(\Omega_t)} \lesssim \text{ "Energy for } D_V^2 V \text{" (18)}$$

$H^k(\Omega_t)$ -bounds -conti

On the other hand, we have

$$0 = \Box V = \partial_{t,x} D_V V + AV,$$

where A is an elliptic operator on Ω_t . This together with (18) gives control on $\|V\|_{H^2(\Omega_t)}$ in terms of the energy (i.e., the $H^1(\Omega_t)$ -norm) for $D_V^2 V$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• This finally shows
$$D_V^2 \simeq \nabla_x$$
.

Newtonian limit-Rescaled quantities

- To study the Newtonian limit as the speed of light approaches infinity, we of course cannot set the speed of light c = 1 anymore.
- Now the pressure p and energy density ρ are given by

$$p = \frac{1}{2} \left(\sigma^2 - c^4 \right), \quad \rho = \frac{1}{2} \left(\sigma^2 + c^4 \right).$$

- On the boundary $\partial \Omega$ we have $\sigma^2 \equiv c^4$.
- The initial data satisfies

$$\begin{aligned} \sigma_0^2 &\ge c^4 & \text{in} \quad \Omega_0 \\ \sigma_0^2 &= c^4 & \text{on} \quad \partial \Omega_0 \\ \nabla_\mu \sigma_0^2 \nabla^\mu \sigma_0^2 &\ge c_0^2 c^4 > 0 & \text{on} \quad \partial \Omega_0. \end{aligned} \tag{19}$$

Rescaled quantities and time variable

▶ Instead of V, σ^2 , we work with the rescaled quantities

$$\overline{V} := c^{-1}V, \quad \overline{\sigma}^2 := c^{-2}\sigma^2 - c^2 \tag{20}$$

• Here $\overline{V}, \overline{\sigma}$ are to be shown of order O(1) as $c \to \infty$.

In addition to the standard time variable t in the proof of the well-posedness, we also work with the rescaled time variable t' := c⁻¹t. Therefore we have

$$\frac{\partial}{\partial t} = c^{-1} \frac{\partial}{\partial t'} \quad m = -c^2 (dt')^2 + \sum_{i=1}^3 (dx^i)^2$$
$$\Box = -\frac{1}{c^2} \partial_{t'}^2 + \sum_{i=1}^3 \partial_i^2.$$

• Note that
$$\overline{V}^0 \simeq c$$
 as $c \to \infty$

Rescaled energy

- We strive for an a priori estimate which is independent of c. Therefore the energy must be of order O(1) as $c \to \infty$.
- Systematically, let E[V](t) and E[D_V or²](t) be the energies we bound in the above a priori estimate. A direct observation shows that

$$E[\overline{V}](t) \simeq c, \quad E[D_{\overline{V}}\overline{\sigma}^2](t) \simeq c, \quad \mathrm{as} \quad c \to \infty.$$

The reason for this is that $\overline{V}^0 \simeq c$, which appears in the definition of $E[\overline{V}]$ and $E[D_{\overline{V}}\overline{\sigma}^2]$.

To get an order O(1) energy, we need to consider the rescaled energies

$$c^{-1}E[\overline{V}](t), \quad c^{-1}E[D_{\overline{V}}\overline{\sigma}^2](t).$$

Sources in the energy estimates

Systematically, the energy estimates have the following form

$$c^{-1}E[\overline{V}](T) + c^{-1}E[D_{\overline{V}}\overline{\sigma}^2](T)$$

 \lesssim "Initial data of order $O(1)$ " $+ c^{-1} \int_0^T$ "Nonlinear sources" dt

- The "Nonlinear sources" above is of order O(1) as $c \to \infty$.
- ► This observation implies that in the time variable t, we can extend the solution given by the well-posedness theorem up to the scale t ≃ c, and in the time variable t' up to the scale t' ≃ 1.
- This is crucial because eventually t' is the time variable for the Newtonian problem.

The discrepancy for energy hierarchy given by the a priori estimates

- Suppose as c→∞, Θ is a quantity of order O(1). Then ∂_tΘ must be of order O(c⁻¹) and ∂_iΘ = O(1). However, the a priori estimate gives the same estimate for ∂_tΘ = O(1). In the Newtonian limit, we need the improved estimate ∂_tΘ = O(c⁻¹).
- To overcome this discrepancy, we look at $\overline{\sigma}^2$:

$$\overline{\sigma}^2 = (\overline{V}^0 - c)^2 - \sum_{i=1}^3 (\overline{V}^i)^2 + 2c(\overline{V}^0 - c)$$
(21)

The a priori estimate shows that $\overline{V}^0 - c, \overline{V}^i, \overline{\sigma}^2$ remains bounded as $c \to \infty$, which in turn shows

$$\overline{V}^0 - c = O(c^{-1}) \quad \mathrm{as} \quad c o \infty.$$

• Differentiating (21) in ∂_t , we get

$$\partial_t \overline{V}^0 = O(c^{-1})$$
 as $c \to \infty$.

Finally we have the result on Newtonian limit, which can be roughly stated as following:

Theorem (M-Shahshahani-Wu)

The rescaled solution $(\overline{V}, \overline{\sigma})$ to the free boundary problem (3)-(4) converges to the solution to the free boundary problem (5) as $c \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you!