Large N Limit of the $O(N)$ Linear Sigma Model via Stochastic Quantization

Rongchan Zhu

Beijing Institute of Technology

Joint work with Hao Shen, Scott Smith and Xiangchan Zhu
arXiv:2005.09279/arXiv:2102.02628

Table of contents

(1) Introduction
(2) Large N limit of the dynamics
(3) Invariant measures

4 Observables

Gaussian free field

- Recall the free field in the Euclidean quantum field theory. The usual free field on the torus \mathbb{T}^{d} is heuristically described by the following probability measure:

$$
\nu(\mathrm{d} \Phi)=C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp \left(-\int_{\mathbb{T}^{d}}\left(|\nabla \Phi|^{2}+m \Phi^{2}\right) \mathrm{d} x\right),
$$

where C_{N} is the normalization constant and Φ is the real-valued field.

Gaussian free field

- Recall the free field in the Euclidean quantum field theory. The usual free field on the torus \mathbb{T}^{d} is heuristically described by the following probability measure:

$$
\nu(\mathrm{d} \Phi)=C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp \left(-\int_{\mathbb{T}^{d}}\left(|\nabla \Phi|^{2}+m \Phi^{2}\right) \mathrm{d} x\right),
$$

where C_{N} is the normalization constant and Φ is the real-valued field.

- This corresponds to the Gaussian measure $\nu:=\mathcal{N}\left(0,(m-\Delta)^{-1}\right)$ rigorously defined on \mathcal{S}^{\prime}.

Gaussian free field

- Recall the free field in the Euclidean quantum field theory. The usual free field on the torus \mathbb{T}^{d} is heuristically described by the following probability measure:

$$
\nu(\mathrm{d} \Phi)=C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp \left(-\int_{\mathbb{T}^{d}}\left(|\nabla \Phi|^{2}+m \Phi^{2}\right) \mathrm{d} x\right),
$$

where C_{N} is the normalization constant and Φ is the real-valued field.

- This corresponds to the Gaussian measure $\nu:=\mathcal{N}\left(0,(m-\Delta)^{-1}\right)$ rigorously defined on \mathcal{S}^{\prime}.
- The free field describes particles which do not interact.

Φ_{d}^{4} field

The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp \left(-\int_{\mathbb{T}^{d}}\left(|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)\right.\right.
$$

Φ_{d}^{4} field

The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)

The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ_{d}^{4} field as stationary distributions (limiting distributions) of stochastic processes, which are solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85], [Albeverio, Röckner 91], [Da Prato, Debussche 03]).
Φ_{d}^{4} field
The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ_{d}^{4} field as stationary distributions (limiting distributions) of stochastic processes, which are solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85], [Albeverio, Röckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the Φ_{d}^{4} model:

$$
\partial_{t} \Phi=-\frac{\delta H}{\delta \Phi}+\xi=(\Delta-m) \Phi-: \Phi^{3}:+\xi,
$$

Here ξ is space-time white noise.
Φ_{d}^{4} field
The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ_{d}^{4} field as stationary distributions (limiting distributions) of stochastic processes, which are solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85], [Albeverio, Röckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the Φ_{d}^{4} model:

$$
\partial_{t} \Phi=-\frac{\delta H}{\delta \Phi}+\xi=(\Delta-m) \Phi-: \Phi^{3}:+\xi,
$$

Here ξ is space-time white noise.

- Regularity structures by [Hairer 14]
Φ_{d}^{4} field
The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ_{d}^{4} field as stationary distributions (limiting distributions) of stochastic processes, which are solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Röckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the Φ_{d}^{4} model:

$$
\partial_{t} \Phi=-\frac{\delta H}{\delta \Phi}+\xi=(\Delta-m) \Phi-: \Phi^{3}:+\xi,
$$

Here ξ is space-time white noise.

- Regularity structures by [Hairer 14]
- Paracontrolled distribution method by [Gubinelli, Imkeller, Perkowski 15]
ϕ_{d}^{4} field
The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ_{d}^{4} field as stationary distributions (limiting distributions) of stochastic processes, which are solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Röckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the Φ_{d}^{4} model:

$$
\partial_{t} \Phi=-\frac{\delta H}{\delta \Phi}+\xi=(\Delta-m) \Phi-: \Phi^{3}:+\xi
$$

Here ξ is space-time white noise.

- Regularity structures by [Hairer 14]
- Paracontrolled distribution method by [Gubinelli, Imkeller, Perkowski 15]
- [Catellier, Chouk 18], [Mourrat, Weber 17], [Gubinelli, Hofmanova 18, 19],...
ϕ_{d}^{4} field
The Φ_{d}^{4} model is the simplest non-trivial Euclidean quantum field:

$$
C_{N}^{-1} \Pi_{x \in \mathbb{T}^{d}} \mathrm{~d} \Phi(x) \exp (-\int_{\mathbb{T}^{d}}(\underbrace{\left.|\nabla \Phi(x)|^{2}+m \Phi^{2}(x)+\Phi^{4}(x)\right)}_{H} \mathrm{~d} x),
$$

where C_{N} is the normalization constant and Φ is the (real-valued) field. (Glimm, Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ_{d}^{4} field as stationary distributions (limiting distributions) of stochastic processes, which are solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Röckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the Φ_{d}^{4} model:

$$
\partial_{t} \Phi=-\frac{\delta H}{\delta \Phi}+\xi=(\Delta-m) \Phi-: \Phi^{3}:+\xi
$$

Here ξ is space-time white noise.

- Regularity structures by [Hairer 14]
- Paracontrolled distribution method by [Gubinelli, Imkeller, Perkowski 15]
- [Catellier, Chouk 18], [Mourrat, Weber 17], [Gubinelli, Hofmanova 18, 19],...
- Other models
$O(N)$ linear sigma model
$O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi,
$$

where $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ is the (vector-valued) field.
$O(N)$ linear sigma model
$O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi,
$$

where $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ is the (vector-valued) field.

- Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74, Witten 80]......
$O(N)$ linear sigma model
$O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

where $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ is the (vector-valued) field.

- Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74, Witten 80]......
- Mathematical results of large N : [Kupiainen 80], [Chatterjee 16, 19]
$O(N)$ linear sigma model
$O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

where $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ is the (vector-valued) field.

- Physical results of large N : [Stanley 67, Wilson 73, Gross 74, t'Hooft 74, Witten 80]......
- Mathematical results of large N : [Kupiainen 80], [Chatterjee 16, 19]

Stochastic quantization on $\mathbb{T}^{d}, d=2,3$:

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

$\mathcal{L}=\partial_{t}-\Delta+m ;\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises.
$O(N)$ linear sigma model
$O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

where $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ is the (vector-valued) field.

- Physical results of large N : [Stanley 67, Wilson 73, Gross 74, t'Hooft 74, Witten 80]......
- Mathematical results of large N : [Kupiainen 80], [Chatterjee 16, 19]

Stochastic quantization on $\mathbb{T}^{d}, d=2,3$:

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

$\mathcal{L}=\partial_{t}-\Delta+m ;\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises.
Questions: Large N limit of the dynamics Φ_{i} and the field ν^{N} ?

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

- $\xi(t, x)$ is a random Gaussian function with covariance given by $\mathbf{E} \xi(t, x) \xi(s, y)=\delta(t-s) \delta(x-y)$

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

- $\xi(t, x)$ is a random Gaussian function with covariance given by $\mathbf{E} \xi(t, x) \xi(s, y)=\delta(t-s) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

- $\xi(t, x)$ is a random Gaussian function with covariance given by $\mathbf{E} \xi(t, x) \xi(s, y)=\delta(t-s) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}$
- $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

- $\xi(t, x)$ is a random Gaussian function with covariance given by

$$
\mathbf{E} \xi(t, x) \xi(s, y)=\delta(t-s) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}
$$

- $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.
- $\Phi_{i} \in C^{-}$for $d=2 ; \Phi_{i} \in C^{-\frac{1}{2}-}$ for $d=3$

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

- $\xi(t, x)$ is a random Gaussian function with covariance given by

$$
\mathbf{E} \xi(t, x) \xi(s, y)=\delta(t-s) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}
$$

- $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.
- $\Phi_{i} \in C^{-}$for $d=2 ; \Phi_{i} \in C^{-\frac{1}{2}-}$ for $d=3$
- Decompose $\Phi_{i}=Y_{i}+Z_{i}$ as Da Prato-Debussche trick for $d=2$

$$
\begin{aligned}
& \mathcal{L} Z_{i}=\xi_{i}, \\
& \begin{array}{l}
\mathcal{L} Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Y_{i} Z_{j}\right. \\
\\
\end{array}+2 Y_{j} \underbrace{: Z_{i} Z_{j}:}_{\text {Wick product }}+\underbrace{: Z_{j}^{2}:}_{\text {Wick product }} Y_{i}+\underbrace{: Z_{i} Z_{j}^{2}:}_{\text {Wick product }}),
\end{aligned}
$$

Stochastic quantization: Da Prato-Debussche trick

- Stochastic quantization: $\left(\xi_{i}\right)_{i=1}^{N}$: independent space-time white noises

$$
\mathcal{L} \Phi_{i}=\left(\partial_{t}-\Delta+m\right) \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N} \Phi_{j}^{2} \Phi_{i}+\xi_{i},
$$

- $\xi(t, x)$ is a random Gaussian function with covariance given by

$$
\mathbf{E} \xi(t, x) \xi(s, y)=\delta(t-s) \delta(x-y) \Rightarrow \xi \in C^{-d / 2-1-}
$$

- $(f, g) \rightarrow f g$ is well-defined on $C^{\alpha} \times C^{\beta}$ to $C^{\alpha \wedge \beta}$ only if $\alpha+\beta>0$.
- $\Phi_{i} \in C^{-}$for $d=2 ; \Phi_{i} \in C^{-\frac{1}{2}-}$ for $d=3$
- Decompose $\Phi_{i}=Y_{i}+Z_{i}$ as Da Prato-Debussche trick for $d=2$

$$
\begin{aligned}
& \mathcal{L} Z_{i}=\xi_{i}, \\
& \begin{array}{l}
\mathcal{L} Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Y_{i} Z_{j}\right. \\
\\
\end{array}+2 Y_{j} \underbrace{: Z_{i} Z_{j}:}_{\text {Wick product }}+\underbrace{: Z_{j}^{2}:}_{\text {Wick product }} Y_{i}+\underbrace{: Z_{i} Z_{j}^{2}:}_{\text {Wick product }}),
\end{aligned}
$$

- $Z_{i} \in C^{-}, Y_{i} \in C^{2-} ;$ Wick product: : $Z_{i} Z_{j}:=Z_{i} Z_{j}-\mathbf{E} Z_{i} Z_{j}$.

Difficulty for $d=3$

- Decompose $\Phi_{i}=Z_{i}+Y_{i}$ as $d=2$

$$
\begin{aligned}
& \mathcal{L} Z_{i}=\xi_{i}, \quad Z_{i} \in C^{-\frac{1}{2}-} \\
& \begin{array}{l}
\mathcal{L} Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Y_{i} Z_{j}\right. \\
\\
\end{array} \quad+2 Y_{j} \underbrace{: Z_{i} Z_{j}}_{C^{-1-}}:+\underbrace{: Z_{j}^{2}}_{C^{-1-}}: Y_{i}+\underbrace{: Z_{i} Z_{j}^{2}:}_{C^{-\frac{3}{2}-}}),
\end{aligned}
$$

Difficulty for $d=3$

- Decompose $\Phi_{i}=Z_{i}+Y_{i}$ as $d=2$

$$
\begin{aligned}
& \mathcal{L} Z_{i}=\xi_{i}, \quad Z_{i} \in C^{-\frac{1}{2}-} \\
& \begin{array}{l}
\mathcal{L} Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Y_{i} Z_{j}\right. \\
\\
\end{array} \quad+2 Y_{j}: \underbrace{Z_{i} Z_{j}}_{c^{-1-}}:+\underbrace{: Z_{j}^{2}}_{C^{-1-}}: Y_{i}+\underbrace{: Z_{i} Z_{j}^{2}:}_{c^{-\frac{3}{2}-}}),
\end{aligned}
$$

- Key point: The red terms are not well defined even we do further decomposition!

Difficulty for $d=3$

- Decompose $\Phi_{i}=Z_{i}+Y_{i}$ as $d=2$

$$
\begin{aligned}
& \mathcal{L} Z_{i}=\xi_{i}, \quad Z_{i} \in C^{-\frac{1}{2}-} \\
& \left.\begin{array}{rl}
\mathcal{L} Y_{i}=-\frac{1}{N} \sum_{j=1}^{N} & \left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Y_{i} Z_{j}\right. \\
& +2 Y_{j}: \underbrace{: Z_{i} Z_{j}}_{C^{-1-}}:+\underbrace{: Z_{j}^{2}}_{C^{-1-}}: Y_{i}+\underbrace{: Z_{i} Z_{j}^{2}}_{C^{-\frac{3}{2}-}}:
\end{array}\right),
\end{aligned}
$$

- Key point: The red terms are not well defined even we do further decomposition!
- Local well-posedness: Regularity structure theory in [Hairer 14]/ Paracontrolled distribution method in [Gubinelli, Imkeller, Perkowski 15]

Difficulty for $d=3$

- Decompose $\Phi_{i}=Z_{i}+Y_{i}$ as $d=2$

$$
\begin{aligned}
& \mathcal{L} Z_{i}=\xi_{i}, \quad Z_{i} \in C^{-\frac{1}{2}-} \\
& \mathcal{L} Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Y_{i} Z_{j}\right. \\
&+2 Y_{j}: \underbrace{Z_{i} Z_{j}}_{c^{-1-}}:+\underbrace{: Z_{j}^{2}}_{C^{-1-}}: Y_{i}+\underbrace{: Z_{i} Z_{j}^{2}:}_{c^{-\frac{3}{2}-}})
\end{aligned}
$$

- Key point: The red terms are not well defined even we do further decomposition!
- Local well-posedness: Regularity structure theory in [Hairer 14]/ Paracontrolled distribution method in [Gubinelli, Imkeller, Perkowski 15]
- This is not enough since the stopping time may depend on N

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\Phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

- The limiting equation

$$
\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i}, \quad \Psi_{i}(0)=\psi_{i}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right] \in C^{-}$,

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\Phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

- The limiting equation

$$
\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i}, \quad \Psi_{i}(0)=\psi_{i}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right] \in C^{-}$, Distributional dependent SPDE

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\Phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

- The limiting equation

$$
\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i}, \quad \Psi_{i}(0)=\psi_{i}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right] \in C^{-}$, Distributional dependent SPDE
Theorem [Shen, Scott, Zhu, Z 20]
Suppose that $d=2$ and $\left(\psi_{i}, \psi_{j}\right)$ are independent and have the same law and for $p>1 \mathbf{E}\left\|\phi_{i}-\psi_{i}\right\|_{C-\kappa}^{p} \rightarrow 0$, as $N \rightarrow \infty$.

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\Phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

- The limiting equation

$$
\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i}, \quad \Psi_{i}(0)=\psi_{i}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right] \in C^{-}$, Distributional dependent SPDE
Theorem [Shen, Scott, Zhu, Z 20]
Suppose that $d=2$ and $\left(\psi_{i}, \psi_{j}\right)$ are independent and have the same law and for $p>1 \mathbf{E}\left\|\phi_{i}-\psi_{i}\right\|_{\mathcal{C - \kappa}}^{p} \rightarrow 0$, as $N \rightarrow \infty$. It holds that for $t>0$, $\mathbf{E}\left\|\Phi_{i}(t)-\Psi_{i}(t)\right\|_{L^{2}}^{2} \rightarrow 0$

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\Phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

- The limiting equation

$$
\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i}, \quad \Psi_{i}(0)=\psi_{i}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right] \in C^{-}$, Distributional dependent SPDE
Theorem [Shen, Scott, Zhu, Z 20]
Suppose that $d=2$ and $\left(\psi_{i}, \psi_{j}\right)$ are independent and have the same law and for $p>1 \mathbf{E}\left\|\phi_{i}-\psi_{i}\right\|_{\mathcal{C}-\kappa}^{p} \rightarrow 0$, as $N \rightarrow \infty$. It holds that for $t>0$, $\mathbf{E}\left\|\Phi_{i}(t)-\Psi_{i}(t)\right\|_{L^{2}}^{2} \rightarrow 0$ and $\left\|\Phi_{i}-\Psi_{i}\right\|_{C_{T} C^{-1}} \rightarrow^{P} 0$, as $N \rightarrow \infty$.

Limiting equation and convergence of the dynamics when $d=2$

- The dynamical linear sigma model

$$
\mathcal{L} \Phi_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(\Phi_{j}^{2}-\mathrm{E}\left[Z_{i}^{2}\right]\right) \Phi_{i}+\xi_{i}, \quad \Phi_{i}(0)=\phi_{i}
$$

- The limiting equation

$$
\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i}, \quad \Psi_{i}(0)=\psi_{i}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right] \in C^{-}$, Distributional dependent SPDE
Theorem [Shen, Scott, Zhu, Z 20]
Suppose that $d=2$ and $\left(\psi_{i}, \psi_{j}\right)$ are independent and have the same law and for $p>1 \mathbf{E}\left\|\phi_{i}-\psi_{i}\right\|_{\mathcal{C - \kappa}}^{p} \rightarrow 0$, as $N \rightarrow \infty$. It holds that for $t>0$, $\mathbf{E}\left\|\Phi_{i}(t)-\Psi_{i}(t)\right\|_{L^{2}}^{2} \rightarrow 0$ and $\left\|\Phi_{i}-\Psi_{i}\right\|_{C_{T} C^{-1}} \rightarrow^{P} 0$, as $N \rightarrow \infty$.

- Mean field limit/ Propagation of chaos

Idea of Proof: Uniform bounds

$$
\begin{aligned}
\Phi_{i}= & Z_{i}+Y_{i}, \Psi_{i}=Z_{i}+X_{i} \\
\mathcal{L} Z_{i} & =\xi_{i}, \\
\mathcal{L} Y_{i} & =-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Z_{j} Y_{i}+2 Y_{j}: Z_{j} Z_{i}:+: Z_{j}^{2}: Y_{i}+: Z_{i} Z_{j}^{2}:\right), \\
\mathcal{L} X_{i} & =-\left(\mathbf{E}\left[X_{j}^{2}\right] X_{i}+\mathbf{E}\left[X_{j}^{2}\right] Z_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] X_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] Z_{i}\right), \\
\text { where } \mu & =\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right]=\mathbf{E}\left[X_{i}^{2}\right]+2 \mathbf{E}\left[X_{i} Z_{i}\right] .
\end{aligned}
$$

Idea of Proof: Uniform bounds

$$
\begin{aligned}
\Phi_{i}= & Z_{i}+Y_{i}, \Psi_{i}=Z_{i}+X_{i} \\
\mathcal{L} Z_{i} & =\xi_{i}, \\
\mathcal{L} Y_{i} & =-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Z_{j} Y_{i}+2 Y_{j}: Z_{j} Z_{i}:+: Z_{j}^{2}: Y_{i}+: Z_{i} Z_{j}^{2}:\right), \\
\mathcal{L} X_{i} & =-\left(\mathbf{E}\left[X_{j}^{2}\right] X_{i}+\mathbf{E}\left[X_{j}^{2}\right] Z_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] X_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] Z_{i}\right), \\
\text { where } \mu & =\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right]=\mathbf{E}\left[X_{i}^{2}\right]+2 \mathbf{E}\left[X_{i} Z_{i}\right] \cdot Z_{i} \in C^{-}, X_{i}, Y_{i} \in C^{2-}
\end{aligned}
$$

Idea of Proof: Uniform bounds
$\Phi_{i}=Z_{i}+Y_{i}, \Psi_{i}=Z_{i}+X_{i}$

$$
\mathcal{L} Z_{i}=\xi_{i},
$$

$$
\begin{aligned}
\mathcal{L} Y_{i} & =-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Z_{j} Y_{i}+2 Y_{j}: Z_{j} Z_{i}:+: Z_{j}^{2}: Y_{i}+: Z_{i} Z_{j}^{2}:\right), \\
\mathcal{L} X_{i} & =-\left(\mathbf{E}\left[X_{j}^{2}\right] X_{i}+\mathbf{E}\left[X_{j}^{2}\right] Z_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] X_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] Z_{i}\right)
\end{aligned}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right]=\mathbf{E}\left[X_{i}^{2}\right]+2 \mathbf{E}\left[X_{i} Z_{i}\right] \cdot Z_{i} \in C^{-}, X_{i}, Y_{i} \in C^{2-}$
Lemma 1
It holds that for $p \geq 2$

$$
\begin{aligned}
& \frac{1}{N} \mathbf{E} \sup _{t \in[0, T]} \sum_{j=1}^{N}\left\|Y_{j}\right\|_{L^{2}}^{2}+\frac{1}{N} \sum_{j=1}^{N} \mathbf{E}\left\|\nabla Y_{j}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}+\mathbf{E}\left\|\frac{1}{N} \sum_{i=1}^{N} Y_{i}^{2}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2} \lesssim 1 \\
& \sup _{t \in[0, T]} \mathbf{E}\left\|X_{i}\right\|_{L^{p}}^{p}+\mathbf{E}\left\|\nabla X_{i}\right\|_{L^{2}\left(0, T: L^{2}\right)}^{2}+\left\|\mathbf{E} X_{i}^{2}\right\|_{L^{2}\left(0, T: L^{2}\right)}^{2} \lesssim 1
\end{aligned}
$$

- dissipation weaker as $N \rightarrow \infty$

Idea of Proof: Uniform bounds
$\Phi_{i}=Z_{i}+Y_{i}, \Psi_{i}=Z_{i}+X_{i}$

$$
\mathcal{L} Z_{i}=\xi_{i},
$$

$$
\begin{aligned}
\mathcal{L} Y_{i} & =-\frac{1}{N} \sum_{j=1}^{N}\left(Y_{j}^{2} Y_{i}+Y_{j}^{2} Z_{i}+2 Y_{j} Z_{j} Y_{i}+2 Y_{j}: Z_{j} Z_{i}:+: Z_{j}^{2}: Y_{i}+: Z_{i} Z_{j}^{2}:\right), \\
\mathcal{L} X_{i} & =-\left(\mathbf{E}\left[X_{j}^{2}\right] X_{i}+\mathbf{E}\left[X_{j}^{2}\right] Z_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] X_{i}+2 \mathbf{E}\left[X_{j} Z_{j}\right] Z_{i}\right)
\end{aligned}
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right]=\mathbf{E}\left[X_{i}^{2}\right]+2 \mathbf{E}\left[X_{i} Z_{i}\right] \cdot Z_{i} \in C^{-}, X_{i}, Y_{i} \in C^{2-}$
Lemma 1
It holds that for $p \geq 2$

$$
\begin{aligned}
& \frac{1}{N} \mathbf{E} \sup _{t \in[0, T]} \sum_{j=1}^{N}\left\|Y_{j}\right\|_{L^{2}}^{2}+\frac{1}{N} \sum_{j=1}^{N} \mathbf{E}\left\|\nabla Y_{j}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}+\mathbf{E}\left\|\frac{1}{N} \sum_{i=1}^{N} Y_{i}^{2}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2} \lesssim 1 \\
& \sup _{t \in[0, T]} \mathbf{E}\left\|X_{i}\right\|_{L^{p}}^{p}+\mathbf{E}\left\|\nabla X_{i}\right\|_{L^{2}\left(0, T: L^{2}\right)}^{2}+\left\|\mathbf{E} X_{i}^{2}\right\|_{L^{2}\left(0, T: L^{2}\right)}^{2} \lesssim 1
\end{aligned}
$$

- dissipation weaker as $N \rightarrow \infty$ /independence

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

- Invariant measure: Gaussian free field

$$
\mathcal{N}\left(0,(m-\Delta)^{-1}\right), d=2,3 ; \quad \mathcal{N}\left(0,\left(m+\mu_{0}-\Delta\right)^{-1}\right), d=1,
$$

$$
\mu_{0}>0 .
$$

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

- Invariant measure: Gaussian free field

$$
\mathcal{N}\left(0,(m-\Delta)^{-1}\right), d=2,3 ; \quad \mathcal{N}\left(0,\left(m+\mu_{0}-\Delta\right)^{-1}\right), d=1,
$$

$$
\mu_{0}>0 .
$$

$$
\sum_{k \in \mathbb{Z}^{2}}\left(\frac{1}{|k|^{2}+\mu+m}-\frac{1}{|k|^{2}+m}\right)=\mu \quad \sum_{k \in \mathbb{Z}} \frac{1}{k^{2}+\mu+m}=\mu .
$$

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

- Invariant measure: Gaussian free field

$$
\mathcal{N}\left(0,(m-\Delta)^{-1}\right), d=2,3 ; \quad \mathcal{N}\left(0,\left(m+\mu_{0}-\Delta\right)^{-1}\right), d=1,
$$

$$
\mu_{0}>0 .
$$

$$
\sum_{k \in \mathbb{Z}^{2}}\left(\frac{1}{|k|^{2}+\mu+m}-\frac{1}{|k|^{2}+m}\right)=\mu \quad \sum_{k \in \mathbb{Z}} \frac{1}{k^{2}+\mu+m}=\mu .
$$

Theorem [Shen, Scott, Zhu, Z. 20]
For $d=1,2$, there exists $m_{0}>0$ such that: for $m \geq m_{0}$, the Gaussian free field $\mathcal{N}\left(0,(m-\Delta)^{-1}\right)$ is the unique invariant measure to Ψ.

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

- Invariant measure: Gaussian free field

$$
\mathcal{N}\left(0,(m-\Delta)^{-1}\right), d=2,3 ; \quad \mathcal{N}\left(0,\left(m+\mu_{0}-\Delta\right)^{-1}\right), d=1,
$$

$$
\mu_{0}>0 .
$$

$$
\sum_{k \in \mathbb{Z}^{2}}\left(\frac{1}{|k|^{2}+\mu+m}-\frac{1}{|k|^{2}+m}\right)=\mu \quad \sum_{k \in \mathbb{Z}} \frac{1}{k^{2}+\mu+m}=\mu .
$$

Theorem [Shen, Scott, Zhu, Z. 20]
For $d=1,2$, there exists $m_{0}>0$ such that: for $m \geq m_{0}$, the Gaussian free field $\mathcal{N}\left(0,(m-\Delta)^{-1}\right)$ is the unique invariant measure to Ψ.

- Difficulty: Nonlinear Markov semigroup;

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

- Invariant measure: Gaussian free field

$$
\mathcal{N}\left(0,(m-\Delta)^{-1}\right), d=2,3 ; \quad \mathcal{N}\left(0,\left(m+\mu_{0}-\Delta\right)^{-1}\right), d=1,
$$

$$
\mu_{0}>0 .
$$

$$
\sum_{k \in \mathbb{Z}^{2}}\left(\frac{1}{|k|^{2}+\mu+m}-\frac{1}{|k|^{2}+m}\right)=\mu \quad \sum_{k \in \mathbb{Z}} \frac{1}{k^{2}+\mu+m}=\mu .
$$

Theorem [Shen, Scott, Zhu, Z. 20]
For $d=1,2$, there exists $m_{0}>0$ such that: for $m \geq m_{0}$, the Gaussian free field $\mathcal{N}\left(0,(m-\Delta)^{-1}\right)$ is the unique invariant measure to Ψ.

- Difficulty: Nonlinear Markov semigroup; no general theory;

Invariant measure to Limiting equation

- The limiting equation

$$
\left(\partial_{t}-\Delta+m\right) \Psi_{i}=\mathcal{L} \Psi_{i}=-\mu \Psi_{i}+\xi_{i},
$$

where $\mu=\mathbf{E}\left[\Psi_{i}^{2}-Z_{i}^{2}\right], d=2 ; \mu=\mathbf{E}\left[\Psi_{i}^{2}\right], d=1$;

- Invariant measure: Gaussian free field

$$
\mathcal{N}\left(0,(m-\Delta)^{-1}\right), d=2,3 ; \quad \mathcal{N}\left(0,\left(m+\mu_{0}-\Delta\right)^{-1}\right), d=1,
$$

$$
\mu_{0}>0 .
$$

$$
\sum_{k \in \mathbb{Z}^{2}}\left(\frac{1}{|k|^{2}+\mu+m}-\frac{1}{|k|^{2}+m}\right)=\mu \quad \sum_{k \in \mathbb{Z}} \frac{1}{k^{2}+\mu+m}=\mu .
$$

Theorem [Shen, Scott, Zhu, Z. 20]
For $d=1,2$, there exists $m_{0}>0$ such that: for $m \geq m_{0}$, the Gaussian free field $\mathcal{N}\left(0,(m-\Delta)^{-1}\right)$ is the unique invariant measure to Ψ.

- Difficulty: Nonlinear Markov semigroup; no general theory;
- Idea: solutions converges to each other as time goes to infinity.

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

- ν : Gaussian free field

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.
- For $m \geq m_{0}, \nu^{N, i}$ converges to ν;

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.
- For $m \geq m_{0}, \nu^{N, i}$ converges to ν; and ν_{k}^{N} converges to $\nu \times \cdots \times \nu$, as $N \rightarrow \infty$.

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.
- For $m \geq m_{0}, \nu^{N, i}$ converges to ν; and ν_{k}^{N} converges to $\nu \times \cdots \times \nu$, as $N \rightarrow \infty$. Furthermore, $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$.

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.
- For $m \geq m_{0}, \nu^{N, i}$ converges to ν; and ν_{k}^{N} converges to $\nu \times \cdots \times \nu$, as $N \rightarrow \infty$. Furthermore, $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$.
- Difficulty: don't know each component of the tight limit is independent;

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi,
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.
- For $m \geq m_{0}, \nu^{N, i}$ converges to ν; and ν_{k}^{N} converges to $\nu \times \cdots \times \nu$, as $N \rightarrow \infty$. Furthermore, $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$.
- Difficulty: don't know each component of the tight limit is independent; Nonlinear Markov semigroup $P_{t}^{*} \nu_{1} \neq \int P_{t}^{*} \delta_{x} \nu_{1}(\mathrm{~d} x)$;

Convergence of invariant measure (field)

- $O(N)$ linear sigma model:

$$
\nu^{N}=\frac{1}{C_{N}} \exp \left(-2 \int_{\mathbb{T}^{d}} \frac{1}{2} \sum_{j=1}^{N}\left|\nabla \Phi_{j}\right|^{2}+\frac{m}{2} \sum_{j=1}^{N} \Phi_{j}^{2}+\frac{1}{4 N}\left(\sum_{j=1}^{N} \Phi_{j}^{2}\right)^{2} \mathrm{~d} x\right) \mathcal{D} \Phi,
$$

- ν : Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
For $d=2,3$

- $\nu^{N, i}$ form a tight set of probability measures on $C^{-\frac{1}{2}-\kappa}$ for $\kappa>0$.
- For $m \geq m_{0}, \nu^{N, i}$ converges to ν; and ν_{k}^{N} converges to $\nu \times \cdots \times \nu$, as $N \rightarrow \infty$. Furthermore, $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$.
- Difficulty: don't know each component of the tight limit is independent; Nonlinear Markov semigroup $P_{t}^{*} \nu_{1} \neq \int P_{t}^{*} \delta_{x} \nu_{1}(\mathrm{~d} x)$; not easy to control the nonlinear term as time goes to infinity

Idea of proof: $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$ for $d=3$

Idea of proof: $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$ for $d=3$

- a coupling of $\nu^{N, i}, \nu \Rightarrow$ take stationary solutions $\left(\Phi_{i}, Z_{i}\right)$

Idea of proof: $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$ for $d=3$

- a coupling of $\nu^{N, i}, \nu \Rightarrow$ take stationary solutions $\left(\Phi_{i}, Z_{i}\right)$

$$
\left(\partial_{t}-\Delta+m\right) Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(2 Y_{j}: Z_{i} Z_{j}:+: Z_{j}^{2}: Y_{i}+\ldots\right)
$$

Idea of proof: $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$ for $d=3$

- a coupling of $\nu^{N, i}, \nu \Rightarrow$ take stationary solutions $\left(\Phi_{i}, Z_{i}\right)$

$$
\left(\partial_{t}-\Delta+m\right) Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(2 Y_{j}: Z_{i} Z_{j}:+: Z_{j}^{2}: Y_{i}+\ldots\right),
$$

- Cancelation from paraprodcts [Gubinelli, Hofmanova 18]

$$
\sum_{i=1}^{N}\left[\left\langle(\Delta-m) Y_{i}, Y_{i}\right\rangle-\frac{1}{N} \sum_{j=1}^{N}\left\langle 2 Y_{j} \preccurlyeq: Z_{i} Z_{j}:+Y_{i} \preccurlyeq: Z_{j}^{2}:, Y_{i}\right\rangle\right]
$$

Idea of proof: $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$ for $d=3$

- a coupling of $\nu^{N, i}, \nu \Rightarrow$ take stationary solutions $\left(\Phi_{i}, Z_{i}\right)$

$$
\left(\partial_{t}-\Delta+m\right) Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(2 Y_{j}: Z_{i} Z_{j}:+: Z_{j}^{2}: Y_{i}+\ldots\right),
$$

- Cancelation from paraprodcts [Gubinelli, Hofmanova 18]

$$
\begin{aligned}
& \sum_{i=1}^{N}\left[\left\langle(\Delta-m) Y_{i}, Y_{i}\right\rangle-\frac{1}{N} \sum_{j=1}^{N}\left\langle 2 Y_{j} \preccurlyeq: Z_{i} Z_{j}:+Y_{i} \preccurlyeq: Z_{j}^{2}:, Y_{i}\right\rangle\right] \\
\Rightarrow & \mathbf{E}\left(\sum_{j=1}^{N}\left\|Y_{j}(T)\right\|_{L^{2}}^{2}\right)+\frac{m}{2} \mathbf{E} \sum_{j=1}^{N}\left\|Y_{j}(T)\right\|_{L_{T}^{2} L^{2}}^{2}+\frac{1}{N} \mathbf{E}\left\|\sum_{i=1}^{N} Y_{i}^{2}\right\|_{L_{T}^{2} L^{2}}^{2} \\
\leq & \mathbf{E}\left(\sum_{j=1}^{N}\left\|Y_{j}(0)\right\|_{L^{2}}^{2}\right)+C \mathbf{E} \int_{0}^{T}\left(\sum_{i=1}^{N}\left\|Y_{i}\right\|_{L^{2}}^{2}\right) R_{N} \mathrm{~d} s+C .
\end{aligned}
$$

Idea of proof: $\mathbb{W}_{2}\left(\nu^{N, i}, \nu\right) \lesssim N^{-\frac{1}{2}}$ for $d=3$

- a coupling of $\nu^{N, i}, \nu \Rightarrow$ take stationary solutions $\left(\Phi_{i}, Z_{i}\right)$

$$
\left(\partial_{t}-\Delta+m\right) Y_{i}=-\frac{1}{N} \sum_{j=1}^{N}\left(2 Y_{j}: Z_{i} Z_{j}:+: Z_{j}^{2}: Y_{i}+\ldots\right),
$$

- Cancelation from paraprodcts [Gubinelli, Hofmanova 18]

$$
\begin{aligned}
& \sum_{i=1}^{N}\left[\left\langle(\Delta-m) Y_{i}, Y_{i}\right\rangle-\frac{1}{N} \sum_{j=1}^{N}\left\langle 2 Y_{j} \preccurlyeq: Z_{i} Z_{j}:+Y_{i} \preccurlyeq: Z_{j}^{2}:, Y_{i}\right\rangle\right] \\
\Rightarrow & \mathbf{E}\left(\sum_{j=1}^{N}\left\|Y_{j}(T)\right\|_{L^{2}}^{2}\right)+\frac{m}{2} \mathbf{E} \sum_{j=1}^{N}\left\|Y_{j}(T)\right\|_{L_{T}^{2} L^{2}}^{2}+\frac{1}{N} \mathbf{E}\left\|\sum_{i=1}^{N} Y_{i}^{2}\right\|_{L_{T}^{2} L^{2}}^{2} \\
\leq & \mathbf{E}\left(\sum_{j=1}^{N}\left\|Y_{j}(0)\right\|_{L^{2}}^{2}\right)+C \mathbf{E} \int_{0}^{T}\left(\sum_{i=1}^{N}\left\|Y_{i}\right\|_{L^{2}}^{2}\right) R_{N} \mathrm{~d} s+C . \\
R_{N}= & R_{N}-\mathbf{E}\left[R_{N}\right]+\mathbf{E}\left[R_{N}\right]
\end{aligned}
$$

Observables

Observables

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
Suppose that $\Phi \simeq \nu^{N}$. For $\kappa>0, m$ large enough, the following result holds:

- $\frac{1}{\sqrt{N}} \sum_{i=1}^{N}: \Phi_{i}^{2}$: is tight in $B_{2,2}^{-2 \kappa}$ for $d=2 / B_{1,1}^{-1-\kappa}$ for $d=3$
- $\frac{1}{N}:\left(\sum_{i=1}^{N} \Phi_{i}^{2}\right)^{2}$: is tight in $B_{1,1}^{-3 \kappa}$ for $d=2$
- For $d=1,2$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}: \Phi_{i}^{2}: \neq \lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}: Z_{i}^{2}: \\
& \lim _{N \rightarrow \infty} \frac{1}{N}:\left(\sum_{i=1}^{N} \Phi_{i}^{2}\right)^{2}: \neq \lim _{N \rightarrow \infty} \frac{1}{N}:\left(\sum_{i=1}^{N} Z_{i}^{2}\right)^{2}:
\end{aligned}
$$

Observables

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
Suppose that $\Phi \simeq \nu^{N}$. For $\kappa>0, m$ large enough, the following result holds:

- $\frac{1}{\sqrt{N}} \sum_{i=1}^{N}: \Phi_{i}^{2}$: is tight in $B_{2,2}^{-2 \kappa}$ for $d=2 / B_{1,1}^{-1-\kappa}$ for $d=3$
- $\frac{1}{N}:\left(\sum_{i=1}^{N} \Phi_{i}^{2}\right)^{2}$: is tight in $B_{1,1}^{-3 \kappa}$ for $d=2$
- For $d=1,2$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}: \Phi_{i}^{2}: \neq \lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}: Z_{i}^{2}: \\
& \lim _{N \rightarrow \infty} \frac{1}{N}:\left(\sum_{i=1}^{N} \Phi_{i}^{2}\right)^{2}: \neq \lim _{N \rightarrow \infty} \frac{1}{N}:\left(\sum_{i=1}^{N} Z_{i}^{2}\right)^{2}:
\end{aligned}
$$

- Idea: Improved moment estimate for stationary case by independence

$$
\mathbf{E}\left[\left(\sum_{i=1}^{N}\left\|Y_{i}\right\|_{L^{2}}^{2}\right)^{q}\right]+\mathbf{E}\left[\left(\sum_{i=1}^{N}\left\|Y_{i}\right\|_{L^{2}}^{2}+1\right)^{q}\left(\sum_{i=1}^{N}\left\|\nabla Y_{i}\right\|_{L^{2}}^{2}\right)\right] \lesssim 1 .
$$

Observables

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]
Suppose that $\Phi \simeq \nu^{N}$. For $\kappa>0, m$ large enough, the following result holds:

- $\frac{1}{\sqrt{N}} \sum_{i=1}^{N}: \Phi_{i}^{2}$: is tight in $B_{2,2}^{-2 \kappa}$ for $d=2 / B_{1,1}^{-1-\kappa}$ for $d=3$
- $\frac{1}{N}:\left(\sum_{i=1}^{N} \Phi_{i}^{2}\right)^{2}$: is tight in $B_{1,1}^{-3 \kappa}$ for $d=2$
- For $d=1,2$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}: \Phi_{i}^{2}: \neq \lim _{N \rightarrow \infty} \frac{1}{\sqrt{N}} \sum_{i=1}^{N}: Z_{i}^{2}: \\
& \lim _{N \rightarrow \infty} \frac{1}{N}:\left(\sum_{i=1}^{N} \Phi_{i}^{2}\right)^{2}: \neq \lim _{N \rightarrow \infty} \frac{1}{N}:\left(\sum_{i=1}^{N} Z_{i}^{2}\right)^{2}:
\end{aligned}
$$

- Idea: Improved moment estimate for stationary case by independence

$$
\mathbf{E}\left[\left(\sum_{i=1}^{N}\left\|Y_{i}\right\|_{L^{2}}^{2}\right)^{q}\right]+\mathbf{E}\left[\left(\sum_{i=1}^{N}\left\|Y_{i}\right\|_{L^{2}}^{2}+1\right)^{q}\left(\sum_{i=1}^{N}\left\|\nabla Y_{i}\right\|_{L^{2}}^{2}\right)\right] \lesssim 1 .
$$

- Integration by parts formula/ Dyson-Schwinger from [Kupiainen 80]

Further Problems

- Convergence of dynamics for $d=3$ / Correlation of Observables for $d=3$?

Further Problems

- Convergence of dynamics for $d=3$ / Correlation of Observables for $d=3$?
- how to drop $m \geq m_{0}$?

Further Problems

- Convergence of dynamics for $d=3$ / Correlation of Observables for $d=3$?
- how to drop $m \geq m_{0}$? General theory on distributional dependent singular SPDEs

Further Problems

- Convergence of dynamics for $d=3$ / Correlation of Observables for $d=3$?
- how to drop $m \geq m_{0}$? General theory on distributional dependent singular SPDEs
- Other models

Thank you!

