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Gaussian free field

Recall the free field in the Euclidean quantum field theory. The usual free field
on the torus Td is heuristically described by the following probability measure:

ν(dΦ) = C−1N Πx∈TddΦ(x) exp

(
−
∫
Td

(|∇Φ|2 + mΦ2)dx

)
,

where CN is the normalization constant and Φ is the real-valued field.

This corresponds to the Gaussian measure ν := N (0, (m −∆)−1) rigorously
defined on S ′.
The free field describes particles which do not interact.
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Φ4
d field

The Φ4
d model is the simplest non-trivial Euclidean quantum field:

C−1N Πx∈TddΦ(x) exp

(
−
∫
Td

(|∇Φ(x)|2 + mΦ2(x)

+ Φ4(x))︸ ︷︷ ︸
H

dx

)
,

where CN is the normalization constant and Φ is the (real-valued) field. (Glimm,
Jaffe, Simon, Feldman, Brydges 60-90s)
Stochastic quantization of Euclidean quantum fields: getting the Φ4

d field as
stationary distributions (limiting distributions) of stochastic processes, which are
solutions to SPDE (see [Parisi,Wu 81], [G. Jona-Lasinio,P. K. Mitter 85],
[Albeverio, Röckner 91], [Da Prato, Debussche 03]).
The stochastic quantization of the Φ4

d model:

∂tΦ = −δH
δΦ

+ ξ = (∆−m)Φ− : Φ3 : +ξ,

Here ξ is space-time white noise.

Regularity structures by [Hairer 14]
Paracontrolled distribution method by [Gubinelli, Imkeller, Perkowski 15]
[Catellier, Chouk 18], [Mourrat, Weber 17], [Gubinelli, Hofmanova 18, 19],...
Other models
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O(N) linear sigma model

O(N) linear sigma model:

νN =
1

CN
exp

(
− 2

∫
Td

1

2

N∑
j=1

|∇Φj |2 +
m

2

N∑
j=1

Φ2
j +

1

4N

( N∑
j=1

Φ2
j

)2
dx

)
DΦ,

where Φ = (Φ1, . . . ,ΦN) is the (vector-valued) field.

Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t’Hooft 74,
Witten 80]......

Mathematical results of large N: [Kupiainen 80], [Chatterjee 16, 19]

Stochastic quantization on Td , d = 2, 3:

LΦi = − 1

N

N∑
j=1

Φ2
j Φi + ξi ,

L = ∂t −∆ + m; (ξi )
N
i=1: independent space-time white noises.

Questions: Large N limit of the dynamics Φi and the field νN?
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Stochastic quantization: Da Prato-Debussche trick

Stochastic quantization: (ξi )
N
i=1: independent space-time white noises

LΦi = (∂t −∆ + m)Φi = − 1

N

N∑
j=1

Φ2
j Φi + ξi ,

ξ(t, x) is a random Gaussian function with covariance given by

Eξ(t, x)ξ(s, y) = δ(t − s)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

Φi ∈ C− for d = 2; Φi ∈ C−
1
2− for d = 3

Decompose Φi = Yi + Zi as Da Prato-Debussche trick for d = 2

LZi =ξi ,

LYi =− 1

N

N∑
j=1

(Y 2
j Yi + Y 2

j Zi + 2YjYiZj

+ 2Yj : ZiZj :︸ ︷︷ ︸
Wick product

+ : Z 2
j :︸ ︷︷ ︸

Wick product

Yi + : ZiZ
2
j :︸ ︷︷ ︸

Wick product

),

Zi ∈ C−,Yi ∈ C 2−; Wick product: : ZiZj := ZiZj − EZiZj .
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Stochastic quantization: (ξi )
N
i=1: independent space-time white noises

LΦi = (∂t −∆ + m)Φi = − 1

N

N∑
j=1

Φ2
j Φi + ξi ,

ξ(t, x) is a random Gaussian function with covariance given by

Eξ(t, x)ξ(s, y) = δ(t − s)δ(x − y)⇒ ξ ∈ C−d/2−1−

(f , g)→ fg is well-defined on Cα × Cβ to Cα∧β only if α + β > 0.

Φi ∈ C− for d = 2; Φi ∈ C−
1
2− for d = 3
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N

N∑
j=1

(Y 2
j Yi + Y 2

j Zi + 2YjYiZj

+ 2Yj : ZiZj :︸ ︷︷ ︸
Wick product

+ : Z 2
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Difficulty for d = 3

Decompose Φi = Zi + Yi as d = 2

LZi =ξi , Zi ∈ C−
1
2−

LYi =− 1

N

N∑
j=1

(Y 2
j Yi + Y 2

j Zi + 2YjYiZj

+ 2Yj : ZiZj :︸ ︷︷ ︸
C−1−

+ : Z 2
j :︸ ︷︷ ︸

C−1−

Yi + : ZiZ
2
j :︸ ︷︷ ︸

C− 3
2
−

),

Key point: The red terms are not well defined even we do further
decomposition!

Local well-posedness: Regularity structure theory in [Hairer 14]/
Paracontrolled distribution method in [Gubinelli, Imkeller, Perkowski 15]

This is not enough since the stopping time may depend on N
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Large N limit of the dynamics

Limiting equation and convergence of the dynamics when d = 2

The dynamical linear sigma model

LΦi = − 1

N

N∑
j=1

(Φ2
j − E[Z 2

i ])Φi + ξi , Φi (0) = φi

The limiting equation

LΨi = −µΨi + ξi , Ψi (0) = ψi ,

where µ = E[Ψ2
i − Z 2

i ] ∈ C−, Distributional dependent SPDE

Theorem [Shen, Scott, Zhu, Z 20]

Suppose that d = 2 and (ψi , ψj) are independent and have the same law and for
p > 1 E‖φi − ψi‖pC−κ → 0, as N →∞. It holds that for t > 0,
E‖Φi (t)−Ψi (t)‖2L2 → 0 and ‖Φi −Ψi‖CTC−1 →P 0, as N →∞.

Mean field limit/ Propagation of chaos
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Large N limit of the dynamics

Idea of Proof: Uniform bounds

Φi = Zi + Yi , Ψi = Zi + Xi

LZi =ξi ,

LYi =− 1

N

N∑
j=1

(Y 2
j Yi + Y 2

j Zi + 2YjZjYi + 2Yj : ZjZi : + : Z 2
j : Yi+ : ZiZ

2
j :),

LXi =− (E[X 2
j ]Xi + E[X 2

j ]Zi + 2E[XjZj ]Xi + 2E[XjZj ]Zi ),

where µ = E[Ψ2
i − Z 2

i ] = E[X 2
i ] + 2E[XiZi ].

Zi ∈ C−, Xi ,Yi ∈ C 2−

Lemma 1

It holds that for p ≥ 2

1

N
E sup

t∈[0,T ]

N∑
j=1

‖Yj‖2L2 +
1

N

N∑
j=1

E‖∇Yj‖2L2(0,T ;L2) + E

∥∥∥∥ 1

N

N∑
i=1

Y 2
i

∥∥∥∥2
L2(0,T ;L2)

. 1,

sup
t∈[0,T ]

E‖Xi‖pLp + E‖∇Xi‖2L2(0,T :L2) + ‖EX 2
i ‖2L2(0,T :L2) . 1,

dissipation weaker as N →∞ /independence
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Invariant measures

Invariant measure to Limiting equation

The limiting equation

(∂t −∆ + m)Ψi = LΨi = −µΨi + ξi ,

where µ = E[Ψ2
i − Z 2

i ], d = 2;µ = E[Ψ2
i ], d = 1;

Invariant measure: Gaussian free field

N (0, (m −∆)−1), d = 2, 3; N (0, (m + µ0 −∆)−1), d = 1,

µ0 > 0. ∑
k∈Z2

(
1

|k|2 + µ+ m
− 1

|k|2 + m
) = µ

∑
k∈Z

1

k2 + µ+ m
= µ.

Theorem [Shen, Scott, Zhu, Z. 20]

For d = 1, 2, there exists m0 > 0 such that: for m ≥ m0, the Gaussian free field
N (0, (m −∆)−1) is the unique invariant measure to Ψ.

Difficulty: Nonlinear Markov semigroup; no general theory;

Idea: solutions converges to each other as time goes to infinity.
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Invariant measures

Convergence of invariant measure (field)

O(N) linear sigma model:

νN =
1

CN
exp

(
− 2

∫
Td

1

2

N∑
j=1

|∇Φj |2 +
m

2

N∑
j=1

Φ2
j +

1

4N

( N∑
j=1

Φ2
j

)2
dx

)
DΦ,

ν: Gaussian free field

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]

For d = 2, 3

νN,i form a tight set of probability measures on C−
1
2−κ for κ > 0.

For m ≥ m0, νN,i converges to ν; and νNk converges to ν × · · · × ν, as

N →∞. Furthermore, W2(νN,i , ν) . N−
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Invariant measures

Idea of proof: W2(νN,i , ν) . N− 1
2 for d = 3

a coupling of νN,i , ν ⇒ take stationary solutions (Φi ,Zi )

(∂t −∆ + m)Yi =− 1

N

N∑
j=1

(2Yj : ZiZj : + : Z 2
j : Yi + . . . ),

Cancelation from paraprodcts [Gubinelli, Hofmanova 18]

N∑
i=1

[
〈(∆−m)Yi ,Yi 〉 −

1

N

N∑
j=1

〈2Yj 4: ZiZj : +Yi 4: Z 2
j :,Yi 〉

]
⇒

E
( N∑

j=1

‖Yj(T )‖2L2

)
+

m

2
E

N∑
j=1

‖Yj(T )‖2L2
TL

2 +
1

N
E
∥∥∥ N∑

i=1

Y 2
i

∥∥∥2
L2
TL

2

≤E
( N∑

j=1

‖Yj(0)‖2L2

)
+ CE

∫ T

0

( N∑
i=1

‖Yi‖2L2

)
RNds + C .

RN = RN − E[RN ] + E[RN ]
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Observables

Observables

Theorem [Shen, Scott, Zhu, Z. 20/ Shen, Zhu, Z. 21]

Suppose that Φ w νN . For κ > 0, m large enough, the following result holds:
1√
N

∑N
i=1 : Φ2

i : is tight in B−2κ2,2 for d = 2 /B−1−κ1,1 for d = 3

1
N : (

∑N
i=1 Φ2

i )2 : is tight in B−3κ1,1 for d = 2

For d = 1, 2,

lim
N→∞

1√
N

N∑
i=1

: Φ2
i :6= lim

N→∞

1√
N

N∑
i=1

: Z 2
i :

lim
N→∞

1

N
: (

N∑
i=1

Φ2
i )2 :6= lim

N→∞

1

N
: (

N∑
i=1

Z 2
i )2 :

Idea: Improved moment estimate for stationary case by independence

E

[( N∑
i=1

‖Yi‖2L2

)q]
+ E

[( N∑
i=1

‖Yi‖2L2 + 1

)q( N∑
i=1

‖∇Yi‖2L2

)]
. 1.

Integration by parts formula/ Dyson-Schwinger from [Kupiainen 80]
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Observables

Further Problems

Convergence of dynamics for d = 3/ Correlation of Observables for d = 3?

how to drop m ≥ m0? General theory on distributional dependent singular
SPDEs

Other models
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Observables

Thank you !
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