
Li–Yau type inequality for curves and
applications

Tatsuya MIURA

Tokyo Institute of Technology

6th September 2021

Tatsuya MIURA (Tokyo Tech) Li–Yau type inequality for curves 6 Sep 2021 1 / 18



Organization

Table of contents:
1. Introduction: bending energy and self-intersection.
2. Main result: Li–Yau type multiplicity inequality.
3. Applications: elastic flow, elastic network, elastic knot.

Main reference:
▶ Miura: Li–Yau type inequalities for curves in any codimension, arXiv:2102.06597.

Tatsuya MIURA (Tokyo Tech) Li–Yau type inequality for curves 6 Sep 2021 2 / 18



Introduction

1. Introduction: bending energy and self-intersection.
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What is the bending energy?

Bending energy:
▶ A quantity measuring how a curve (or surface) bend,∫

γ

|κ|2ds,

where γ is a curve in Rn, s arclength, κ := ∂2
sγ curvature vector.

▶ D. Bernoulli (1742), L. Euler (1744), ..., M. Born (1906), ...

▶ Minimize bending energy in a certain class of curves.
⇝ The minimizer often realizes the shape of a real object.

▶ Critical point under fixed-length constraint is called (Euler’s) elastica.
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Example 1: Elastic rod

[Euler 1744]

[Born 1906]
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Example 2: Self-intersecting elastic curves

▶ The effect of self-intersection yields more complicated shapes.
▶ See experiments on elastic knots (and Euler’s figures again)．

[Gallotti–Pierre-Louis ’07, Phys Rev E] [Euler 1744]

▶ Here we mainly address a more fundamental problem, Li–Yau inequality.
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Main result

2. Main result: Li–Yau type multiplicity inequality.
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Classical Li–Yau inequality for surfaces

▶ Bending energy (Willmore energy) for closed surfaces Σ2 ⊂ Rn:

W [Σ] :=

∫
Σ

|H|2 (H: mean curvature vector).

▶ Note: W is scale invariant & minimized by a round sphere.
▶ Σ has a point p ∈ Σ ⊂ Rn of multiplicity k if Σ passes p at least k times.

Theorem (Li–Yau’82, Invent Math)

If a closed surface Σ2 ⊂ Rn≥3 has a point of multiplicity k, then W [Σ] ≥ 4πk.

Remarks:
▶ Sharp: W ≈ 4πk for nearly k-times covered spheres.
▶ If W [Σ] < 8π, then Σ must be embedded.
▶ Fundamental tool. [Kuwert–Schätzle’14, Ann Math], [Marques–Neves’14, Ann Math]

▶ The proof heavily relies on 2D.
▶ How about 1D curves? ⇝ new phenomena due to low dimensionality.
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Normalized bending energy

Goal: establish a Li–Yau type inequality for closed curves γ.
▶ BUT the bending energy B[γ] =

∫
γ
|κ|2ds is not scale-invariant!

▶ Consider the scale-invariant normalized bending energy B̄:

B̄[γ] := L[γ]

∫
γ

|κ|2ds.

(Equivalent to assuming L[γ] = 1.)

▶ This is a right quantity since for any closed curve γ in Rn≥2,

B̄[γ] ≥ 4π2,

where equality holds if and only if γ is a round circle.

Precise goal: find an inequality for γ with multiplicity k of the form

B̄[γ] ≥ Ck2.
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Bending energy and multiplicity

▶ Let ϖ∗ = 28.109... be an explicit constant defined by elliptic integrals.

Theorem (M.)

Let γ be a closed H2-curve in Rn≥2 with a point of multiplicity k ≥ 2. Then

B̄[γ] ≥ ϖ∗k2,

where equality holds iff n ≥ 3 or k is even and γ is a k-leafed elastica.
On the other hand, if n = 2 and k is odd, then ∃εk > 0 such that

B̄[γ] ≥ ϖ∗k2 + εk.

▶ Covers general (n, k) and optimal in many cases*.
▶ ↱ Variational proof, using classification of elasticae [Langer–Singer’84, JDG].

▶ Nonoptimality is caused by a hidden algebraic obstruction.
▶ ↱ Proof by a transcendency result involving 2F1 [André’96, Crelle].

*Müller–Rupp 2021: Optimal estimate for (n, k) = (2, 2). Polden 1996, von der Mosel 1998, Wheeler 2013,...: Non optimal estimate B̄ ≥ Ck2 .
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New optimal shapes are discovered

k-Leafed elastica: composed of k half-fold figure-eights of same length.
▶ 2-Leafed elastica ⇔ (unique) figure-eight elastica.
▶ 3-Leafed elastica ⇔ (unique) elastic propeller:

(This is why higher codimension n ≥ 3 is needed for k = 3.)

▶ If k ≥ 4, then k-leafed elasticae are not unique, but still strongly rigid.
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Applications

3. Applications: elastic flow, elastic network, elastic knot.

Tatsuya MIURA (Tokyo Tech) Li–Yau type inequality for curves 6 Sep 2021 12 / 18



Application 1: Elastic flow

Corollary (Embeddedness criterion)

For a closed curve γ in Rn, if B̄[γ] < 4ϖ∗, then γ is embedded.

Elastic flow: For λ > 0,

∂tγ = −2∇2
sκ− |κ|2κ+ λκ.

▶ L2(ds)-gradient flow of Eλ := B[γ] + λL[γ]⇝ energy decreases.
▶ 4th-order flow⇝ embeddedness may break in the middle.

Corollary (Optimal threshold for all-time embeddedness)

If 1
4λEλ[γ0]

2 < 4ϖ∗, then the elastic flow from γ0 is embedded for all t ≥ 0.

▶ Optimality: Figure-eight elastica is stationary and 1
4λEλ[γ]

2 = 4ϖ∗.
▶ Easy but key fact: B̄ ≤ 1

4λE
2
λ in general. (Fixed-length flow more direct.)
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Application 2: Elastic network
Theta-network: Triple of curves γ = (γ1, γ2, γ3) meeting equal 2π

3 -angle.

E[γ] :=

3∑
i=1

(B[γi] + L[γi]) =

3∑
i=1

∫
γi

(|κ|2 + 1)ds.

Theorem (Existence of minimal elastic Θ-network)

There exists a minimizer of E among all Θ-networks in Rn.

▶ [Dall’Acqua–Novaga–Pluda ’20, Indiana] proved n = 2, while n ≥ 3 left open.
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Application 3: Elastic knot

Theorem (Langer–Singer ’84 JDG, ’85 JLMS, ’85 Topology)

Any closed elastica in R3 is one of 1, 2, 3, or its multiple covering:
1. Circle (planar).
2. Figure-eight elastica (planar).
3. Embedded torus knots (spatial, infinitely many).

Among them, the only stable one is the one-fold circle.

How the elastic knots appear?
▶ Min B with suitable constraint on self-intersections:

The idea goes back to [von der Mosel ’98, Asymptot Anal]

[Gallotti–Pierre-Louis ’07, Phys Rev E]
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Application 3: Elastic knot

Known results:
▶ The minimal elastic unknot is the one-fold circle.
▶ The minimal elastic trefoil is the two-fold circle.

▶ Moreover true for minimal (2, b)-torus knots.
[Gerlach–Reiter–von der Mosel ’17, ARMA]

[Gerlach–Reiter–von der Mosel ’17]

Conjectures on minimal elastic knots:
▶ Circular elastic knot conjecture.

[Gallotti–Pierre-Louis ’07]

▶ Teardrop-heart elastic knot conjecture.
[Miura–Müller–Rupp, arXiv:2106.09549]

New conjecture on “stable” elastic knots:
▶ The second smallest stable elastic unknot is the elastic propeller.

The last two conjectures are strongly inspired by numerical studies in [Avvakumov–Sossinsky ’14], [Bartels–Reiter ’21].
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Movie

Experiment: elastic unknots by a closed springy wire:
▶ Circle is stable (minimal).
▶ Figure-eight elastica is not stable in space (but stable in plane).
▶ Elastic propeller is stable!
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Summary and future directions

Summary:
▶ Normalized bending energy B̄[γ] = L

∫
γ
|κ|2ds and multiplicity k:

B̄[γ] ≥ ϖ∗k2.

▶ Optimal in many cases. Nonoptimal otherwise.
▶ k = 2: Figure-eight elastica. k = 3: Elastic propeller.

Open problems:
▶ Optimal shapes in remaining cases n = 2 and odd k ≥ 3?
▶ General

∫
γ
|κ|p? General dim Mm ⊂ Rn?

▶ Uniqueness of minimal elastic Θ-network? Shape?
▶ Proofs of the conjectures on elastic knots?

– Thank you.
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