Li–Yau type inequality for curves and applications

Tatsuya MIURA

Tokyo Institute of Technology

6th September 2021

Table of contents:

- 1. Introduction: bending energy and self-intersection.
- 2. Main result: Li-Yau type multiplicity inequality.
- 3. Applications: elastic flow, elastic network, elastic knot.

Main reference:

Miura: Li–Yau type inequalities for curves in any codimension, arXiv:2102.06597.

1. Introduction: bending energy and self-intersection.

Bending energy:

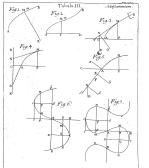
A quantity measuring how a curve (or surface) bend,

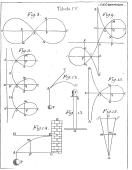
$$\int_{\gamma} |\kappa|^2 ds$$

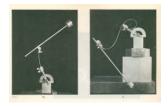
where γ is a curve in \mathbf{R}^n , s arclength, $\kappa := \partial_s^2 \gamma$ curvature vector.

- D. Bernoulli (1742), L. Euler (1744), ..., M. Born (1906), ...
- Critical point under fixed-length constraint is called (Euler's) elastica.

Example 1: Elastic rod





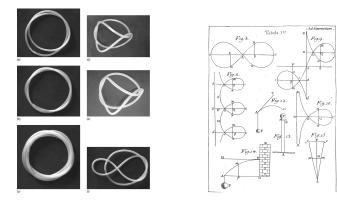


[Born 1906]

[Euler 1744]

Example 2: Self-intersecting elastic curves

- ► The effect of self-intersection yields more complicated shapes.
- See experiments on elastic knots (and Euler's figures again).



[Gallotti–Pierre-Louis '07, Phys Rev E] [Euler 1744]

Here we mainly address a more fundamental problem, Li–Yau inequality.

2. Main result: Li-Yau type multiplicity inequality.

Classical Li–Yau inequality for surfaces

• Bending energy (Willmore energy) for closed surfaces $\Sigma^2 \subset \mathbf{R}^n$:

$$W[\Sigma] := \int_{\Sigma} |H|^2$$
 (*H*: mean curvature vector).

▶ Note: *W* is scale invariant & minimized by a round sphere.

• Σ has a point $p \in \Sigma \subset \mathbf{R}^n$ of multiplicity k if Σ passes p at least k times.

Theorem (Li-Yau'82, Invent Math)

If a closed surface $\Sigma^2 \subset \mathbf{R}^{n \ge 3}$ has a point of multiplicity k, then $W[\Sigma] \ge 4\pi \mathbf{k}$.

Remarks:

- Sharp: $W \approx 4\pi k$ for nearly k-times covered spheres.
- If $W[\Sigma] < 8\pi$, then Σ must be embedded.
- Fundamental tool. [Kuwert–Schätzle'14, Ann Math], [Marques–Neves'14, Ann Math]
- The proof heavily relies on 2D.
- ▶ How about 1D curves? ~> new phenomena due to low dimensionality.

Classical Li–Yau inequality for surfaces

▶ Bending energy (Willmore energy) for closed surfaces $\Sigma^2 \subset \mathbf{R}^n$:

$$W[\Sigma] := \int_{\Sigma} |H|^2$$
 (*H*: mean curvature vector).

▶ Note: *W* is scale invariant & minimized by a round sphere.

• Σ has a point $p \in \Sigma \subset \mathbf{R}^n$ of multiplicity k if Σ passes p at least k times.

Theorem (Li-Yau'82, Invent Math)

If a closed surface $\Sigma^2 \subset \mathbf{R}^{n \geq 3}$ has a point of multiplicity k, then $W[\Sigma] \geq 4\pi \mathbf{k}$.

Remarks:

- Sharp: $W \approx 4\pi k$ for nearly *k*-times covered spheres.
- If $W[\Sigma] < 8\pi$, then Σ must be embedded.
- Fundamental tool. [Kuwert–Schätzle'14, Ann Math], [Marques–Neves'14, Ann Math]

The proof heavily relies on 2D.

▶ How about 1D curves? ~> new phenomena due to low dimensionality.

Classical Li–Yau inequality for surfaces

▶ Bending energy (Willmore energy) for closed surfaces $\Sigma^2 \subset \mathbf{R}^n$:

$$W[\Sigma] := \int_{\Sigma} |H|^2$$
 (*H*: mean curvature vector).

▶ Note: *W* is scale invariant & minimized by a round sphere.

• Σ has a point $p \in \Sigma \subset \mathbf{R}^n$ of multiplicity k if Σ passes p at least k times.

Theorem (Li-Yau'82, Invent Math)

If a closed surface $\Sigma^2 \subset \mathbf{R}^{n \geq 3}$ has a point of multiplicity k, then $W[\Sigma] \geq 4\pi \mathbf{k}$.

Remarks:

- Sharp: $W \approx 4\pi k$ for nearly *k*-times covered spheres.
- If $W[\Sigma] < 8\pi$, then Σ must be embedded.
- Fundamental tool. [Kuwert–Schätzle'14, Ann Math], [Marques–Neves'14, Ann Math]
- The proof heavily relies on 2D.
- ▶ How about 1D curves? ~> new phenomena due to low dimensionality.

Goal: establish a Li–Yau type inequality for closed curves γ .

BUT the bending energy $B[\gamma] = \int_{\gamma} |\kappa|^2 ds$ is not scale-invariant!

• Consider the scale-invariant normalized bending energy \overline{B} :

$$\bar{B}[\gamma] := L[\gamma] \int_{\gamma} |\kappa|^2 ds.$$

(Equivalent to assuming $L[\gamma] = 1.$)

► This is a right quantity since for any closed curve γ in R^{n≥2},
B[γ] > 4π²,

where equality holds if and only if γ is a <u>round</u> circle.

$$\bar{B}[\gamma] \ge Ck^2.$$

Goal: establish a Li–Yau type inequality for closed curves γ .

▶ BUT the bending energy $B[\gamma] = \int_{\gamma} |\kappa|^2 ds$ is not scale-invariant!

• Consider the <u>scale-invariant</u> normalized bending energy \overline{B} :

$$\bar{B}[\gamma] := L[\gamma] \int_{\gamma} |\kappa|^2 ds.$$

(Equivalent to assuming $L[\gamma] = 1.$)

This is a right quantity since for any closed curve γ in $\mathbb{R}^{n\geq 2}$, $\bar{B}[\gamma] \geq 4\pi^2$,

where equality holds if and only if γ is a <u>round</u> circle.

$$\bar{B}[\gamma] \ge Ck^2.$$

Goal: establish a Li–Yau type inequality for closed curves γ .

- ▶ BUT the bending energy $B[\gamma] = \int_{\gamma} |\kappa|^2 ds$ is not scale-invariant!
- Consider the scale-invariant normalized bending energy \overline{B} :

$$\bar{B}[\gamma] := L[\gamma] \int_{\gamma} |\kappa|^2 ds.$$

(Equivalent to assuming $L[\gamma] = 1$.)

► This is a right quantity since for any closed curve γ in $\mathbb{R}^{n \ge 2}$, $\bar{B}[\gamma] \ge 4\pi^2$,

where equality holds if and only if γ is a <u>round</u> circle.

$$\bar{B}[\gamma] \ge Ck^2.$$

Goal: establish a Li–Yau type inequality for closed curves γ .

- ▶ BUT the bending energy $B[\gamma] = \int_{\gamma} |\kappa|^2 ds$ is not scale-invariant!
- Consider the scale-invariant normalized bending energy \overline{B} :

$$\bar{B}[\gamma] := L[\gamma] \int_{\gamma} |\kappa|^2 ds.$$

(Equivalent to assuming $L[\gamma] = 1$.)

- ► This is a right quantity since for any closed curve γ in $\mathbb{R}^{n \ge 2}$, $\bar{B}[\gamma] \ge 4\pi^2$,
 - where equality holds if and only if γ is a <u>round circle</u>.

$$\bar{B}[\gamma] \ge Ck^2.$$

Goal: establish a Li–Yau type inequality for closed curves γ .

- ▶ BUT the bending energy $B[\gamma] = \int_{\gamma} |\kappa|^2 ds$ is not scale-invariant!
- Consider the scale-invariant normalized bending energy \overline{B} :

$$\bar{B}[\gamma] := L[\gamma] \int_{\gamma} |\kappa|^2 ds.$$

(Equivalent to assuming $L[\gamma] = 1$.)

• This is a right quantity since for any closed curve γ in $\mathbf{R}^{n\geq 2}$,

 $\bar{B}[\gamma] \ge 4\pi^2,$

where equality holds if and only if γ is a <u>round circle</u>.

$$\bar{B}[\gamma] \ge Ck^2.$$

Bending energy and multiplicity

• Let $\varpi^* = 28.109...$ be an explicit constant defined by elliptic integrals.

Theorem (M.)

Let γ be a closed H^2 -curve in $\mathbb{R}^{n\geq 2}$ with a point of multiplicity $k\geq 2$. Then

$$\bar{B}[\gamma] \ge \varpi^* k^2,$$

where equality holds iff $n \ge 3$ or k is even and γ is a k-leafed elastica. On the other hand, if n = 2 and k is odd, then $\exists \varepsilon_k > 0$ such that

 $\bar{B}[\gamma] \ge \varpi^* k^2 + \varepsilon_k.$

• Covers general (n, k) and optimal in many cases^{*}.

Variational proof, using classification of elasticae [Langer–Singer'84, JDG].

Nonoptimality is caused by a hidden algebraic obstruction.

▶ \simeq Proof by a transcendency result involving $_2F_1$ [André'96, Crelle].

*Müller–Rupp 2021: Optimal estimate for (n,k)=(2,2). Polden 1996, von der Mosel 1998, Wheeler 2013,...: Non optimal estimate $ar{B}\geq Ck^2$

Tatsuya MIURA (Tokyo Tech)

Bending energy and multiplicity

• Let $\varpi^* = 28.109...$ be an explicit constant defined by elliptic integrals.

Theorem (M.)

Let γ be a closed H^2 -curve in $\mathbb{R}^{n\geq 2}$ with a point of multiplicity $k\geq 2$. Then

 $\bar{B}[\gamma] \ge \varpi^* k^2,$

where equality holds iff $n \ge 3$ or k is even and γ is a k-leafed elastica. On the other hand, if n = 2 and k is odd, then $\exists \varepsilon_k > 0$ such that

 $\bar{B}[\gamma] \ge \varpi^* k^2 + \varepsilon_k.$

► Covers general (*n*, *k*) and optimal in many cases^{*}.

Variational proof, using classification of elasticae [Langer–Singer'84, JDG].

Nonoptimality is caused by a hidden algebraic obstruction.

▶ \simeq Proof by a transcendency result involving $_2F_1$ [André'96, Crelle].

*Müller–Rupp 2021: Optimal estimate for (n, k) = (2, 2). Polden 1996, von der Mosel 1998, Wheeler 2013,...: Non optimal estimate $ar{B} \ge Ck^2$.

Bending energy and multiplicity

• Let $\varpi^* = 28.109...$ be an explicit constant defined by elliptic integrals.

Theorem (M.)

Let γ be a closed H^2 -curve in $\mathbb{R}^{n\geq 2}$ with a point of multiplicity $k\geq 2$. Then

$$\bar{B}[\gamma] \ge \varpi^* k^2,$$

where equality holds iff $n \ge 3$ or k is even and γ is a k-leafed elastica. On the other hand, if n = 2 and k is odd, then $\exists \varepsilon_k > 0$ such that

$$\bar{B}[\gamma] \ge \varpi^* k^2 + \varepsilon_k.$$

• Covers general (n, k) and optimal in many cases^{*}.

Variational proof, using classification of elasticae [Langer–Singer'84, JDG].

Nonoptimality is caused by a hidden algebraic obstruction.

▶ \simeq Proof by a transcendency result involving $_2F_1$ [André'96, Crelle].

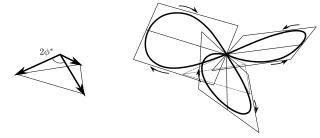
Tatsuya MIURA (Tokyo Tech)

^{*}Müller–Rupp 2021: Optimal estimate for (n, k) = (2, 2). Polden 1996, von der Mosel 1998, Wheeler 2013,...: Non optimal estimate $ar{B} \geq Ck^2$.

New optimal shapes are discovered

k-Leafed elastica: composed of *k* half-fold figure-eights of same length.

- ▶ 2-Leafed elastica \Leftrightarrow (unique) figure-eight elastica.
- ▶ 3-Leafed elastica \Leftrightarrow (unique) elastic propeller:



(This is why higher codimension $n \ge 3$ is needed for k = 3.)

If $k \ge 4$, then k-leafed elasticae are not unique, but still strongly rigid.

3. Applications: elastic flow, elastic network, elastic knot.

Corollary (Embeddedness criterion)

For a closed curve γ in \mathbb{R}^n , if $\overline{B}[\gamma] < 4\varpi^*$, then γ is embedded.

Elastic flow: For $\lambda > 0$,

$$\partial_t \gamma = -2\nabla_s^2 \kappa - |\kappa|^2 \kappa + \lambda \kappa.$$

▶ $L^2(ds)$ -gradient flow of $E_{\lambda} := B[\gamma] + \lambda L[\gamma] \rightsquigarrow$ energy decreases.

4th-order flow ~> embeddedness may break in the middle.

Corollary (Optimal threshold for all-time embeddedness)

If $\frac{1}{4\lambda}E_{\lambda}[\gamma_0]^2 < 4\varpi^*$, then the elastic flow from γ_0 is embedded for all $t \ge 0$.

Optimality: Figure-eight elastica is stationary and ¹/_{4λ}E_λ[γ]² = 4∞*.
 Easy but key fact: B
 ¹/_{4λ}E²_λ in general. (Fixed-length flow more direct.)

Corollary (Embeddedness criterion)

For a closed curve γ in \mathbb{R}^n , if $\overline{B}[\gamma] < 4\varpi^*$, then γ is embedded.

Elastic flow: For $\lambda > 0$,

$$\partial_t \gamma = -2\nabla_s^2 \kappa - |\kappa|^2 \kappa + \lambda \kappa.$$

- ► $L^2(ds)$ -gradient flow of $E_{\lambda} := B[\gamma] + \lambda L[\gamma] \rightsquigarrow$ energy decreases.
- 4th-order flow ~> embeddedness may break in the middle.

Corollary (Optimal threshold for all-time embeddedness)

If $\frac{1}{4\lambda}E_{\lambda}[\gamma_0]^2 < 4\varpi^*$, then the elastic flow from γ_0 is embedded for all $t \ge 0$.

Optimality: Figure-eight elastica is stationary and ¹/_{4λ}E_λ[γ]² = 4ϖ*.
 Easy but key fact: B
 ⁻ ≤ ¹/_{4λ}E²_λ in general. (Fixed-length flow more direct.)

Corollary (Embeddedness criterion)

For a closed curve γ in \mathbb{R}^n , if $\overline{B}[\gamma] < 4\varpi^*$, then γ is embedded.

Elastic flow: For $\lambda > 0$,

$$\partial_t \gamma = -2\nabla_s^2 \kappa - |\kappa|^2 \kappa + \lambda \kappa.$$

- ► $L^2(ds)$ -gradient flow of $E_{\lambda} := B[\gamma] + \lambda L[\gamma] \rightsquigarrow$ energy decreases.
- ◆ 4th-order flow ~→ embeddedness may break in the middle.

Corollary (Optimal threshold for all-time embeddedness)

If $\frac{1}{4\lambda}E_{\lambda}[\gamma_0]^2 < 4\varpi^*$, then the elastic flow from γ_0 is embedded for all $t \ge 0$.

- Optimality: Figure-eight elastica is stationary and $\frac{1}{4\lambda}E_{\lambda}[\gamma]^2 = 4\varpi^*$.
- Easy but key fact: $\bar{B} \le \frac{1}{4\lambda} E_{\lambda}^2$ in general. (Fixed-length flow more direct.)

Application 2: Elastic network

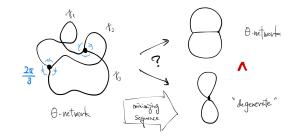
Theta-network: Triple of curves $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ meeting equal $\frac{2\pi}{3}$ -angle.

$$E[\gamma] := \sum_{i=1}^{3} (B[\gamma_i] + L[\gamma_i]) = \sum_{i=1}^{3} \int_{\gamma_i} (|\kappa|^2 + 1) ds.$$

Theorem (Existence of minimal elastic Θ -network)

There exists a minimizer of *E* among all Θ -networks in \mathbb{R}^n .

▶ [Dall'Acqua–Novaga–Pluda '20, Indiana] proved n = 2, while $n \ge 3$ left open.



Theorem (Langer–Singer '84 JDG, '85 JLMS, '85 Topology)

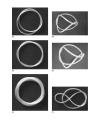
Any closed elastica in \mathbb{R}^3 is one of 1, 2, 3, or its multiple covering:

- 1. Circle (planar).
- 2. Figure-eight elastica (planar).
- 3. Embedded torus knots (spatial, infinitely many).

Among them, the only stable one is the one-fold circle.

How the elastic knots appear?

Min B with suitable constraint on self-intersections: The idea goes back to [von der Mosel '98, Asymptot Anal]



[Gallotti-Pierre-Louis '07, Phys Rev E]

Application 3: Elastic knot

Known results:

- The minimal elastic unknot is the one-fold circle.
- The minimal elastic trefoil is the two-fold circle.
 - Moreover true for minimal (2, b)-torus knots. [Gerlach–Reiter–von der Mosel '17, ARMA]

- Circular elastic knot conjecture. [Gallotti–Pierre-Louis '07]
- Teardrop-heart elastic knot conjecture. [Miura–Müller–Rupp, arXiv:2106.09549]

[Gerlach-Reiter-von der Mosel '17]

New conjecture on "stable" elastic knots:

► The second smallest stable elastic unknot is the elastic propeller.

The last two conjectures are strongly inspired by numerical studies in [Avvakumov-Sossinsky '14], [Bartels-Reiter '21].

Movie

Experiment: elastic unknots by a closed springy wire:

- Circle is stable (minimal).
- Figure-eight elastica is not stable in space (but stable in plane).
- Elastic propeller is stable!

Summary and future directions

Summary:

▶ Normalized bending energy $\bar{B}[\gamma] = L \int_{\gamma} |\kappa|^2 ds$ and multiplicity k:

 $\bar{B}[\gamma] \geq \varpi^* k^2.$

- Optimal in many cases. Nonoptimal otherwise.
- ▶ k = 2: Figure-eight elastica. k = 3: Elastic propeller.

Open problems:

- Optimal shapes in remaining cases n = 2 and odd $k \ge 3$?
- General $\int_{\gamma} |\kappa|^p$? General dim $M^m \subset \mathbf{R}^n$?
- ► Uniqueness of minimal elastic ⊖-network? Shape?
- Proofs of the conjectures on elastic knots?

- Thank you.