Abstract random polynomial inequalities in Banach spaces

Mieczysław Mastyło

Adam Mickiewicz University, Poznań

Asia-Pacific Analysis and PDE Seminar

October 24, 2022

Introduction

- Ø Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities
- **③** *KSZ*-inequalities for subgaussian random variables
- **4** Random Dirichlet polynomials

6 Appendix

Introduction

Random polynomials

- For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$ and $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, we let $|\alpha| := |\alpha_1| + \ldots + |\alpha_n|$ and $z^{\alpha} := z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$, $\alpha! := \alpha_1! \cdots \alpha_n!$, where $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.
- If $P \colon \mathbb{C}^n \to \mathbb{C}$ is a polynomial given by

$$P(z) = \sum_{lpha \in \mathbb{N}_0^n} c_lpha z^lpha, \quad z \in \mathbb{C}^n,$$

then its degree $deg(P) := max\{|\alpha|; c_{\alpha} \neq 0\}.$

For n ∈ N and m ∈ N₀ we denote by T_m(Tⁿ) the space of all trigonometric polynomials

$${\sf P}(z)=\sum_{lpha\in\mathbb{Z}^n}c_lpha z^lpha,\quad z\in\mathbb{T}^n$$

on the *n*-dimensional torus \mathbb{T}^n with deg(P) := max{ $|\alpha|$; $c_{\alpha} \neq 0$ } $\leq m$.

Introduction

The origin of trigonometric random polynomials goes back to the Salem and Zygmund seminal Acta Math. (1954) paper, where they studied trigonometric random polynomials of the type

$$\sum_{n=1}^{\infty} \varepsilon_n c_n \cos(nt + \varphi_n), \quad t \in [-\pi, \pi).$$

This was continued by Kahane (1960), where the study was extended to random polynomials in several variables. In the recent decades the multidimensional variants of the Kahane-Salem-Zygmund inequalities (*KSZ*-inequalities for short) have been of central importance in modern analysis, as, e.g., Fourier analysis, analytic number theory, or holomorphy in high dimensions. The multidimensional *KSZ*-inequality states:

Theorem There exists a positive constant C such that, for each $m, n \in \mathbb{N}$ with $m \ge 2$ and any trigonometric polynomial $\sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} z^{\alpha}$ in $\mathcal{T}_m(\mathbb{T}^n)$ there exists a choice of signs $\varepsilon_{\alpha} = \pm 1$ for which

$$\sup_{z\in\mathbb{T}^n}\Big|\sum_{|\alpha|\leqslant m}\varepsilon_{\alpha}c_{\alpha}z^{\alpha}\Big|\leqslant C\sqrt{n\log m}\left(\sum_{|\alpha|\leqslant m}|c_{\alpha}|^2\right)^{\frac{1}{2}}$$

Extended variant of Kahane-Salem-Zygmund inequality

Theorem For every a > 0, each $m, n \ge 2$ and all families of $(\varepsilon_{\alpha})_{\alpha \in \mathbb{Z}^n, |\alpha| \le m}$ of independent Bernoulli variables on a probability measure space $(\Omega, \mathcal{A}, \mathbb{P})$ and all non-zero $(c_{\alpha})_{\alpha \in \mathbb{Z}^n, |\alpha| \le m} \subset \mathbb{C}$, we have

$$\mathbb{P}\bigg\{\omega\in\Omega; \sup_{z\in\mathbb{T}^n}\Big|\sum_{|\alpha|\leqslant m}\varepsilon_{\alpha}(\omega)c_{\alpha}z^{\alpha}\Big|\geqslant a\,\sqrt{n\log m}\,\Big(\sum_{|\alpha|\leqslant m}|c_{\alpha}|^2\Big)^{\frac{1}{2}}\bigg\}\leqslant C(a)\,,$$

where $C(a) := 4 \left(\frac{\pi^2}{m^{\frac{a^2}{16}}} - 1 \right)^n$.

Remark. For all $a > 4 \left(\frac{\log(2\pi^2)}{\log 2} + 1\right)^{1/2}$ one has C(a) < 1, so for this a we get

$$\mathbb{P}\bigg\{\omega\in\Omega; \sup_{z\in\mathbb{T}^n}\Big|\sum_{|\alpha|\leqslant m}\varepsilon_{\alpha}(\omega)c_{\alpha}z^{\alpha}\Big|\leqslant a\sqrt{n\log m}\,\Big(\sum_{|\alpha|\leqslant m}|c_{\alpha}|^2\Big)^{\frac{1}{2}}\bigg\}>0\,.$$

In what follows, we shall denote by ℓ_p^n the linear space \mathbb{C}^n equipped with the *p*-norm $(1 \leq p \leq \infty)$.

Theorem (H. P. Boas (2000)) Let $1 \le p \le \infty$ and $m, n \ge 2$. Then there exists a choice of signs $(\varepsilon_{\alpha})_{|\alpha|=m}, \varepsilon_{\alpha} = \pm 1$ such that

• If $1 \leq p \leq 2$, then

$$\sup_{z\in B_{\ell_p^{(n)}}}\Big|\sum_{|\alpha|=m}\varepsilon_{\alpha}\frac{m!}{\alpha!}z^{\alpha}\Big|\leqslant C\sqrt{mn\log m}\ (m!)^{1-1/p}.$$

• If $2 \leq p \leq \infty$, then

$$\sup_{z\in B_{\ell_p^n}}\Big|\sum_{|\alpha|=m}\varepsilon_{\alpha}\frac{m!}{\alpha!}z^{\alpha}\Big|\leqslant C\sqrt{mn\log m}\ n^{(1/2-1/p)m}(m!)^{1/2},$$

where C > 0 does not depend on *m* nor on *n*.

Abstract random Kahane-Salem-Zygmund inequalities

- We let $(\Omega, \mathcal{A}, \mu)$ to be a measure space and let X be a Banach space. $L^0(\mu, X)$ denotes the space of all equivalence classes of strongly measurable X-valued functions on Ω . We let $L^0(\mu) := L^0(\mu, \mathbb{K})$, where $\mathbb{K} := \mathbb{C}$ or $\mathbb{K} := \mathbb{R}$.
- $E \subset L^0(\mu)$ is said to be a Banach function lattice(or space), if there exists $h \in E$ with h > 0 a.e. and E is an Banach ideal in $L^0(\mu)$, that is, if $|f| \leq |g|$ a.e. with $g \in E$ and $f \in L^0(\mu)$, then $f \in E$ and $||f||_E \leq ||g||_E$. By a Banach sequence space we mean a Banach lattice $E \subset \omega(\mathbb{N}) := L^0(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where μ is the counting measure.
- If $E \subset L^0(\mu)$ is a Banach function lattice and X is a Banach space, then the Köthe-Bochner space E(X) consists of all $f \in L^0(\mu, X)$ with $||f(\cdot)||_X \in E$, and is equipped with the norm $||f||_{E(X)} := || ||f(\cdot)||_X ||_E$.

 (A. Defant–M. M.) Given a Banach function space X over a probability measure space (Ω, A, P) and a sequence of random variables (γ_i)_{i∈N} ⊂ X, we are looking for a function ψ: N → (0,∞) and a sequence (Sⁿ),

$S^n := (\mathbb{K}^n, \|\cdot\|_n), n \in \mathbb{N}$

of semi-normed spaces such that, for each N, K and for every choice of finitely many vectors $a_i := (a_i(j))_{j=1}^N \in \ell_{\infty}^N$, $1 \le i \le K$, we have

$$\left\|\sum_{i=1}^{K} a_i \gamma_i\right\|_{X(\ell_{\infty}^N)} \leqslant \psi(N) \sup_{1 \leqslant j \leqslant N} \left\| (a_i(j))_{i=1}^{K} \right\|_{\mathcal{S}^K},$$

that is,

$$\left\|\sup_{1\leqslant j\leqslant N}\left|\sum_{i=1}^{K}a_{i}(j)\gamma_{i}\right|\right\|_{X}\leqslant \psi(N)\sup_{1\leqslant j\leqslant N}\left\|(a_{i}(j))_{i=1}^{K}\right\|_{S^{K}}.$$

A sequence (γ_i)_{i∈ℕ} ⊂ X is said to satisfy the KSZ-inequality of type (X, (Sⁿ), ψ) provided that the above inequality holds.

KSZ-inequalities by lattice constants

If X is a Banach lattice, then for each n ∈ N, the M-constant μ_n(X) is defined by

$$\mu_n(X) := \sup\left\{ \left\| \sup_{1 \leqslant j \leqslant n} |x_j| \right\|_X : \|x_j\|_X \leqslant 1, \text{ for } 1 \leqslant j \leqslant n \right\}.$$

 Properties: (μ_n(X))_n is a non-decreasing sequence with μ_n(X) ∈ [1, n] for each n ∈ N; (μ_n(X))_n is a submultiplicative sequence, that is,

$$\mu_{mn}(X) \leqslant \mu_m(X)\mu_n(X), \quad m,n \in \mathbb{N};$$

- $\left(\frac{\mu_n(X)}{n}\right)$ is non-increasing sequence (Abramovich–Lozanovskii (1973)).
- $\lim_{n\to\infty} \frac{\mu_n(X)}{n} \in \{0,1\}$. This implies $\mu_n(X) = n$ for each $n \in \mathbb{N}$ whenever $\lim_{n\to\infty} \frac{\mu_n(X)}{n} = 1$.
- Theorem (Abramovich–Lozanovskii (1973)) If $\lim_{n\to\infty} \frac{\mu_n(X)}{n} = 0$, then all odd duals of X are KB-spaces (Kantorovich-Banach spaces).

Proposition (A. Defant–M. M) Let X be a Banach lattice over $(\Omega, \mathcal{A}, \nu)$ and let $\psi \colon \mathbb{N} \to [1, \infty)$ be given by $\psi(n) := \mu_n(X)$ for each $n \in \mathbb{N}$. Then every sequence $(\gamma_i)_{i \in \mathbb{N}}$ of random variables in X satisfies the *KSZ*-inequality of type $(X, (S^n), \psi)$,

$$\left\|\sup_{1\leqslant j\leqslant N}\left|\sum_{i=1}^{K}a_{i}(j)\gamma_{i}\right|\right\|_{X}\leqslant\psi(N)\sup_{1\leqslant j\leqslant N}\left\|(a_{i}(j))_{i=1}^{K}\right\|_{S^{K}},\quad (a_{i}(j))_{j=1}^{N}\in\ell_{\infty}^{N}$$

with $S^n := (\mathbb{K}^n, \|\cdot\|_n)$, where the semi-norm $\|\cdot\|_n$ (resp., norm $\|\cdot\|_n$, whenever the γ_i are linearly independent) are defined by

$$\|z\|_n := \|z_1\gamma_1 + \ldots + z_n\gamma_n\|_X, \quad z = (z_1, \ldots, z_n) \in \mathbb{K}^n.$$

M-constants for some class of Orlicz spaces

Let $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be an Orlicz function (that is, a convex, increasing and continuous positive function with $\Phi(0) = 0$). The Orlicz space L_{Φ} over a measure space $(\Omega, \mathcal{A}, \mu)$ is defined to be the space of all $f \in L^0(\mu)$ such that $\int_{\Omega} \Phi(\lambda|f|) d\mu < \infty$ for some $\lambda > 0$, and it is equipped with the norm

$$\|f\|_{\Phi} := \inf \left\{ \lambda > 0; \ \int_{\Omega} \Phi\left(\frac{|f|}{\lambda}\right) d\mu \leqslant 1 \right\}.$$

For $1 \leq r < \infty$, the exponential Orlicz function $\varphi_r(t) := e^{t^r} - 1$, $t \ge 0$.

Theorem. [A. Defant–M. M] Let L_{Φ} be an Orlicz space over a probability measure space $(\Omega, \mathcal{A}, \nu)$ with $\Phi(t) := e^{\varphi(t)} - 1$ for all $t \ge 0$, where φ is an Orlicz function on \mathbb{R}_+ with, for some $\gamma > 0$, $\varphi(st) \le \gamma \varphi(s) \varphi(t)$ for all $s \in (0, 1]$ and t > 0. Then, for each $n \in \mathbb{N}$, one has

$$\mu_n(L_{\Phi}) \leqslant \frac{C}{\varphi^{-1}(\varphi(1)/(1+\log n))},$$

where $C = (e-1)\gamma\varphi(1)$.

Corollary For $r \in [1, \infty)$ let L_{φ_r} be an Orlicz space over a probability measure space $(\Omega, \mathcal{A}, \nu)$ with $\varphi_r(t) = e^{t'} - 1$ for all $t \ge 0$. Then for each $n \in \mathbb{N}$ one has

 $\mu_n(L_{\varphi_r}) \leqslant (e-1)(1+\log n)^{\frac{1}{r}}$.

KSZ-inequalities for subgaussian random variables

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and f a random variable. If f is real-valued, then f is said to be subgaussian, whenever there exists $s \ge 0$ such that

$$\mathbb{E} \exp(\lambda f) \leqslant \exp\left(rac{s^2\lambda^2}{2}
ight), \quad \lambda \in \mathbb{R}$$
 ,

and if f is complex-valued, whenever there exists $s \ge 0$ such that

$$\mathbb{E}\exp(\operatorname{Re}(zf)\leqslant \exp\left(\frac{s^2|z|^2}{2}\right), \quad z\in\mathbb{C}.$$

The best such *s* is denoted by sg(f).

- A real-valued sequence (f_n) is called subgaussian if there is $s \ge 0$ such that for any $x = (x_n) \in \ell_2$ of norm one, the random variable $f = \sum_{n=1}^{\infty} x_n f_n$ is subgaussian. The best possible number s is denoted by $sg((f_n))$.
- A complex-valued sequence (f_n) is said to be subgaussian, whenever $(\text{Re}f_n)$ and the imaginary parts $(\text{Im}f_n)$, is subgaussian.

Examples

- Every sequence (γ_n) of independent, real (resp., complex) normal gaussian variables is subgaussian with $sg((\gamma_n)) = 1$.
- Every sequences (ε_n) of independent Rademacher variables is subgaussian with $sg((\varepsilon_n)) = 1$.

Theorem (A. Defant–M. M.) Let $(\gamma_i)_{i \in \mathbb{N}}$ be a (real or complex) subgaussian sequence of random variables over $(\Omega, \mathcal{A}, \mathbb{P})$ with $s = sg((\gamma_i))$. The following statements are true for each $K, N \in \mathbb{N}$ and all $a_1, \ldots, a_K \in \ell_{\infty}^N$ with $a_i = (a_i(j))_{j=1}^N$, $1 \leq i \leq K$:

(1) There is a constant $C_2 = C(s) > 0$ such that

$$\left\|\sum_{i=1}^{K} \gamma_i a_i\right\|_{L_{\varphi_2}(\ell_{\infty}^N)} \leqslant C_2 (1+\log N)^{\frac{1}{2}} \sup_{1\leqslant j\leqslant N} \left\|\left(a_i(j)\right)_{i=1}^{K}\right\|_{\ell_2^K}.$$

(2) If in addition $M = \sup_i ||\gamma_i||_{\infty} < \infty$, then for every $r \in (2, \infty)$ there is a constant $C_r = C(r, s, M) > 0$ such that for 1/r' := 1 - 1/r, we have

$$\left\|\sum_{i=1}^{K} \gamma_{i} a_{i}\right\|_{L_{\varphi_{r}}(\ell_{\infty}^{N})} \leqslant C_{r} (1 + \log N)^{\frac{1}{r}} \sup_{1 \leqslant j \leqslant N} \left\| \left(a_{i}(j)\right)_{i=1}^{K}\right\|_{\ell_{r',\infty}^{K}}$$

Here ℓ_{p,∞} for p ∈ (1,∞) denotes the Marcinkiewicz sequence space of all scalar sequences x = (x_k)_k ∈ ω(ℕ) equipped with the norm

$$||x||_{p,\infty} := \sup_{n\in\mathbb{N}} \frac{x_1^* + \ldots + x_n^*}{n^{1-\frac{1}{p}}},$$

where (x_k^*) denotes the decreasing rearrangement of the sequence $(|x_k|)$. M. Mastyle (UAM) Abstract random polynomial inequalities in Banach s

Variants of Kahane–Salem–Zygmund inequality

Let *P* be an *m*-homogeneous random Bernoulii polynomial over a probability measure $(\Omega, \mathcal{A}, \mathbb{P})$ given by

$${\mathcal P}(\omega,z):=\sum_{|lpha|=m}arepsilon_{lpha}(\omega)c_{lpha}z^{lpha},\quad \omega\in\Omega,\,\,z\in{\mathbb C}^n\,.$$

Theorem (F. Bayart (2012)) For an arbitrary *n*-dimensional Banach space $X_n = (\mathbb{C}^n, \|\cdot\|)$ and for every $r \in [2, \infty)$ one has

$$\mathbb{E}\Big(\sup_{z\in B_{X_n}}\big|P(\cdot,z)\big|\Big)\leqslant C_r\big(n(1+\log m)\big)^{\frac{1}{r}}\sup_{|\alpha|=m}|c_{\alpha}|\Big(\frac{\alpha!}{m!}\Big)^{\frac{1}{r'}}\sup_{z\in B_{X_n}}\Big(\sum_{k=1}^n|z_k|^{r'}\Big)^{\frac{m}{r'}}$$

where $C_r > 0$ is a constant only depending on r.

Given a real number $1 \le \lambda < \infty$. A Banach space X λ -embeds into a Banach Y whenever there exists an isomorphic embedding T of X into Y such

 $\|T\|_{X\to Y} \|T^{-1}\|_{T(X)\to X} \leq \lambda.$

In this case, we call T a λ -embedding of X into Y.

Theorem [A. Defant–M. M.] For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that, for every finite-dimensional Banach space E, for every λ -embedding $I: E \to \ell_{\infty}^{N}$, and for every choice of $x_1, \ldots, x_K \in E$, we have

$$\left\|\sum_{i=1}^{K} \gamma_{i} x_{i}\right\|_{L_{\varphi_{r}}(E)} \leq C_{r} \|I^{-1}\| \left(1 + \log N\right)^{\frac{1}{r}} \sup_{1 \leq j \leq N} \left\|(I(x_{i})(j))_{i=1}^{K}\right\|_{S_{r'}^{K}},$$

Theorem (A. Defant–M. M.) For every $2 \leq r < \infty$, there exists a constant $C_r > 0$ such that, for any choice of polynomials $P_1, \ldots, P_K \in \mathcal{T}_m(\mathbb{C}^n)$, we have

$$\left|\sup_{z\in\mathbb{T}^n}\left|\sum_{i=1}^{K}\varepsilon_i P_i(z)\right|\right\|_{L_{\varphi_2}} \leq C_2 (n(1+\log m))^{\frac{1}{2}}\sup_{z\in\mathbb{T}^n}\left\|(P_i(z))_{i=1}^{K}\right\|_{\ell_2},$$

and for $2 < r < \infty$

$$\left\|\sup_{z\in\mathbb{T}^n}\left|\sum_{i=1}^{K}\varepsilon_i P_i(z)\right|\right\|_{L_{\varphi_r}}\leqslant C_r\big(n(1+\log m)\big)^{\frac{1}{r}}\sup_{z\in\mathbb{T}^n}\left\|(P_i(z))_{i=1}^{K}\right\|_{\ell_{r',\infty}}.$$

Theorem (Defant–M. M.) For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that for each $m \in \mathbb{N}_0, n \in \mathbb{N}$, every complex *n*-dimensional Banach space X, and every choice of polynomials $P_1, \ldots, P_K \in \mathcal{P}_m(X)$, we have

$$\left\|\sup_{z\in B_X}\left|\sum_{i=1}^{K}\gamma_i P_i(z)\right|\right\|_{L_{\varphi_r}} \leqslant C_r \left(n(1+\log m)\right)^{\frac{1}{r}} \sup_{z\in B_X}\left\|(P_i(z))_{i=1}^{K}\right\|_{S_{r'}^{K}},$$

where $S_{r'}^{\mathcal{K}} := \ell_2^{\mathcal{K}}$ for r = 2 and $S_{r'}^{\mathcal{K}} := \ell_{r',\infty}^{\mathcal{K}}$ for $r \in (2,\infty)$.

The proof is based on the following result.

Proposition (A. Defant–M. M.) Let X be an *n*-dimensional Banach space, and $K \subset B_X$ a convex and compact subset, which satisfies a Markov–Fréchet inequality with exponent ν and constant M. For each $m \in \mathbb{N}$ there exists a subset $F \subset K$ such that

$$\|P\|_{\mathcal{K}} \leq 2 \sup_{z \in F} |P(z)\|_{F}, \quad P \in \mathcal{P}_m(X),$$

with card $F \leq N$, where $N = (1 + 2Mm^{\nu})^n$ if X is real and $N = (1 + 2Mm^{\nu})^{2n}$ if X is complex space. In other words the Banach space $\mathcal{P}_m(X)$, 2-embeds into ℓ_{∞}^N .

Given a Banach space X and a nonempty compact subset $K \subset B_X$.

Definition. We say that K satisfies a Markov–Fréchet inequality whenever there is an exponent $\nu \ge 0$, and a constant M > 0 such that for all $P \in \mathcal{P}(X)$ one has

$$\sup_{z\in K} \|\nabla P(z)\|_{X^*} \leqslant M(\deg P)^{\nu} \sup_{z\in K} |P(z)|,$$

where $\nabla P(z) \in X^*$ denotes the Fréchet derivative of P in $z \in K$. If this inequality only holds for a subclass \mathcal{P} of $\mathcal{P}(X)$, then we say that K satisfies a Markov-Fréchet inequality for \mathcal{P} with exponent ν and constant M.

Theorem (Harris (1997)) Let X be a complex Banach space. Then B_X satisfies a Markov–Fréchet inequality with constant e and exponent $\nu = 1$.

Random Dirichlet polynomials

Combining Bohr's vision of ordinary Dirichlet series and the mentioned results, we provide some new *KSZ*-inequalities for random Dirichlet polynomials. Some inequalities of this type recently played a crucial role within the study of Dirichlet series.

Given a finite subset $A \subset \mathbb{N}$, we denote by \mathcal{D}_A the Banach space of all Dirichlet polynomials D given by

$$D(s) := \sum_{n\in A} a_n n^{-s}, \quad s\in\mathbb{C},$$

with $\{a_n\}_{n\in A} \subset \mathbb{C}$. Since each such Dirichlet polynomial defines a bounded and holomorphic function on the right half-plane in \mathbb{C} , the space \mathcal{D}_A forms a Banach space equipped with the norm

$$||D||_{\infty} := \sup_{\operatorname{Res}>0} \left| \sum_{n=1}^{N} a_n n^{-s} \right| = \sup_{t \in \mathbb{R}} \left| \sum_{n=1}^{N} a_n n^{-it} \right|.$$

Remark We note that the particular cases $a_n = 1$ and $a_n = (-1)^n$ play a crucial role within the study of the Riemann zeta-function $\zeta : \mathbb{C} \setminus \{1\} \to \mathbb{C}$. In fact, in recent times, techniques related to random inequalities for Dirichlet polynomials have gained more and more importance. This may be illustrated by a deep classical result of Turán (1962), which states that the truth of the famous Lindelöf's conjecture:

$$\zetaig(1/2+itig)=\mathcal{O}_arepsilon(t^arepsilon), \quad t\in\mathbb{R}\,,$$

with an arbitrarily small $\varepsilon > 0$, is equivalent to the validity of the inequality:

$$\left|\sum_{n=1}^{N} \frac{(-1)^n}{n^{it}}\right| \leqslant C N^{\frac{1}{2}+\varepsilon} (2+|t|)^{\varepsilon}, \quad t \in \mathbb{R}$$

for an arbitrarily small $\varepsilon > 0$ and with $C = C(\varepsilon)$.

In order to formulate our main result we need two characteristics of the finite set $A \subset \mathbb{N}$ defining \mathcal{D}_A . As usual, for $x \ge 2$, we denote by $\pi(x)$ the number of all primes in the interval [2, x], and by $\Omega(n)$ the number of prime divisors of $n \in \mathbb{N}$ counted accorded to their multiplicities. We define

 $\Pi(A) := \max_{n \in A} \pi(n), \qquad \Omega(A) := \max_{n \in A} \Omega(n).$

Theorem (A. Defant–M. M.) For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that for any finite set $A \subset \mathbb{N}$ and any choice of Dirichlet polynomials $D_1, \ldots, D_K \in \mathcal{D}_A$, we have

$$\left\|\sup_{t\in\mathbb{R}}\left|\sum_{j=1}^{K}\gamma_{j}D_{j}(t)\right|\right\|_{L_{\varphi_{r}}}\leqslant C_{r}\left(1+\Pi(A)\left(1+20\log\Omega(A)\right)\right)^{\frac{1}{r}}\sup_{t\in\mathbb{R}}\left\|(D_{j}(t))_{j=1}^{K}\right\|_{S_{r'}}.$$

Corollary. For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that such, for every Dirichlet random polynomial $\sum_{n \in A} \gamma_n a_n n^{-it}$ in \mathcal{D}_A one has

$$\left\|\sup_{t\in\mathbb{R}}\left|\sum_{n\in A}\gamma_n a_n n^{-it}\right|\right\|_{L_{\varphi_r}} \leqslant C_r \Big(1+\Pi(A)\big(1+20\log\Omega(A)\big)\Big)^{\frac{1}{r}} \|(a_n)_{n\in A}\|_{S_{r'}}$$

Idea of proof:

 We embed D_A into a certain space of trigonometric polynomials, controlling the degree as well as the number of variables of the polynomials in this space. To achieve this, we use the so-called Bohr lift:

$$\mathcal{B}_A \colon \mathcal{D}_A o \mathcal{T}_{\Omega(A)}(\mathbb{T}^{\Pi(A)}) \,, \ \sum_{n \in A} a_n n^{-s} \mapsto \sum_{\alpha: \mathfrak{p}^{\alpha} \in A} a_{\mathfrak{p}^{\alpha}} z^{\alpha} \,.$$

By Kronecker's theorem on Diophantine approximation we know that the continuous homomorphism

$$\beta \colon \mathbb{R} \to \mathbb{T}^{\Pi(A)}, \ t \to \left(\mathfrak{p}_k^{it}\right)_{k=1}^{\Pi(A)}$$

has dense range. This implies that \mathcal{B}_A is an isometry into.

• There is a subset $F \subset \mathbb{T}^{\Pi(A)}$ with $\operatorname{card}(F) \leq N = (1 + 20 \,\Omega(A))^{\Pi(A)}$ such that

 $I: \mathcal{T}_{\Omega(A)}(\mathbb{T}^{\Pi(A)}) \hookrightarrow \ell_{\infty}^{N}, \ I(P) := (P(z_{i}))_{i \in F},$

is a 2-isomorphic embedding. Combining all these facts we get the above theorem.

In the following example we consider interesting subclass of Dirichlet polynomials of length N, each given by a particular finite subset $A \subset \mathbb{N}$:

Example. For $N \in \mathbb{N}$ and $2 \leq x \leq N$ define

 $A(N,x) := \{1 \leqslant n \leqslant N; \pi(n) \leqslant x\}.$

Then $\mathcal{D}_{A(N,x)}$ is the space of all Dirichlet polynomials of length N, which only 'depend on $\pi(x)$ -many primes'. Using remarkable estimates for $\pi(x)$ due to Costa Periera (1985):

$$\frac{x \log 2}{\log x} < \pi(x), \quad x \ge 5 \quad \text{and} \quad \pi(x) < \frac{5x}{3 \log x}, \quad x > 1,$$

we get $\Pi(A(N, x)) \le \pi(x) < \frac{5x}{3 \log x}$. Since for each $1 \le n = p^{\alpha} \le N$ with $\alpha \in \mathbb{N}^{\pi(x)}$ we have $2^{|\alpha|} \le N$, it follows that
 $\Omega(A(N, x)) \le \frac{\log N}{\log 2}.$

With these estimates for $\Pi(A(N, x))$ and $\Omega(A(N, x))$ our *KSZ*-inequalities extend Queffélec's results (1995).

In the special case x = N, we denote by \mathcal{D}_N the Banach space of all Dirichlet polynomials of length N, in other words, $\mathcal{D}_N = \mathcal{D}_{A(N)}$ with $A(N) = \{1, \dots, N\}$. Then

$$\Pi(A(N)) < \frac{5N}{3\log N}, \quad \Omega(A(N)) \leqslant \frac{\log N}{\log 2}$$

٠

It is worth noting that in the case $N = p_n$, the *n*th prime, one has $\Pi(A(N)) = n$.

Random multilinear forms in Banach spaces

• Given Banach spaces X_1, \ldots, X_m , the Banach space $\mathcal{L}_m(X_1, \ldots, X_m)$ of all scalar-valued *m*-linear bounded mappings *L* on $X_1 \times \cdots \times X_m$ is equipped with the norm

$\|L\| := \sup \left\{ |L(x_1,\ldots,x_m)| : x_j \in B_{X_j}, \ 1 \leqslant j \leqslant m \right\}.$

• For a given Banach space X and $m \in \mathbb{N}$, we denote by $\mathcal{P}_m(X)$ the Banach space of all polynomials P on X of degree m (i.e., there is $L \in \mathcal{L}_m(X, \ldots, X)$ such that $P(x) = L(x, \ldots, x)$ for all $x \in X$) equipped with the norm

 $||P|| := \sup\{|P(z)| : z \in B_X\}.$

We let $||P||_E := \sup\{|P(z)|; z \in E\}$, whenever *E* is a non-empty subset of *X*.

Applying our techniques to spaces of multilinear forms on finite dimensional Banach spaces, we can state the following theorem.

Theorem (A. Defant–M. M.) For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that, for every choice of finite dimensional Banach spaces X_j with $\dim X_j = n_j$, $1 \leq j \leq m$, and *m*-linear mappings $L_1, \ldots, L_K \in \mathcal{L}_m(X_1, \ldots, X_m)$, one has

$$\left\| \sup_{(z_1,\ldots,z_m)\in B_{X_1\times\cdots\times X_m}} \left| \sum_{i=1}^K \gamma_i L_i(z_1,\ldots,z_m) \right| \right\|_{L_{\varphi_r}}$$

$$\leqslant C_r \left(\sum_{j=1}^m n_j (1+\log m) \right)^{\frac{1}{r}} \sup_{(z_1,\ldots,z_m)\in B_{X_1\times\cdots\times X_m}} \left\| (L_i(z_1,\ldots,z_m))_{i=1}^K \right\|_{S_{r'}^K},$$

where $S_{r'}^{\mathcal{K}} := \ell_2^{\mathcal{K}}$ for r = 2 and $S_{r'}^{\mathcal{K}} := \ell_{r',\infty}^{\mathcal{K}}$ for $r \in (2,\infty)$.

The proof of the above theorem is based on the following result.

Proposition (A. Defant – M. M.) Let X_j with dim $X_j = n_j, 1 \le j \le m$ be finite dimensional (real or complex) Banach spaces. Then there is a subset $F \subset \prod_{i=1}^{m} B_{X_i}$ of cardinality

$$\operatorname{card}(F) \leqslant \prod_{j=1}^{m} (1+2m)^{2n_j}$$

such that for every $L \in \mathcal{L}_m(X_1, \ldots, X_m)$,

$$\|L\|_{\infty} \leq 2 \sup_{(z_1,\ldots,z_m)\in F} |L(z_1,\ldots,z_m)|.$$

If all Banach spaces X_i are real, we may replace the exponents $2n_i$ by n_i .

Polynomial inequalities via random processes

Given a pseudo-metric (*T*, *d*), we denote by *N*(*T*, *d*; ε) the entropy function associated with the pseudo-metric *d* on the set *T* for ε > 0, i.e.,

$N(T, d; \varepsilon)$

is the smallest number of open balls of radius $\varepsilon > 0$ in the pseudo-metric d needed to cover the set T.

• Let $\Phi \colon \mathbb{R}_+ \to \mathbb{R}_+$ be an Orlicz function. The entropy integral of (T, d) with respect to Φ is defined by

$$J_{\Phi}(T,d) = \int_{0}^{\Delta(T)} \Phi^{-1}(N(T,d;\varepsilon)) d\varepsilon,$$

where $\Delta(T) = \sup_{s,t \in T} d(s,t)$ denotes the diameter of T.

• If $(X_t)_{t \in T}$ is a stochastic process where T is an index set. Then

$$\mathbb{E}\big(\sup_{t\in \mathcal{T}} X_t\big) := \sup\Big\{\mathbb{E}\big(\sup_{t\in F} X_t\big): F\subset T, F \text{ finite}\Big\},\$$

where the right-hand side makes sense as soon as r.v. X_t is integrable for every $t \in T$.

• A fundamental example of stochastic processes is a random series

$$X_t = \sum_{k \ge 1} \xi_k f_k(t),$$

where f_k are functions defined on a set T and ξ_k are independent random variables on a measure space $(\Omega, \mathcal{A}, \mu)$.

• The basis example is the random Fourier series,

$$X_t = \sum_{k \ge 1} \xi_k e^{2\pi i k t}, \quad t \in [0, 1].$$

• Pisier's Theorem If $(X_t)_{t \in T}$ is a stochastic process in the Orlicz space $L_{\Phi}(\Omega, \mathcal{A}, \mathbb{P})$ on a probability measure space such that

$$\|X_s-X_t\|_{\Phi}\leqslant d(s,t), \quad s,t\in T,$$

then we have

$$\mathbb{E}(\sup_{s,t\in\mathcal{T}}|X_s-X_t|)\leqslant CJ_{\Phi}(\mathcal{T},d)$$

for some absolute constant C > 0.

• A. Defant, D. Galicer, M. Mansilla, M. M., S. Muro, **Projection constants** for spaces of multivariate polynomials, 2022, 181 pp. (Preprint).