Blowup solutions and vanishing estimates for singular Liouville equations joint work with Juncheng Wei, UBC

Lei Zhang University of Florida

Asia-Pacific Analysis and PDE Seminar May 30,2022

通 ト イ ヨ ト イ ヨ ト -

э

The singular Liouville equation

In this talk I only talk about a very short equation defined in two dimensional spaces:

$$\Delta v + h(x)e^{v(x)} = 4\pi\alpha\delta_0$$
, in $B_1 \subset \mathbb{R}^2$.

where h is a positive smooth function and B_1 is the unit ball, δ_0 is a Dirac mass placed at the origin and $\alpha > -1$. Since

$$\Delta(\frac{1}{2\pi} \log |x|) = \delta_0,$$

Setting $u(x) = v(x) - 2\alpha \log |x|$ we have

$$\Delta u + |x|^{2\alpha} h(x) e^{u(x)} = 0.$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

= na0

Background

Nirenberg problem: which smooth functions K on \mathbb{S}^2 are realized as the Gauss curvature of a metric g on \mathbb{S}^2 pointwise conformal to the standard round metric g_0 of $\mathbb{S}^2 \subset \mathbb{R}^3$? For $g = e^{2u}g_0$ the equation for the Gauss curvature K of g is

$$\Delta u + K e^{2u} = 1 \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト 三日

so that the Nirenberg problem asks to characterize for which K is the nonlinear PDE (1) solvable.

If in a neighborhood of one point, the metric can be written as

$$g=e^{h}|z|^{2\alpha}|dz|^{2},$$

we say at this point it has a conical singularity of order $\alpha.$ The corresponding PDE to study is

$$\Delta u + K(x)|x|^{2\alpha}e^u = 0.$$

classification of global solutions

Theorem (Chen-Li 94) Let u be a solution of

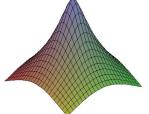
1

$$\Delta u + e^u = 0,$$
 in \mathbb{R}^2 , $\int_{\mathbb{R}^2} e^u < \infty$,

then

$$u(x) = \log rac{e^\lambda}{(1+rac{e^\lambda}{8}|x-x_0|^2)^2}$$

for some $\lambda \in \mathbb{R}$ and $x_0 \in \mathbb{R}^2$. $\int_{\mathbb{R}^2} e^u = 8\pi$. If $v(y) = u(\delta y) + 2\log \delta$, then $\int_{\mathbb{R}^2} e^v = \int_{\mathbb{R}^2} e^u$.



local blowup for regular equation

Let u_k be a sequence of bubbling solutions of

$$\Delta u_k + h e^{u_k} = 0, \quad \text{in} \quad B_1,$$

where h is a positive smooth function. If

-

$$\max_{x} u_{k}(x) = u_{k}(0) \to \infty, \quad \text{and} \quad \max_{K \subset \subset B_{1} \setminus \{0\}} u_{k} \leq C(K)$$

$$\int_{B_{1}} h e^{u_{k}} \leq C,$$

$$|u_k(x) - u_k(y)| \le C, \quad \forall x, y \in \partial B_1,$$

Theorem (Y.Y.Li, 95 CMP) Suppose $\lambda_k = u_k(0) = \max u_k \to \infty$, then

$$u_k(x)-\lograc{e^{\lambda_k}}{(1+rac{e^{\lambda_k}h(0)}{8}|x|^2)^2}=O(1),\quad orall x\in B_1.$$

伺 ト イヨト イヨト

э

Uniform Estimate

・ 同 ト ・ ヨ ト ・ ヨ ト

If we consider a mean field equation on a surface, say

$$\Delta_g u + \rho (\frac{he^u}{\int_M he^u} - 1) = 0. \quad vol(M) = 1.$$

The uniform estimate implies

- **1** Around each blowup point, there is only one bubble profile: $he_k^u \rightharpoonup 8\pi \delta_p$
- 2 The height of bubbles are roughly the same.
- **3** The energy $(\int_M h e^{u_k})$ is concentrated around a few blowup points.
- 4 But this estimate did not tell the locations of the blowup points.
- **5** The error of the estimate is still too large for some applications.

We postulated a boundary oscillation finite-ness assumption:

$$|u_k(x) - u_k(y)| \le C$$
, for $x, y \in \partial B_1$.

This assumption is quite natural and important.

Theorem

(Xiuxiong Chen, 99) If the boundary oscillation assumption is removed, for any $m \in \mathbb{N}$, there exists u_k of solutions

$$\Delta u_k + e^{u_k} = 0, \quad in \quad B_1$$

such $e^{u_k} \rightarrow 8\pi m \delta_0$.

It is convenient to consider a harmonic function defined by the oscillation of u_k on the boundary:

$$\begin{cases} \Delta \psi_k = 0, & \text{in} \quad B_1, \\ \psi_k(x) = u_k(x) - \frac{1}{2\pi} \int_{\partial B_1} u_k dS, & x \in \partial B_1. \end{cases}$$

Then $\psi_k(0) = 0$ and all derivatives of ψ_k are bounded in $B_{1/2}$. Let $\epsilon_k = e^{-\frac{1}{2}u_k(0)}$, where $u_k(0) = \max u_k$, then we have

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Refined estimate

Theorem (Chen-Lin 02, Z 06, Gluck 12)

$$u_k(x) = \log \frac{e^{u_k(0)}}{(1 + \frac{h(0)}{8}e^{u_k(0)}|x - q_k|^2)^2} + \psi_k$$

-8\frac{(\Delta \log h)(0)}{h(0)}\epsilon_k^2(\log(2 + \epsilon_k^{-1}|x|))^2 + O(\epsilon_k^2 \log \epsilon_k^{-1})

where $q_k = 2\epsilon_k^2 \nabla h(0)/h^2(0) + O(\epsilon_k^3)$ is the maximum point of $u_k - \psi_k$, $|\nabla (\log h + \psi_k)(q_k)| = O(\epsilon_k^2(\log \epsilon_k^{-1})).$

通 ト イ ヨ ト イ ヨ ト ー

э.

Application

Theorem

(C.C.Chen-C.S.Lin CPAM 03) Suppose u is a solution of the following mean field equation on (M,g) (volume of M = 1)

$$\Delta_g u +
ho(rac{he^u}{\int_M he^u dV_g} - 1) = 0$$

If $\rho > 0$ is not a multiple of 8π and the genus of M is greater than 0, then the equation has a solution.

< 同 > < 三 > < 三 >

• if
$$8\pi N <
ho < 8\pi (N+1)$$
 we have $|u| < C$
• $T_
ho = -
ho \Delta_g^{-1} (rac{he^u}{\int_M he^u} - 1)$

$$d_{\rho} := deg(I - T_{\rho}, B_R, 0)$$

is well defined for $\rho \neq 8N\pi$.

Theorem (Chen-Lin 02, 03, CPAM)

 $\chi(M) = 2 - 2g_e$, the g_e is the genus of the manifold, which is the number of handles. $\rho = 8\pi$, Lin-Wang published a paper on Annals.

・ 同 ト ・ ヨ ト ・ ヨ ト

Classification Theorem

Theorem (Prajapat-Tarantello 01) If $\alpha > -1$ is not an integer, all solutions to

$$\Delta u + |x|^{2\alpha} e^u = 0, \quad \mathbb{R}^2, \quad \int_{\mathbb{R}^2} |x|^{2\alpha} e^u < \infty,$$

are radially symmetric and can be written as

$$u(x) = \log \frac{e^{\lambda}}{(1 + \frac{e^{\lambda}}{8(1+\alpha)^2}|x|^{2+2\alpha})^2}$$

for some $\lambda \in \mathbb{R}$. The total integration is

$$\int_{\mathbb{R}^2} |x|^{2\alpha} e^u = 8\pi (1+\alpha).$$

通 と く ヨ と く ヨ と

э

Non-quantized singularity

Theorem (Bartolucci-Chen-Lin-Tarantello 05) Let u_k be blowup solutions to

$$\Delta u_k + |x|^{2\alpha} h e^{u_k} = 0, \quad B_1$$

with $\alpha > -1$ and bounded oscillation on ∂B_1 . Suppose 0 is the only blowup point in B_1 , then

$$he^{u_k}
ightarrow 8\pi (1+\alpha) \delta_0$$

and if α is not a positive integer

$$u_k(x) - \log rac{e^{u_k(0)}}{(1 + rac{h(0)}{8(1+lpha)^2}e^{u_k(0)}|x|^{2lpha+2})^2} = O(1) \quad B_1.$$

伺 ト イヨト イヨト

э

Non-quantized singularity

Theorem (*Z* 09) Suppose $\alpha > 0$ is not a positive integer then

$$\begin{split} u_{k}(x) &= \log \frac{e^{u_{k}(0)}}{(1 + \frac{h(0)}{8(1+\alpha)^{2}}e^{u_{k}(0)}|x|^{2\alpha+2})^{2}} + \phi_{k}(x) \\ &- \frac{2(1+\alpha)}{\alpha h(0)} \frac{\nabla h(0) \cdot x}{1 + \frac{h(0)}{8(1+\alpha)^{2}}e^{u_{k}(0)}|x|^{2\alpha+2}} \\ &+ \left(\Lambda_{1}\Delta h(0) + \Lambda_{2}|\nabla h(0)|^{2}\right) \log \left(2 + e^{\frac{u_{k}(0)}{2(1+\alpha)}}|x|\right) e^{-\frac{u_{k}(0)}{1+\alpha}} \\ &+ O(e^{-\frac{u_{k}(0)}{1+\alpha}}), \end{split}$$

where ϕ_k is the harmonic function that eliminates the oscillation of u_k on ∂B_1 , $\Lambda_1 = -\frac{\pi}{h(0)\sin\left(\frac{\pi}{1+\alpha}\right)(1+\alpha)} \left(\frac{8(1+\alpha)^2}{h(0)}\right)^{\frac{1}{1+\alpha}}$, $\Lambda_2 = \frac{\pi}{h^2(0)\sin\left(\frac{\pi}{1+\alpha}\right)(1+\alpha)} \left(\frac{8(1+\alpha)^2}{h(0)}\right)^{\frac{1}{1+\alpha}}$.

Classification Theorem

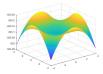
Theorem (Prajapat-Tarantello 01) All solutions of

$$\Delta u + |x|^{2N}e^u = 0$$
, in \mathbb{R}^2 , $\int_{\mathbb{R}^2} |x|^{2N}e^u < \infty$,

are of the form

$$u(z) = \log rac{e^{\lambda}}{(1 + rac{e^{\lambda}}{8(1+N)^2}|z^{N+1} - \xi|^2)^2}$$

for some $\xi \in \mathbb{C}$. $\int_{\mathbb{R}^2} |x|^{2N} e^u = 8\pi (1+N)$.



(E)

э

Quantized singularity, Non-simple blowup

Let u_k be a sequence of solutions to

$$\Delta u_k + |x|^{2N} h(x) e^{u_k} = 0$$
, in $B_1 \subset \mathbb{R}^2$,

where h > 0 is smooth. Suppose 0 is the only blowup point and N is a positive integer, u_k has bounded oscillation on ∂B_1 .

Theorem

(Kuo-Lin 16, JDG, Bartolucci-Tarantello 18) If $N \in \mathbb{N}$, it is possible that

$$\max_{x\in B_1} u_k(x) + 2(1+N)\log|x| \to \infty.$$

When this happens, u_k has exactly N + 1 local maximum points evenly distributed around 0.

Related questions

- Is it possible to approximate bubbling solutions by global solutions?
- Are there vanishing theorems? Especially the vanishing estimate of first derivatives of coefficient functions?

マイロ マイロ マイロ

Vanishing Theorems

Theorem

(Wei-Z, 2022) Let u_k be non-simple blowup solutions under the usual assumptions. Then along a subsequence

$$egin{aligned} &\lim_{k o\infty}
abla (\log h_k + \phi_k)(0) = 0. \ &\lim_{k o\infty} \Delta(\log h_k)(0) = 0. \end{aligned}$$

The "non-simple" assumption cannot be removed.

Theorem

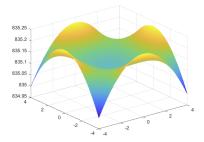
(Wu, 2022). There exists a sequence of blowup solutions that satisfies the spherical Harnack inequality around a blowup point with non-vanishing coefficients.

(本間) (本語) (本語) (二語)

Local maximum points

Let p_0^k , ..., p_N^k be the N+1 local maximums of u_k $\Delta u_k + |x|^{2N} h_k(x) e^{u_k} = 0, \quad \text{in} \quad B_1.$

$$\delta_k = |p_0^k|, \quad \mu_k = u_k(p_0^k) + 2(1+N)\log \delta_k.$$



(1) × × > × > ×

э

Trivial Observations

- The study of blowup solutions looks like that of a single Liouville equation near each local maximum point.
- The relations between these local maximums plays a crucial role.
- The blowup solutions look almost like a harmonic function away from the N + 1 local maximums.
- If there is a perturbation on a global solution, there is a corresponding perturbation on each of its *N* + 1 local maximumus:

$$V_k(x) = \log rac{e^{\mu_k}}{(1 + rac{e^{\mu_k}}{8(N+1)^2}|x^{N+1} - (1 + p_k)|^2)^2}.$$

э.

Stage 1: First Vanishing Theorems

Theorem

(Wei-Z, Advances in Math, 21) Let ϕ_k be the harmonic function that eliminates the oscillation of u_k on ∂B_1 , then

$$\begin{aligned} |\nabla(\log h_k + \phi_k)(0)| &= O(\delta_k^{-1} \mu_k e^{-\mu_k}) + O(\delta_k). \\ \Delta(\log h_k)(0) &= O(\delta_k^{-2} \mu_k e^{-\mu_k}) + O(\delta_k), \quad N \ge 2. \end{aligned}$$

Obviously we don't know if $\nabla(\log h_k + \phi_k)(0) = o(1)$ when $\delta_k \leq C\mu_k e^{-\mu_k}$. We cannot tell if $\Delta h_k(0) = o(1)$ if $\delta_k \leq C\mu_k^{\frac{1}{2}} e^{-\mu_k/2}$ even for $N \geq 2$. The conclusion for N = 1 is even weaker.

Theorem (Wei-Z, Advances 21) For N = 1,

$$(\partial_{e_k} (\log h_k)(0))^2 - (\partial_{e_k^{\perp}} (\log h_k)(0))^2 - 2\partial_{e_k e_k^{\perp}} (\log h_k)(0) = E_k, \partial_{e_k} (\log h_k)(0)\partial_{e_k^{\perp}} (\log h_k)(0) - \partial_{e_k e_k^{\perp}} (\log h_k)(0) = E_k.$$

where $E_k = O(\delta_k^{-2} \mu_k e^{-\mu_k}) + O(\delta_k)$. e_k is the direction determined by the two local maximum points.

Theorem

(Wei-Z Advances 21) If $\delta_k \leq Ce^{-\mu_k/4}$, then there exists a sequence of global solutions U_k such that

$$|u_k(x) - U_k(x)| \leq C, \quad x \in B_1.$$

For $|x| \sim 1$, $u_k(x) = -u_k(p_0^k) + O(1)$.

通 と く ヨ と く ヨ と

Linearized equation

Let U be the solution of

$$\Delta U + 8e^U = 0$$
, in \mathbb{R}^2 , $\int_{\mathbb{R}^2} e^U < \infty$,

with $\max_x U(x) = 1 = U(0)$. By Chen-Li, $U(x) = \log \frac{1}{(1+|x|^2)^2}$. Let ϕ be a solution of

$$\Delta \phi + 8e^U \phi = 0, \quad \text{in} \quad \mathbb{R}^2$$

with $\phi(x) = o(|x|)$ at infinity. Then $\phi(x) = c_0\phi_0 + c_1\phi_1 + c_2\phi_2$ where

$$\phi_0 = rac{1-|x|^2}{1+|x|^2}, \quad \phi_1(x) = rac{x_1}{1+|x|^2}, \quad \phi_2 = rac{x_2}{1+|x|^2}.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

key ideas of the proof

Step one: A lot of Pohozaev identities.

• A Pohozaev identity for $\Delta u_k + h_k e^{u_k} = 0$ on B_σ is

$$\int_{B_{\sigma}} (\nabla h_k \cdot x) e^{u_k} = \int_{\partial B_{\sigma}} \left(\frac{\sigma}{2} (|\partial_{\nu} u_k|^2 - |\partial_{\tau} u_k|^2) + \sigma h_k e^{u_k} + 2\partial_{\nu} u_k \right) dS.$$

•
$$\delta_k \nabla (\log h_k) (\delta_k Q_l^k) + 2N \frac{Q_l^k}{|Q_l^k|^2} + \nabla \phi_{l,k} (Q_l^k) = O(\mu_k e^{-\mu_k}).$$

$$\nabla \phi_l^k(Q_l^k) = -4 \sum_{m \neq l} \frac{Q_l^k - Q_m^k}{|Q_l^k - Q_m^k|^2} + O(\delta_k^2) + O(\mu_k e^{-\mu_k}).$$

A B b A B b

• Denoting $Q_l^k = e^{i\frac{2\pi l}{N+1}}(1+m_l^k)$ and use this in the long computation of each Pohozaev identity, we have

$$\begin{pmatrix} m_1^k \\ m_2^k \\ \vdots \\ m_N^k \end{pmatrix} = A^{-1} \delta_k \bar{\nabla} (\log h_k) (0) \begin{pmatrix} e^{i\beta_1} \\ e^{i\beta_2} \\ \vdots \\ e^{i\beta_N} \end{pmatrix} + O(\delta_k^2) + O(\mu_k e^{-\mu_k})$$

where $\beta_l = 2\pi l/(N+1), l = 0, ..., N$.

$$A = \begin{pmatrix} D & -d_1 & \dots & -d_{N-1} \\ -d_1 & D & \dots & -d_{N-2} \\ \vdots & \vdots & \dots & \vdots \\ -d_{N-1} & -d_{N-2} & \dots & D \end{pmatrix}$$

where

$$d_i = \frac{1}{\sin^2(\frac{i\pi}{N+1})}, \quad i = 1, ..., N, \quad D = d_1 + ... + d_N.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

With the estimate of $(m_1^k,...,m_N^k)$, $abla \phi_l^k(Q_l^k)$ can be improved to

$$abla \phi_l^k(Q_l^k) = -4 \sum_{m
eq l} rac{Q_l^k - Q_m^k}{|Q_l^k - Q_m^k|^2} + O(\delta_k^3) + O(\mu_k e^{-\mu_k}).$$

・ロ・・(型・・モー・・モー・

key ideas

1.Let $v_k(y) = u_k(\delta_k y) + 2 \log \delta_k$. Since δ_k is the distance from a local maximum of v_k to the origin, and Δ is invariant under rotation of coordinates, we can assume that v_k has a local maximum at e_1 . Then we use a global solution V_k that agrees with v_k at e_1 :

 $\Delta V_k + h_k (\delta_k e_1) |y|^{2N} e^{V_k} = 0.$

$$V_k(y) = \log rac{e^{\mu_k}}{(1 + rac{e^{\mu_k h_k(\delta_k e_1)}}{8(1+N)^2}|y^{N+1} - e_1|^2)^2}.$$

 V_k has N + 1 local maximums located at exactly $e^{2\pi i l/(N+1)}$ for l = 0, ..., N.

Let $w_k = v_k - V_k$. Then w_k is very small near e_1 .

2. By Harnack inequality, this smallness will be passed to control all the regions away from the N other bubbling disks.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

key ideas of the proof

3. The difference between the Pohozaev identities. Let Ω_s be the region about Q_s . Then the Pohozaev identity for v_k in this region is

$$egin{aligned} &\int_{\Omega_s}\partial_\xi(|y|^{2N}h_k(\delta_k y))e^{v_k}-\int_{\partial\Omega_s}e^{v_k}|y|^{2N}h_k(\delta_k y)(\xi\cdot
u)\ &=\int_{\partial\Omega_s}(\partial_
u v_k\partial_\xi v_k-rac{1}{2}|
abla v_k|^2(\xi\cdot
u))dS. \end{aligned}$$

$$\begin{split} \int_{\Omega_s} \partial_{\xi} (|y|^{2N} h_k(\delta_k e_1)) e^{V_k} &- \int_{\partial \Omega_s} e^{V_k} |y|^{2N} h_k(\delta_k e_1) (\xi \cdot \nu) \\ &= \int_{\partial \Omega_s} (\partial_{\nu} V_k \partial_{\xi} V_k - \frac{1}{2} |\nabla V_k|^2 (\xi \cdot \nu)) dS. \end{split}$$

くぼう くほう くほう

э.

Main ideas

Using these in the computation of the N + 1 Pohozaev identities we have

$$egin{aligned} \nabla(\log h_k + \phi_k)(0) &= O(\delta_k^{-1}\mu_k e^{-\mu_k}) + O(\delta_k) & N \geq 1 \ \Delta \log h_k(0) &= O(\delta_k^{-2}\mu_k e^{-\mu_k}) + O(\delta_k), & N \geq 2. \end{aligned}$$

and a corresponding estimate for N = 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Stage 2, better first order estimates

Key ideas to prove the vanishing rate of $\nabla h_k(0)$ (for simplicity ϕ_k is ignored). Let $w_k = v_k - V_k$, then we have this key estimate:

$$|w_k(y)| \leq C(|\nabla h_k|\delta_k + \delta_k^2 \mu_k).$$

Only need to consider $\delta_k \leq o(\epsilon_k)$. The equation of w_k can be written as

$$\Delta w_k + h_k(\delta_k y)|y|^{2N} e^{\xi_k} w_k = \delta_k \nabla h_k(\delta_k e_1) \cdot (e_1 - y)|y|^{2N} e^{V_k} + E$$

where

$$E = O(\delta_k^2)|y - e_1|^2|y|^{2N}e^{V_k}.$$

It is important to observe that the right hand side is zero when $y = e_1$. The analysis is first carried out near e_1 and pass to other regions by Harnack inequality

(本間) (本語) (本語) (二語)

First order vanishing estimate

Let $M_k = \max |w_k|$ and let $\tilde{w}_k = w_k/M_k$. It is crucial to observe that we still have

$$ilde{w}_k(e_1) = |
abla ilde{w}_k(e_1)| = 0.$$

This important information will make us obtain

$$ilde{w}_k(e_1 + \epsilon_k z) \leq C \epsilon_k^\sigma (1 + |z|)^\sigma, \quad |z| < \epsilon_k^{-1}$$

where $\epsilon_k = e^{-\mu_k/2}$ and $\sigma \in (0, 1)$. Because of the smallness of $|Q_s^k - e^{i\beta_s}|$, \tilde{w}_k is supposed to converge to a kernel of

$$\Delta \phi + e^U \phi = 0$$

around each Q_s . The same argument can also be applied around each Q_s .

→ □ → ↓ = → ↓ = → へへへ

At Q_s^k , v_k is very close to another global solution V_s^k which agrees with v_k at Q_s^k and $\nabla V_s^k(Q_s^k) = 0$. The expression of V_s^k , which satisfies

$$\Delta V_s^k + h_k(\delta_k Q_s^k)|y|^{2N}e^{V_s^k} = 0, \quad \text{in} \quad \mathbb{R}^2,$$

is

$$V_s^k(y) = \log \frac{e^{\mu_s^k}}{(1 + \frac{e^{\mu_s^k}h_k(\delta_k Q_s^k)}{8(1+N)^2}|y^{N+1} - (e_1 + p_s^k)|^2)^2}$$

The function \tilde{w}_k is supposed to converge

$$c_1 \frac{1 - \frac{1}{8}|y|^2}{1 + \frac{1}{8}|y|^2} + c_2 \frac{y_1}{1 + \frac{1}{8}|y|^2} + c_3 \frac{y_2}{1 + \frac{1}{8}|y|^2}.$$

All these coefficients are determined by $V_s^k - V_k$. It is standard to prove $c_1 = 0$. To prove c_2 and c_3 zero we need to use p_s .

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ● ●

If we take Q_s as a base and consider the kernel function around Q_l^k , then the limit function is supposed to be

$$c_{1,s,t} \frac{y_1}{1 + \frac{1}{8}|y|^2} + c_{2,s,t} \frac{y_2}{1 + \frac{1}{8}|y|^2}$$

After some computations we have

$$c_{1,s,t} = \lim_{k \to \infty} \frac{|p_s^k - p_t^k|}{2(N+1)M_k\epsilon_k} \cos(\frac{2\pi s}{N+1} + \theta_{st}).$$

$$c_{2,s,t} = \lim_{k \to \infty} \frac{|p_s^k - p_t^k|}{2(N+1)M_k\epsilon_k} \sin(\frac{2\pi s}{N+1} + \theta_{st}).$$

where $p_s^k - p_t^k = |p_s^k - p_t^k|e^{i\theta_{ts}}$. If limit has to exist, p_1^k, \dots, p_N^k have to satisfy certain relations, which will lead to a contradiction if we observe the second order terms.

After proving

$$|w_k(y)| \leq C\delta_k |\nabla h(0)| + C\delta_k^2 \mu_k,$$

we use this estimate in the computation of Pohozaev identities around each $Q^k_{\rm s}$ to obtain

 $|\nabla h_k(0)| \leq C \delta_k \mu_k.$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ 釣 � @

Stage 3: Laplace Vanishing Theorem

The first order estimate leads to a better estimate on the difference function:

$$|w_k(y)| \leq C \delta_k^2 \mu_k,$$

Then we use Gluck's estimate for single Liouville equation around each Q_s^k ($s \neq 1$) to obtain the vanishing rate for $\Delta h_k(0)$. Recall the expansion of a blowup solution for a single Liouville equation:

$$u_k(x) = \log \frac{e^{u_k(0)}}{(1 + \frac{h(0)}{8}e^{u_k(0)}|x - q_k|^2)^2} + \psi_k \\ -8\frac{(\Delta \log h)(0)}{h(0)}\epsilon_k^2(\log(2 + \epsilon_k^{-1}|x|))^2 + O(\epsilon_k^2\log\epsilon_k^{-1})$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Application to Toda systems

$$\begin{aligned} \Delta u_1 + 2\rho_1 (\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1}} - 1) - \rho_2 (\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2}} - 1) &= 0, \\ \Delta u_2 - \rho_1 (\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1}} - 1) + 2\rho_2 (\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2}} - 1) &= 0, \end{aligned}$$

Theorem (Lin-Wei-Z-Yang 18 APDE) For $(\rho_1, \rho_2) \in (4\pi m, 4\pi (m+1)) \times (4\pi n, 4\pi (n+1))$ $(n, m \in \mathbb{N})$ and $u = (u_1, u_2)$ in certain Sobolev space, the following a priori estimate holds

$$|u_i|\leq C,\quad i=1,2.$$

This theorem leads to a huge degree counting program for Toda systems.

< 同 > < 三 > < 三 >

Theorem

(Wei-Wu-Z 22) If $u_k = (u_1^k, u_2^k)$ is a sequence of blowup solutions corresponding to $(\rho_1^k, \rho_2^k) \rightarrow (4\pi m, 4\pi n)$, if one blowup point is a fully bubbling blowup point and

$$\Delta_g \log h_i^k(x) - 2K(x) \notin 4\pi \mathbb{Z}, \quad i = 1, 2.$$

then the spherical Harnack inequality holds around each blowup point.

Impact

1 Toda system:

$$\Delta u_1 + 2\rho_1 \left(\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1}} - 1\right) - \rho_2 \left(\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2}} - 1\right) = 0$$

$$\Delta u_2 - \rho_1 \left(\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1}} - 1\right) + 2\rho_2 \left(\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2}} - 1\right) = 0.$$

2 Liouville system: Let $A = (a_{ij})_{n \times n}$ be a symmetric, non-negative matrix:

$$\Delta u_1 + a_{11}\rho_1 \left(\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1}} - 1\right) + a_{12}\rho_2 \left(\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2}} - 1\right) = 0$$

$$\Delta u_2 + a_{12}\rho_1 \left(\frac{h_1 e^{u_1}}{\int_M h_1 e^{u_1}} - 1\right) + a_{22}\rho_2 \left(\frac{h_2 e^{u_2}}{\int_M h_2 e^{u_2}} - 1\right) = 0.$$

|→ □ → → 三 → → 三 → ○ へ ()→

More Impact

• Fourth order equation: Q curvature equation on 4-manifold:

$$P_g u + 2Q_g = 2he^{4u} - 8\pi^2 \gamma (\delta_q - \frac{1}{vol_g(M)})$$
$$P_g \phi = \Delta_g^2 \phi + div_g ((\frac{2}{3}R_gg - 2Ric_g)\nabla\phi)$$
$$Q_g = -\frac{1}{12} (\Delta_g R_g - R_g^2 + 2|Ric_g|^2)$$

Classification theorems were proved for

$$\Delta^2 u = 6e^{4u} - 8\pi^2\gamma\delta_0$$
 in \mathbb{R}^4 , $\int_{\mathbb{R}^4} e^{4u} < \infty$.

If $\gamma = 0$ the classification theorem was proved by Chang-shou Lin. For $-1 < \gamma < 0$, the classification was done by Ahmedou-Wu-Z (22).

2 Many other equations and situations.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ● ●

THANKS FOR YOUR ATTENTION

くぼ ト く ヨ ト く ヨ ト