Temperature optimimzation problems governed by semi-discrete phase-field models of grain boundary motions

Speaker: Shirakawa, Ken (Chiba Univ., Japan)

Based on jointworks with:
Antil, Harbir (George Mason Univ., USA)
Kubota, Shodai (Chiba Univ., Japan)
Yamazaki, Noriaki (Kanagawa Univ., Japan)

Asia-Pacific Analysis and PDE seminar, Feb. 14, 2022 (Zoom meeting)

0. Kobayashi-Warren-Carter type system of grain boundary motion

$0<T<\infty, \Omega \subset \mathbb{R}^{N}$: b.d.d. domain $(N \in\{1,2,3,4\}), \Gamma=\partial \Omega$: smooth, n_{Γ} : unit outer normal, $Q:=(0, T) \times \Omega$
KWC system: cf. [Kobayashi-Warren-Carter](2000)

$$
\left\{\begin{array}{l}
\partial_{t} \eta-\Delta \eta+g(\eta)+\alpha^{\prime}(\eta)|\nabla \theta|=u(t, x),(t, x) \in Q \\
\alpha_{0}(\eta) \partial_{t} \theta-\operatorname{div}\left(\alpha(\eta) \frac{D \theta}{|D \theta|}+\nu^{2} \nabla \theta\right)=v(t, x),(t, x) \in Q \\
\nabla \eta \cdot n_{\Gamma}=0, \theta=0 \text { on } \Sigma:=(0, T) \times \Gamma \\
\eta(0, x)=\eta_{0}(x), \theta(0, x)=\theta_{0}(x), x \in \Omega
\end{array}\right.
$$

- $\eta=\eta(t, x)$: orientation order ($\eta \geq 1$: oriented, $\eta \leq 0$: disoriented),
- $\theta=\theta(t, x)$: orientation angle of grain

©UBE Scientific Analysis Laboratory
- $u=u(t, x)$: temperature, $v=v(t, x)$: forcing for θ
- $g \in C^{2}(\mathbb{R}):$ Lipschitz, $\exists G \in C^{3}(\mathbb{R})$ s.t. $G^{\prime}=g$ on \mathbb{R}
- $0<\alpha \in C^{2}(\mathbb{R})$: convex $\quad \alpha_{0} \in W_{\mathrm{loc}}^{1, \infty}(\mathbb{R})$: fixed function
- $\left[\eta_{0}, \theta_{0}\right]=\left[\eta_{0}(x), \theta_{0}(x)\right]$: fixed initial data of $[\eta, \theta]$ • $\nu>0$: fixed constant

The Gradient system of free-energy:

$$
[\eta, \theta] \mapsto \mathscr{F}(\eta, \theta):=\frac{1}{2} \int_{\Omega}|\nabla \eta|^{2} d x+\int_{\Omega} G(\eta) d x+\int_{\Omega}\left(\alpha(\eta)|\nabla \theta|+\frac{\nu^{2}}{2}|\nabla \theta|^{2}\right) d x .
$$

Sketch of history

[1] Existence and large-time behavior
(*) the case of $\nu>0$: [Ito-Kenmochi-Yamazaki](2008-2011)
the results in active case of $\nu \Delta \theta$
$(* *)$ the case of $\nu=0$: [Moll-S.-Watanabe](2011-)
the results in very singular case of $-\operatorname{div}\left(\alpha(\eta) \frac{D \theta}{|D \theta|}\right)$
[2] Uniqueness (a few, and only in the case of $\nu>0$)
(i) 1D-case of Ω : [Ito-Kenmochi-Yamazaki](2008)
(ii) η-independent case of $\alpha_{0} \partial_{t} \theta=\alpha_{0}(t, x) \partial_{t} \theta$: [Antil-Kubota-S.-Yamazaki](2020-)
Ω is higher dimensional, but $0<\alpha_{0} \in W^{1, \infty}(Q)$ (positive, b.d.d., Lipschitz)
[3] Optimal control problem $(\nu>0)$
(iii) continuation work of (ii): [Antil-Kubota-S.-Yamazaki](2020-)

Existence, parameter dependence of optmial controls, necessary condition of optimality
This talk: Optimal control problem under η-dependent case of $\alpha_{0} \Longrightarrow$ time-discrete setting

1. Time-discrete Kobayashi-Warren-Carter type system of grain boundary motion

$\Omega \subset \mathbb{R}^{N}$: b.d.d. domain $(N \in\{1,2,3,4\}), \Gamma=\partial \Omega$: smooth, n_{Γ} : unit outer normal

$$
n \in \mathbb{N}, \tau=T / n \text { (time-step-size) } \quad X:=L^{2}(\Omega), \quad \mathbb{X}:=[X]^{n}
$$

State-system (S) $)_{0}$: cf. [Moll-S.-Watanabe](2014-)

$$
\left\{\begin{array}{l}
\frac{1}{\tau}\left(\eta_{i}-\eta_{i-1}\right)-\Delta \eta_{i}+g\left(\eta_{i}\right)+\alpha^{\prime}\left(\eta_{i}\right)\left|\nabla \theta_{i-1}\right|=u_{i} \text { in } \Omega \tag{1st.eq}\\
\frac{1}{\tau} \alpha_{0}\left(\eta_{i-1}\right)\left(\theta_{i}-\theta_{i-1}\right)-\operatorname{div}\left(\alpha\left(\eta_{i}\right) \frac{D \theta_{i}}{\left|D \theta_{i}\right|}+\nu^{2} \nabla \theta_{i}\right)=v_{i} \text { in } \Omega \\
\nabla \eta_{i} \cdot n_{\Gamma}=0, \quad \theta_{i}=0 \text { on } \Gamma, i=1,2,3, \ldots, n \\
\eta_{0} \in H^{1}(\Omega), \theta_{0} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

- $\eta=\left\{\eta_{i}\right\}_{i=1}^{n} \in \mathbb{X}$: orientation order
- $\theta=\left\{\theta_{i}\right\}_{i=1}^{n} \in \mathbb{X}$: orientation angle of grain
- $u=\left\{u_{i}\right\}_{i=1}^{n} \in \mathbb{X}$: temperature, $v=\left\{v_{i}\right\}_{i=1}^{n} \in \mathbb{X}$: forcing for θ
\dagger_{1}. The state system $(S)_{0}$ is a coupled system of two schemes of minimizing movements: (1st.eq) and (2nd.eq)
\dagger_{2}. The coupled minimizing movements can be solved separately, in the order of (1st.eq) \rightarrow (2nd.eq)

2. Temperature constrained optimal control problem

$$
\overline{\Omega \subset \mathbb{R}^{N}, \quad \Gamma:=\partial \Omega:(\text { smooth }), \quad X:=L^{2}(\Omega), \quad \mathbb{X}:=[X]^{n}}
$$

Problem (OP) $)_{0}$: find $\left[u^{*}, v^{*}\right]=\left[\left\{u_{i}^{*}\right\}_{i=1}^{n},\left\{v_{i}^{*}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}$, called optimal control, s.t.

$$
\left[u^{*}, v^{*}\right]=\arg -\min \mathcal{J}=\mathcal{J}(u, v) \text { on a constrained class } \mathcal{U}_{\mathrm{ad}},
$$

with a cost functional $\mathcal{J}:[u, v] \in[\mathbb{X}]^{2} \mapsto \mathcal{J}(u, v) \in[0, \infty)$, defined as

$$
\mathcal{J}(u, v):=\frac{1}{2}\left|[\eta, \theta]-\left[\eta_{\mathrm{ad}}, \theta_{\mathrm{ad}}\right]\right|_{[\mathbb{X}]^{2}}^{2}+\frac{1}{2}|[u, v]|_{[\mathbb{X}]]^{2}}^{2} .
$$

In the context,

- $u=\left\{u_{i}\right\}_{i=1}^{n}$: the control for $\eta=\left\{\eta_{i}\right\}_{i=1}^{n}$ (temperature), $v=\left\{v_{i}\right\}_{i=1}^{n}$: the control for $\theta=\left\{\theta_{i}\right\}_{i=1}^{n}$
- $[\eta, \theta]=\left[\left\{\eta_{i}\right\}_{i=1}^{n},\left\{\theta_{i}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}$: the solution to the state-system $(S)_{0}$, for any $[u, v] \in[\mathbb{X}]^{2}$.
- $\left[\eta_{\mathrm{ad}}, \theta_{\mathrm{ad}}\right]=\left[\left\{\eta_{\mathrm{ad}, i}\right\}_{i=1}^{n},\left\{\theta_{\mathrm{ad}, i}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}$: the admissible target profile for $[\eta, \theta]$
- $\mathcal{U}_{\text {ad }}$: a class of admissible controls $[u, v] \in[\mathbb{X}]^{2}$, which fulfill:
- box-constraint: $\sigma_{*, i} \leq u_{i} \leq \sigma_{i}^{*}$ a.e. in $\Omega, i=1,2,3, \ldots, n$, with fixed obstacle sequences

$$
\sigma_{*}:=\left\{\sigma_{*, i}\right\}_{i=1}^{n}, \sigma^{*}=\left\{\sigma_{i}^{*}\right\}_{i=1}^{n} \in\left[L^{\infty}(\Omega)\right]^{n}
$$

\dagger_{1}. The time-discrete setting can be applied to the numerical scheme, directly

3. Approximating problems

Problem $(\mathrm{OP})_{\varepsilon}$ with $\varepsilon \geq 0$: find $\left[u^{*}, v^{*}\right]=\left[\left\{u_{i}^{*}\right\}_{i=1}^{n},\left\{v_{i}^{*}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}$, called optimal control, s.t.

$$
\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right]=\arg -\min \mathcal{J}_{\varepsilon}=\mathcal{J}_{\varepsilon}(u, v) \text { on a constrained class } \mathcal{U}_{\mathrm{ad}}
$$

with a regularized cost functional $\mathcal{J}_{\varepsilon}:[u, v] \in[\mathbb{X}]^{2} \mapsto \mathcal{J}_{\varepsilon}(u, v) \in[0, \infty)$, defined as

$$
\mathcal{J}_{\varepsilon}(u, v):=\frac{1}{2}\left|\left[\eta_{\varepsilon}, \theta_{\varepsilon}\right]-\left[\eta_{\mathrm{ad}}, \theta_{\mathrm{ad}}\right]\right|_{[\mathrm{X}]^{2}}^{2}+\frac{1}{2}|[u, v]|_{[\mathrm{X}]^{2}}^{2}
$$

State-system (S) ${ }_{\varepsilon}$:

$$
\left\{\begin{array}{l}
\frac{1}{\tau}\left(\eta_{\varepsilon, i}-\eta_{\varepsilon, i-1}\right)-\Delta \eta_{\varepsilon, i}+g\left(\eta_{\varepsilon, i}\right)+\alpha^{\prime}\left(\eta_{\varepsilon_{i}}\right) f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i-1}\right)=u \text { in } \Omega \\
\frac{1}{\tau} \alpha_{0}\left(\eta_{\varepsilon, i-1}\right)\left(\theta_{\varepsilon, i}-\theta_{\varepsilon, i-1}\right)-\operatorname{div}\left(\alpha\left(\eta_{\varepsilon_{i}}\right) \partial f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i}\right)+\nu^{2} \nabla \theta_{\varepsilon, i}\right) \ni v \text { in } \Omega \\
\nabla \eta_{\varepsilon_{i}} \cdot n_{\Gamma}=0, \theta_{\varepsilon, i}=0 \text { on } \Gamma \\
\eta_{\varepsilon, 0}(x)=\eta_{0}(x), \theta_{\varepsilon, 0}(x)=\theta_{0}(x), x \in \Omega
\end{array}\right.
$$

- $f_{\varepsilon}(\omega):=\sqrt{\varepsilon^{2}+|\omega|^{2}}, \forall \omega \in \mathbb{R}^{N}, \varepsilon>0\left(f_{\varepsilon} \rightarrow f_{0}:=|\cdot|\right.$ in $L^{\infty}\left(\mathbb{R}^{N}\right)$ as $\left.\varepsilon \downarrow 0\right)$ $\partial f_{\varepsilon} \subset \mathbb{R} \times \mathbb{R}$: subdifferential of $f_{\varepsilon}\left(\partial f_{0}(\nabla \theta) \sim\right.$ "set-valued sign function" $\left.\sim \frac{\nabla \theta}{|\nabla \theta|}\right)$

4. Main Theorems

Former part: mathematical analysis by means of calculus of variation

Theorem A. Existence and parameter-dependence of optimal controls for $\varepsilon \geq 0$
Theorem B. The first order necessary condition in the case of $\varepsilon>0$ (regular case of the problem (OP) $)_{\varepsilon}$)
Keypoint: linearlization method for the state-system \Longleftrightarrow Gâteaux differential of the cost

$$
\begin{gathered}
\text { quasilinear diffusion in }(\mathbf{S})_{\varepsilon} \\
-\operatorname{div}\left(\alpha(\eta) \frac{\nabla \theta}{\sqrt{\varepsilon^{2}+|\nabla \theta|^{2}}}\right)
\end{gathered} \longrightarrow \quad \begin{gathered}
\text { diffusion in the necessary condition } \\
-\operatorname{div}\left(\alpha(\eta) \frac{\left(\varepsilon^{2}+|\nabla \theta|^{2}\right) I-\nabla \theta \otimes \nabla \theta}{{\sqrt{\varepsilon^{2}+|\nabla \theta|^{2}}}^{3}} \nabla v\right) \\
(v \in \mathbb{X}: \text { component of optimal control) })
\end{gathered}
$$

Theorem C. The limiting observation of the necessary condition as $\varepsilon \downarrow 0$
Keypoint: limiting approach to the singular case of the problem (OP) $)_{0}$

$$
\begin{aligned}
& \text { singular diffusion in }(\mathbf{S})_{0} \\
& \quad-\operatorname{div}\left(\alpha(\eta) \frac{D \theta}{|D \theta|}\right)
\end{aligned} \quad \rightarrow \quad \begin{gathered}
\text { limiting expression as } \varepsilon \downarrow 0 \\
\zeta^{\circ} \in\left[\mathscr{D}^{\prime}(\Omega)\right]^{n}(?)
\end{gathered}
$$

Latter part: precise observation under 1D-setting of $\Omega=(0,1)$

Theorem D. Limiting necessary condition, on some neighborhood of the grain boundary
Keypoint: H^{2}-regularity of solutions to (S) ${ }_{0}$
Decomposition property of quasilinear diffusion: $-\partial_{x}\left(\alpha(\eta) \frac{D \theta}{|D \theta|}+\nu^{2} \partial_{x} \theta\right)=-\partial_{x}\left(\alpha(\eta) \frac{D \theta}{|D \theta|}\right)-\nu^{2} \partial_{x}^{2} \theta$ in \mathbb{X}

Assumptions and notations.

(A0) $N \in\{1,2,3,4\}, \nu>0, \sigma_{*}=\left\{\sigma_{*, i}\right\}_{i=1}^{n}, \sigma^{*}=\left\{\sigma_{i}^{*}\right\}_{i=1}^{n} \in\left[L^{\infty}(\Omega)\right]^{n} ; \sigma_{*, i} \leq \sigma_{i}^{*}$ a.e. in $\Omega, i=1, \ldots, n$,

$$
X:=L^{2}(\Omega), \mathbb{X}:=[X]^{n}, Y:=H^{1}(\Omega), \mathbb{Y}:=[Y]^{n}, Y_{0}:=H_{0}^{1}(\Omega), \mathbb{Y}_{0}:=\left[Y_{0}\right]^{n}
$$

(A1) $\alpha_{0} \in W_{\text {loc }}^{1, \infty}(\mathbb{R})$ and $\alpha_{0}>0$ on $\bar{\Omega}$.
(A2) $\alpha \in C^{2}(\mathbb{R})$, s.t. $\alpha^{\prime}(0)=0, \alpha^{\prime \prime} \geq 0$, and $\delta_{\alpha}:=\inf \alpha(\mathbb{R}) \cup \alpha_{0}(\mathbb{R})>0$
(A3) $g \in C^{2}(\mathbb{R})$: Lipschitz, having a non-negative potential $0 \leq G \in C^{3}(\mathbb{R})$, and there exist constants $-\infty<r_{*} \leq 0<r^{*}<\infty$, which satisfy:

$$
\left\{\begin{array}{l}
g\left(\eta_{i}\right) \leq-\left|\sigma_{*, i}\right|_{L^{\infty}(\Omega)}, \text { for } \eta_{i} \leq r_{*}, \text { for any } i=1,2,3, \ldots, n, \\
g\left(\eta_{i}\right) \geq\left|\sigma_{i}^{*}\right|_{L^{\infty}(\Omega)}, \text { for } \eta_{i} \geq r^{*}, \text { for any } i=1,2,3, \ldots, n .
\end{array}\right.
$$

(A4) $\left[\eta_{0}, \theta_{0}\right] \in\left[Y \cap L^{\infty}(\Omega)\right] \times Y_{0}$, and $r_{*} \leq \eta_{0} \leq r^{*}$ a.e. in Ω
(A5) Let $n \in \mathbb{N}$ be a large number, s.t.:

$$
0<\tau=\frac{T}{n}<\frac{\nu^{2}}{4\left(\nu^{2}\left(1+\left|g^{\prime}\right|_{L^{\infty}(\mathbb{R})}\right)+\left|\alpha^{\prime}\right|_{L^{\infty}(\mathbb{R})}\right)}
$$

\dagger_{1}. The conditions colored blue are for the L^{∞}-boundedness of the orientation order $\eta=\left\{\eta_{i}\right\}_{i=1}^{n} \in \mathbb{X}$
\dagger_{2}. The assumption (A5) is for the strict coercivity (existence and uniqueness) of (S) $\varepsilon_{\varepsilon}$

Proposition 1 (Solvability of the state-system $\left.(\mathbf{S})_{\varepsilon}\right)$ cf. [Moll-S.-Watanabe](2013-)

Let us assume (A0)-(A5). Then, for $\varepsilon \geq 0$, and $[u, v] \in \mathcal{U}_{\mathrm{ad}}$, the state-system $(S)_{\varepsilon}$ admits a unique solution $[\eta, \theta]$, defined as follows.
(S0) $[\eta, \theta]=\left[\left\{\eta_{i}\right\}_{i=1}^{n},\left\{\theta_{i}\right\}_{i=1}^{n}\right] \in\left(\left[H^{2}(\Omega)\right]^{n} \times\left[L^{\infty}(\Omega)\right]^{n}\right) \times\left[Y_{0}\right]^{n}$
(S1) $\frac{1}{\tau}\left(\eta_{i}-\eta_{i-1}\right)-\Delta \eta_{i}+g\left(\eta_{i}\right)+\alpha^{\prime}\left(\eta_{i}\right) f_{\varepsilon}\left(\nabla \theta_{i-1}\right)=u_{i}$ in Ω,
subject to $r_{*} \leq \eta_{i} \leq r^{*}$ a.e. in $\Omega, \nabla \eta_{i} \cdot n_{\Gamma}=0$ on Γ, for $i=1,2,3, \ldots, n$
(S2) $\frac{1}{\tau} \alpha_{0}\left(\eta_{i-1}\right)\left(\theta_{i}-\theta_{i-1}\right)-\operatorname{div}\left(\alpha\left(\eta_{i}\right) \omega_{i}^{*}+\nu^{2} \nabla \theta_{i}\right)=v_{i}$ in Ω,
with $\omega_{i}^{*} \in L^{\infty}(\Omega)$ satisfying $\omega_{i}^{*} \in \partial f_{\varepsilon}\left(\nabla \theta_{i}\right)$ a.e. in Ω,
subject to $\theta_{i}=0$ on Γ, for $i=1,2,3, \ldots, n$

* $f_{\varepsilon}(\omega):=\sqrt{\varepsilon^{2}+|\omega|^{2}}, \forall \omega \in \mathbb{R}, \varepsilon>0\left(f_{\varepsilon} \rightarrow|\cdot|\right.$ in $L^{\infty}(\mathbb{R})$ as $\left.\varepsilon \downarrow 0\right)$
* the case when $\varepsilon=0, \omega_{i}^{*} \in \operatorname{Sgn}\left(\nabla \theta_{i}\right)$ a.e. in Ω
* Sgn : $\omega \in \mathbb{R}^{N} \longrightarrow \operatorname{Sgn}(\omega)\left\{\omega^{*} \in \mathbb{R}^{N}: \omega^{*} \cdot(z-\omega) \leq|z|-|\omega|, \forall z \in \mathbb{R}^{N}\right\}$ set-valued sign function
\dagger. cf. [Moll-S.-Watanabe](2015): If $[u, v]=\left[\left\{u_{i}\right\}_{i=1}^{n},\left\{v_{i}\right\}_{i=1}^{n}\right]=0$ in $[\mathbb{X}]^{2}$, then we further verify energydisspation for the following sequence of free-energy:

$$
\left\{\mathscr{F}_{i}\right\}_{i=1}^{n}:=\left\{\frac{1}{2} \int_{\Omega}\left|\nabla \eta_{i}\right|^{2} d x+\int_{\Omega} G\left(\eta_{i}\right) d x+\int_{\Omega} \alpha\left(\eta_{i}\right)\left|\nabla \theta_{i}\right| d x+\frac{\nu^{2}}{2} \int_{\Omega}\left|\nabla \theta_{i}\right|^{2} d x\right\}_{i=1}^{n}
$$

Proposition 2 (Continuous dependence for the state-system (S) ${ }_{\varepsilon}$) cf. [Kubota-S.](2020-)

Under (A0)-(A5), let us define:

$$
\mathcal{S}_{\varepsilon}:[u, v] \in \mathcal{U}_{\mathrm{ad}} \mapsto\left[\eta_{\varepsilon}, \theta_{\varepsilon}\right]:=\mathcal{S}_{\varepsilon}[u, v]: \text { the solution to }(\mathrm{S})_{\varepsilon}, \text { for } \varepsilon \geq 0
$$

Then,

$$
\begin{aligned}
& \left\{\varepsilon_{m}\right\}_{m=1}^{\infty} \subset[0,1], \varepsilon_{m} \rightarrow \varepsilon,\left[u_{m}, v_{m}\right] \rightarrow[u, v] \text { weakly in }[\mathbb{X}]^{2}, \text { as } m \rightarrow \infty \\
\Longrightarrow & {\left[\eta_{m}, \theta_{m}\right]:=\mathcal{S}_{\varepsilon_{m}}\left[u_{m}, v_{m}\right] \rightarrow[\eta, \theta]:=\mathcal{S}_{\varepsilon}[u, v] \text { in }[Y]^{n} \times\left[Y_{0}\right]^{n}, \text { as } m \rightarrow \infty }
\end{aligned}
$$

Theorem A (Existence and parameter dependence of optimal contorols)

(I) Under (A0)-(A5) $\varepsilon \geq 0$, the following two items holds.

The problem $(\mathrm{OP})_{\varepsilon}$ admits at least one optimal control $\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right] \in \mathcal{U}_{\mathrm{ad}}$
(II) Under (A0)-(A5) $\varepsilon_{0} \geq 0$, let $\left\{\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right]\right\}_{\varepsilon \geq 0}$ be a sequence optimal controls

$$
\exists\left\{\varepsilon_{m}\right\}_{m=1}^{\infty} \subset\{\varepsilon\}_{\varepsilon \geq 0}, \exists\left[u^{*}, v^{*}\right] \in \mathcal{U}_{\text {ad }} \text { s.t. : }
$$

$$
\left\{\begin{array}{l}
\varepsilon_{m} \rightarrow \varepsilon_{0},\left[u_{\varepsilon_{m}}^{*}, v_{\varepsilon_{m}}^{*}\right] \rightarrow\left[u^{*}, v^{*}\right] \text { weakly in }[\mathbb{X}]^{2} \text { as } m \rightarrow 0 \\
{\left[u^{*}, v^{*}\right]: \text { optimal control of }(\mathrm{OP})_{\varepsilon_{0}}}
\end{array}\right.
$$

\dagger. Theorem A will be obtained as a consequence of the argument of minimizing sequence

Adjoint of the linearlized state-system (necessary condition of optimality)

Adjoint system $(\mathbf{A})_{\varepsilon}(\varepsilon>0)$: to find $[p, z]=\left[\left\{p_{i}\right\}_{i=1}^{n},\left\{z_{i}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}$ s.t.

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{p_{i}-p_{i+1}}{\tau}-\Delta p_{i}+\mu_{i} p_{i}+\lambda_{i} p_{i}+\omega_{i} \cdot \nabla z_{i}+\tilde{\lambda}_{i} z_{i}=h_{i}, \text { in } \Omega, \\
\frac{a_{i} z_{i}-a_{i+1} z_{i+1}}{\tau}-\operatorname{div}\left(A_{i} \nabla z_{i}+\nu \nabla z_{i}+p_{i+1} \tilde{\omega}_{i}\right)=k_{i}, \text { in } \Omega,
\end{array}\right. \tag{ad.1}\\
& \nabla p_{i} \cdot n_{\Gamma}=z_{i}=0, \text { on } \Gamma, \tag{ad.2}\\
& \text { for } i=n, \ldots, 3,2,1 \text {, with }\left[p_{n+1}, z_{n+1}\right]=[0,0] \text { in } \Omega
\end{align*}
$$

In this context,

$$
\begin{gathered}
{[h, k]=\left[\left\{h_{i}\right\}_{i=1}^{n},\left\{k_{i}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}: \text { forcing, }\left[\eta_{\varepsilon}, \theta_{\varepsilon}\right]=\left[\left\{\eta_{\varepsilon, i}\right\}_{i=1}^{n},\left\{\theta_{\varepsilon, i}\right\}_{i=1}^{n}\right]: \text { sol. to (S) }} \\
\left\{\begin{array}{l}
a_{i}=\alpha_{0}\left(\eta_{\varepsilon, i-1}\right), \mu_{i}=\alpha^{\prime \prime}\left(\eta_{\varepsilon, i}\right) f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i-1}\right), \lambda_{i}=g^{\prime}\left(\eta_{i}\right), \omega_{i}=\alpha^{\prime}\left(\eta_{\varepsilon, i}\right) \nabla f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i}\right), \\
A_{i}=\alpha\left(\eta_{\varepsilon, i}\right) \nabla^{2} f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i}\right), \tilde{\omega}_{i}=\alpha^{\prime}\left(\eta_{\varepsilon, i+1}\right) \nabla f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i}\right), \tilde{\lambda}_{i}=\alpha_{0}^{\prime}\left(\eta_{\varepsilon, i}\right) \frac{\theta_{\varepsilon, i}-\theta_{\varepsilon, i-1}}{\tau},
\end{array} \quad . \quad \begin{array}{l}
\text { an, }, 2,1
\end{array}\right.
\end{gathered}
$$

Keypoint: • $N \in\{1,2,3,4\} \Longrightarrow H^{1}(\Omega) \subset L^{4}(\Omega) \Longrightarrow 0 \leq \mu_{i} \in X$ and $p_{i} \in Y$ imply $\mu_{i} p_{i} \in H^{1}(\Omega)^{*}$

- (ad.1)(ad.2) are backward scheme, for the time-step $i=n, \ldots, 3,2,1$, with the zero-terminal condition
- adjoint sytem $(\mathrm{A})_{\varepsilon}$ is solved separately, in the order of $($ ad.2) \rightarrow (ad.1)
- the time-step-size $\boldsymbol{\tau}$ is a fixed constant

Theorem B (Necessary condition of optimality in regular problem $(\mathbf{O P})_{\varepsilon}$ for $\varepsilon>0$)

Under (A0)-(A5), let $\varepsilon>0$ and $\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right] \in \mathcal{U}_{\text {ad }}$ be the optimal control for (OP) $)_{\varepsilon}$. Then, it holds that:

$$
\left(u_{\varepsilon}^{*}+p_{\varepsilon}^{*}, h-u_{\varepsilon}^{*}\right)_{\mathbb{X}} \geq 0, \quad \forall h \in \mathcal{U}_{\mathrm{ad}}\left(\sigma_{*, i} \leq h_{i} \leq \sigma_{i}^{*}\right) \text { and } v_{\varepsilon}^{*}+z_{\varepsilon}^{*}=0 \text { in } \mathbb{X}
$$

In the context, $\left[\eta_{\varepsilon}^{*}, \theta_{\varepsilon}^{*}\right]:=\mathcal{S}_{\varepsilon}\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right]$ in $[\mathbb{X}]^{2}$ and $\left[p_{\varepsilon}^{*}, z_{\varepsilon}^{*}\right] \in[\mathbb{X}]^{2}$ is a unique solution to:

$$
\left\{\begin{array}{l}
\frac{1}{\tau}\left(p_{\varepsilon_{i}}^{*}-p_{\varepsilon, i+1}^{*}\right)-\Delta p_{\varepsilon, i}^{*}+\left(g^{\prime}\left(\eta_{\varepsilon, i}^{*}\right)+\alpha^{\prime \prime}\left(\eta_{\varepsilon, i}^{*}\right) f_{\varepsilon}\left(\nabla \theta_{\varepsilon, i-1}^{*}\right)\right) p_{\varepsilon, i}^{*}+\alpha^{\prime}\left(\eta_{\varepsilon, i}^{*}\right)\left[\nabla f_{\varepsilon}\right]\left(\nabla \theta_{\varepsilon, i}^{*}\right) \cdot \nabla z_{\varepsilon_{i}}^{*} \\
\quad+\frac{1}{\tau} \alpha_{0}^{\prime}\left(\eta_{\varepsilon, i}^{*}\right)\left(\theta_{\varepsilon, i+1}^{*}-\theta_{\varepsilon, i}^{*}\right) z_{\varepsilon, i+1}^{*}=\eta_{\varepsilon, i}^{*}-\eta_{\mathrm{ad}, i} \text { in } \Omega, \\
\frac{1}{\tau}\left(\alpha_{0}\left(\eta_{\varepsilon, i-1}^{*}\right) z_{\varepsilon, i}^{*}-\alpha_{0}\left(\eta_{\varepsilon, i}^{*}\right) z_{\varepsilon, i+1}^{*}\right)-\operatorname{div}\left(\alpha\left(\eta_{\varepsilon, i}^{*}\right)\left[\nabla^{2} f_{\varepsilon}\right]\left(\nabla \theta_{\varepsilon, i}^{*}\right) \nabla z_{\varepsilon, i}^{*}\right. \\
\left.\quad+\nu^{2} \nabla z_{\varepsilon, i}^{*}+\alpha^{\prime}\left(\eta_{\varepsilon, i+1}^{*}\right) p_{\varepsilon, i+1}^{*}\left[\nabla f_{\varepsilon}\right]\left(\nabla \theta_{\varepsilon, i}^{*}\right)\right)=\theta_{\varepsilon, i}^{*}-\theta_{\mathrm{ad}, i} \quad \text { in } \Omega, \\
\nabla p_{\varepsilon, i}^{*} \cdot n_{\Gamma}=0, \quad z_{\varepsilon, i}^{*}=0 \quad \text { on } \Gamma, \text { for any } i=n, \ldots, 3,2,1, \\
p_{\varepsilon, n+1}^{*}=z_{\varepsilon, n+1}^{*}=0, \text { in } \Omega .
\end{array}\right.
$$

Keypoint:

- the temperature $u=\left\{u_{i}\right\}_{i=1}^{n} \in[\mathbb{X}]^{2}$ is constrained on $\mathcal{U}_{\mathrm{ad}}$
\Longrightarrow the necessary condition for the 1 st component u is obtained as a variational inequality
- there is no constraint for the component $v=\left\{v_{i}\right\}_{i=1}^{n} \in[\mathbb{X}]^{2}$
\Longrightarrow the necessary condition for the 2 nd component v is obtained as an equality

Theorem B (Necessary condition of optimality in regular problem $(\mathbf{O P})_{\varepsilon}$ for $\varepsilon>0$)

Under (A0)-(A5), let $\varepsilon>0$ and $\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right] \in \mathcal{U}_{\text {ad }}$ be the optimal control for (OP) $)_{\varepsilon}$. Then, it holds that:

$$
\left(u_{\varepsilon}^{*}+p_{\varepsilon}^{*}, h-u_{\varepsilon}^{*}\right)_{\mathbb{X}} \geq 0, \forall h \in \mathcal{U}_{\mathrm{ad}}\left(\sigma_{*, i} \leq h_{i} \leq \sigma_{i}^{*}\right) \text { and } v_{\varepsilon}^{*}+z_{\varepsilon}^{*}=0 \text { in } \mathbb{X}
$$

In the context, $\left[\eta_{\varepsilon}^{*}, \theta_{\varepsilon}^{*}\right]:=\mathcal{S}_{\varepsilon}\left[u_{\varepsilon}^{*}, v_{\varepsilon}^{*}\right]$ in $[\mathbb{X}]^{2}$ and $\left[p_{\varepsilon}^{*}, z_{\varepsilon}^{*}\right] \in[\mathbb{X}]^{2}$ is a unique solution to:

$$
u_{\varepsilon, i}^{*}(x)=\operatorname{proj}_{\left[\sigma_{*, i}(x), \sigma_{i}^{*}(x)\right]}\left(-p_{\varepsilon, i}^{*}(x)\right)=\left\{\begin{array}{l}
-p_{\varepsilon, i}^{*}(x), \text { if } \sigma_{*, i}(x) \leq-p_{\varepsilon, i}^{*}(x) \leq \sigma_{i}^{*}(x) \\
\sigma_{i}^{*}(x), \text { if }-p_{\varepsilon, i}^{*}(x) \geq \sigma_{i}^{*}(x) \\
\sigma_{*, i}(x), \text { if }-p_{\varepsilon, i}^{*}(x) \leq \sigma_{*, i}(x)
\end{array}\right.
$$

$$
\text { a.e. } x \in \Omega, i=n, \ldots, 3,2,1
$$

- for $-\infty \leq a<b \leq \infty, \operatorname{proj}_{[a, b]}: \mathbb{R} \longrightarrow[a, b] \cap \mathbb{R}$ is the projection on to $[a, b] \cap \mathbb{R}$

Keypoint:

- the temperature $u=\left\{u_{i}\right\}_{i=1}^{n} \in[\mathbb{X}]^{2}$ is constrained on $\mathcal{U}_{\mathrm{ad}}$ \Longrightarrow the necessary condition for the 1 st component u is obtained as a variational inequality
- there is no constraint for the component $v=\left\{v_{i}\right\}_{i=1}^{n} \in[\mathbb{X}]^{2}$
\Longrightarrow the necessary condition for the 2 nd component v is obtained as an equality

Theorem C (Limiting observation of necessary condition for $(\mathrm{OP})_{\varepsilon}$, as $\varepsilon \downarrow 0$)

Under (A0)-(A5), there exist an optimal control $\left[u^{\circ}, v^{\circ}\right] \in \mathcal{U}_{\text {ad }}$ for $(\mathrm{OP})_{0},\left[\eta^{\circ}, \theta^{\circ}\right]=\mathcal{S}_{0}\left[u^{\circ}, v^{\circ}\right]$, and $\left[\xi^{\circ}, \zeta^{\circ}, \omega^{\circ}\right]=$ $\left[\left\{\xi_{i}^{\circ}\right\}_{i=1}^{\circ},\left\{\zeta_{i}^{\circ}\right\}_{i=1}^{n},\left\{\omega_{i}^{\circ}\right\}_{i=1}^{n}\right] \in \mathbb{X} \times\left[H^{-1}(\Omega)\right]^{n} \times\left[L^{\infty}(\Omega)\right]^{n}$, s.t.:

$$
\begin{aligned}
& \quad\left(u^{\circ}+p^{\circ}, h-u^{\circ}\right)_{\mathbb{X}} \geq 0, \quad \forall h \in \mathcal{U}_{\mathrm{ad}}\left(\sigma_{*, i} \leq h_{i} \leq \sigma_{i}^{*}\right), v^{\circ}+z^{\circ}=0 \text { in } \mathbb{X}, \\
& \quad \text { and } \omega_{i}^{\circ} \in \operatorname{Sgn}\left(\nabla \theta_{i}^{\circ}\right) \text { a.e. in } \Omega, \\
& \left\{\begin{array}{l}
\frac{1}{\tau}\left(p_{i}^{\circ}-p_{i+1}^{\circ}\right)-\Delta p_{i}^{\circ}+\left(g^{\prime}\left(\eta_{i}^{\circ}\right)+\alpha^{\prime \prime}\left(\eta_{i}^{\circ}\right)\left|\nabla \theta_{i-1}^{\circ}\right|\right) p_{i}^{\circ}+\alpha^{\prime}\left(\eta_{i}^{\circ}\right) \xi_{i}^{\circ} \\
\quad+\frac{1}{\tau} \alpha_{0}^{\prime}\left(\eta_{i}^{\circ}\right)\left(\theta_{i+1}^{\circ}-\theta_{i}^{\circ}\right) z_{i+1}^{\circ}=\eta_{i}^{\circ}-\eta_{\mathrm{ad}, i} \quad \text { in } X, \\
\frac{1}{\tau}\left(\alpha_{0}\left(\eta_{i-1}^{\circ}\right) z_{i}^{\circ}-\alpha_{0}\left(\eta_{i}^{\circ}\right) z_{i+1}^{\circ}\right)+\zeta_{i}^{\circ}-\operatorname{div}\left(\nu^{2} \nabla z_{i}^{\circ}+\alpha^{\prime}\left(\eta_{i+1}^{\circ}\right) \omega_{i}^{\circ} p_{i+1}^{\circ}\right)=\theta_{i}^{\circ}-\theta_{\mathrm{ad}, i} \quad \text { in } H^{-1}(\Omega)=Y_{0}^{*}, \\
\nabla p_{i}^{\circ} \cdot n_{\Gamma}=0, z_{i}^{\circ}=0 \text { on } \Gamma, \text { for any } i=n, \ldots, 3,2,1, \\
p_{n+1}^{\circ}=z_{n+1}^{\circ}=0, \text { in } \Omega .
\end{array}\right.
\end{aligned}
$$

Keypoint: • $\xi_{i}^{\circ} \sim \frac{D \theta_{i}^{\circ}}{\left|D \theta_{i}^{\circ}\right|} \cdot \nabla z_{i}^{\circ}, \quad \zeta_{i}^{\circ} \sim-\operatorname{div}\left(\alpha\left(\eta_{i}^{\circ}\right)[\nabla \operatorname{Sgn}]\left(\nabla \theta_{i}^{\circ}\right) \nabla z_{i}^{\circ}\right)$

- estimate of perturbed Poisson eq. to have strong convergence $p_{\varepsilon}^{*} \rightarrow p^{\circ}$ in $\mathbb{X}\left(H^{1}\right.$-boundedness) \Longrightarrow we obtain the limiting necessary condition of variational inequality
- the necessary condition of equality, and the linearity of adjoint system \Longrightarrow we need only weak-convergences $p_{\varepsilon}^{*} \rightarrow p^{\circ}$ weakly in $Y, z_{\varepsilon}^{*} \rightarrow z^{\circ}$ weakly in Y_{0} (H^{1}-boundedness)

5. Precise observation in 1D case

$\Omega:=(0,1) \subset \mathbb{R}\left(1 \mathrm{D}\right.$-domain), $\Gamma=\partial \Omega=\{0,1\}, \quad X:=L^{2}(\Omega), \quad \mathbb{X}:=[X]^{n}$
Problem $(\mathbf{O P})_{\varepsilon}(\varepsilon \geq 0)$: to find $\left[u^{*}, v^{*}\right]=\left[\left\{u_{i}^{*}\right\}_{i=1}^{n},\left\{v_{i}^{*}\right\}_{i=1}^{n}\right] \in[\mathbb{X}]^{2}$, called optimal control, s.t.

$$
\left[u^{*}, v^{*}\right]=\arg -\min \mathcal{J}_{\varepsilon}=\mathcal{J}_{\varepsilon}(u, v) \text { on }[\mathbb{X}]^{2} \text { (constraint-free setting), }
$$

with a cost functional $\mathcal{J}:[u, v] \in[\mathbb{X}]^{2} \mapsto \mathcal{J}(u, v) \in[0, \infty)$, defined as

$$
\mathcal{J}(u, v):=\frac{1}{2}\left|[\eta, \theta]-\left[\eta_{\mathrm{ad}}, \theta_{\mathrm{ad}}\right]\right|_{[\mathbb{X}]^{2}}^{2}+\frac{1}{2}|[u, v]|_{[\mathbb{X}]]^{2}}^{2} .
$$

State-system $(\mathbf{S})_{\varepsilon}$:

$$
\left\{\begin{array}{l}
\frac{1}{\tau}\left(\eta_{i}-\eta_{i-1}\right)-\partial_{x}^{2} \eta_{i}+g\left(\eta_{i}\right)+\alpha^{\prime}\left(\eta_{i}\right)\left|\partial_{x} \theta_{i-1}\right|=u_{i} \text { in } \Omega, \\
\frac{1}{\tau} \alpha_{0}\left(\eta_{i-1}\right)\left(\theta_{i}-\theta_{i-1}\right)-\partial_{x}\left(\alpha\left(\eta_{i}\right) \partial f_{\varepsilon}\left(\partial_{x} \theta_{i}\right)+\nu^{2} \partial_{x} \theta_{i}\right) \ni v_{i} \text { in } \Omega, \\
\partial_{x} \eta_{i}=\theta_{i}=0 \text { on } \Gamma, i=1,2,3, \ldots, n, \\
\eta_{0} \in H^{1}(\Omega), \theta_{0} \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

\dagger. The one-dimensional embedding $H^{1}(\Omega) \subset C(\bar{\Omega})$ enables to remove the constraint for the temperature $u=\left\{u_{i}\right\}_{i=1}^{n} \in \mathbb{X}$

Proposition 3 (cf. [Rybka, Mucha](2013), [Kubota](2021))

Let us fix $0 \leq \beta_{1} \in Y$ and $0<\beta_{2} \in Y$, and let us set the three convex functionals $V_{\beta_{1}}, W_{\beta_{2}}$, and $\Phi_{\beta_{1}, \beta_{2}}$, defined as follows, respectively:

$$
\begin{gathered}
z \in X \mapsto V_{\beta_{1}}(z):=\sup \left\{\int_{\Omega} z \partial_{x} \varphi d x \left\lvert\, \begin{array}{l}
\varphi \in Y \cap C_{\mathrm{c}}(\Omega), \text { such that } \\
|\varphi| \leq \beta_{1} \text { on } \bar{\Omega}
\end{array}\right.\right\} \sim \int_{\Omega} \beta_{1}\left|\partial_{x} z\right|, \\
z \in X \mapsto W_{\beta_{2}}(z):=\left\{\begin{array}{l}
\frac{1}{2} \int_{\Omega} \beta_{2}\left|\partial_{x} z\right|^{2} d x, \text { if } z \in Y \\
\infty, \text { otherwise }
\end{array}\right. \\
z \in X \mapsto \Phi_{\beta_{1}, \beta_{2}}(z):=V_{\beta_{1}}(z)+W_{\beta_{2}}(z) .
\end{gathered}
$$

Then, the subdifferential $\partial \Phi_{\beta_{1}, \beta_{2}} \subset X \times X$ of the convex function $\Phi_{\beta_{1}, \beta_{2}}$ is decomposed as follows:

$$
\partial \Phi_{\beta_{1}, \beta_{2}}=\partial V_{\beta_{1}}+\partial W_{\beta_{2}} \text { in } X \times X
$$

\dagger_{1}. Applying this Proposition to the case when $\beta_{1}=\alpha\left(\eta_{i}\right), \beta_{2} \equiv \nu^{2}$,
$\theta_{i} \in H^{2}(\Omega)$, and $-\partial_{x}\left(\alpha\left(\eta_{i}\right) \omega_{i}^{*}+\nu^{2} \partial_{x} \theta_{i}\right)=-\partial_{x}\left(\alpha\left(\eta_{i}\right) \omega_{i}^{*}\right)-\nu^{2} \partial_{x}^{2} \theta_{i}$ in X, with $\omega_{i}^{*} \in \partial f_{\varepsilon}\left(\partial_{x} \theta_{i}\right)$ a.e. in Ω.

Proposition $4\left(H^{2}\right.$-regularity of the solution θ)

(I) Under (A0)-(A5), $\varepsilon \geq 0$ and $[u, v] \in[\mathbb{X}]^{2}$, the state-system $(\mathrm{S})_{\varepsilon}$ admits a unique solution $[\eta, \theta]$, defined as follows: (S0) $\eta_{i} \in H^{2}(\Omega)$ and $\theta_{i} \in H^{2}(\Omega), i=1,2,3, \ldots, n$
(S1) $\frac{1}{\tau}\left(\eta_{i}-\eta_{i-1}\right)-\partial_{x}^{2} \eta_{i}+g\left(\eta_{i}\right)+\alpha^{\prime}\left(\eta_{i}\right) f_{\varepsilon}\left(\partial_{x} \theta_{i-1}\right)=u_{i}$ in Ω,
subject to $\partial_{x} \eta_{i}=0$ on Γ, for any $i=1,2,3, \ldots, n$, and $\eta_{0} \in Y$
(S2) $\frac{1}{\tau} \alpha_{0}\left(\eta_{i-1}\right)\left(\theta_{i}-\theta_{i-1}\right)-\partial_{x}\left(\alpha\left(\eta_{i}\right) \omega_{i}^{*}\right)-\nu^{2} \partial_{x}^{2} \theta_{i}=v_{i}$ in Ω,
with $\omega_{i}^{*} \in Y \cap L^{\infty}(\Omega)$ satisfying $\omega_{i}^{*} \in \partial f_{\varepsilon}\left(\partial_{x} \theta_{i}\right)$ a.e. in Ω,
subject to $\theta_{i}=0$ on Γ, for any $i=1,2,3, \ldots, n$, and $\theta_{0} \in Y_{0}$
(II) Under (A0)-(A5), let us define:

$$
\mathcal{S}_{\varepsilon}:[u, v] \in[\mathbb{X}]^{2} \mapsto\left[\eta_{\varepsilon}, \theta_{\varepsilon}\right]:=\mathcal{S}_{\varepsilon}[u, v]: \text { the solution to }(\mathbf{S})_{\varepsilon}, \text { for } \varepsilon \geq 0
$$

Then,

$$
\begin{aligned}
& \left\{\varepsilon_{m}\right\}_{m=1}^{\infty} \subset(0,1], \varepsilon_{m} \rightarrow \varepsilon,\left[u_{m}, v_{m}\right] \rightarrow[u, v] \text { weakly in }[\mathbb{X}]^{2}, \text { as } m \rightarrow \infty \\
\Longrightarrow & {\left[\eta_{m}, \theta_{m}\right]:=\mathcal{S}_{\varepsilon_{m}}\left[u_{m}, v_{m}\right] \rightarrow[\eta, \theta]:=\mathcal{S}_{\varepsilon}[u, v] \text { in }\left([Y]^{n} \cap\left[C^{1}(\bar{\Omega})\right]^{n}\right) \times\left(\left[Y_{0}\right]^{n} \cap\left[C^{1}(\bar{\Omega})\right]^{n}\right), } \\
& \text { and weakly in }\left[H^{2}(\Omega)\right]^{n} \times\left[H^{2}(\Omega)\right]^{n}\left(\partial_{x} \theta_{m} \rightarrow \partial_{x} \theta \text { in } C(\bar{\Omega})\right), \text { as } m \rightarrow \infty
\end{aligned}
$$

Theorem D (A precise characterization of the limiting necessary condition of optimality)

Under (A0)-(A5), there exist an optimal control $\left[u^{\circ}, v^{\circ}\right] \in[\mathbb{X}]^{2}$ for $(\mathrm{OP})_{0},\left[\eta^{\circ}, \theta^{\circ}\right]=\mathcal{S}_{0}\left[u^{\circ}, v^{\circ}\right]$, and $\left[\xi^{\circ}, \zeta^{\circ}, \omega^{\circ}\right]=$ $\left[\left\{\xi_{i}^{\circ}\right\}_{i=1}^{\circ},\left\{\zeta_{i}^{\circ}\right\}_{i=1}^{n},\left\{\omega_{i}^{\circ}\right\}_{i=1}^{n}\right] \in \mathbb{X} \times\left[H^{-1}(\Omega)\right]^{n} \times\left[L^{\infty}(\Omega)\right]^{n}$, s.t.:

$$
\left[u^{\circ}, v^{\circ}\right]=-\left[p^{\circ}, z^{\circ}\right] \text { in }[\mathbb{X}]^{2} \text { and } \omega_{i}^{\circ} \in \operatorname{Sgn}\left(\partial_{x} \theta_{i}^{\circ}\right) \text { a.e. in } \Omega,
$$

$$
\left\{\begin{array}{l}
\frac{1}{\tau}\left(p_{i}^{\circ}-p_{i+1}^{\circ}\right)-\partial_{x}^{2} p_{i}^{\circ}+\left(g^{\prime}\left(\eta_{i}^{\circ}\right)+\alpha^{\prime \prime}\left(\eta_{i}^{\circ}\right)\left|\partial_{x} \theta_{i-1}^{\circ}\right|\right) p_{i}^{\circ}+\alpha^{\prime}\left(\eta_{i}^{\circ}\right) \xi_{i}^{\circ} \\
\quad+\frac{1}{\tau} \alpha_{0}^{\prime}\left(\eta_{i}^{\circ}\right)\left(\theta_{i+1}^{\circ}-\theta_{i}^{\circ}\right) z_{i+1}^{\circ}=\eta_{i}^{\circ}-\eta_{\mathrm{ad}, i} \quad \text { in } \Omega, \\
\frac{1}{\tau}\left(\alpha_{0}\left(\eta_{i-1}^{\circ}\right) z_{i}^{\circ}-\alpha_{0}\left(\eta_{i}^{\circ}\right) z_{i+1}^{\circ}\right)+\zeta_{i}^{\circ}-\partial_{x}\left(\nu^{2} \partial_{x} z_{i}^{\circ}+\alpha^{\prime}\left(\eta_{i+1}^{\circ}\right) \omega_{i}^{\circ} p_{i+1}^{\circ}\right)=\theta_{i}^{\circ}-\theta_{\mathrm{ad}, i} \quad \text { in } \Omega, \\
\partial_{x} p_{i}^{\circ}=z_{i}^{\circ}=0 \text { on } \Gamma, \text { for any } i=n, \ldots, 3,2,1, \quad p_{n+1}^{\circ}=z_{n+1}^{\circ}=0, \text { in } \Omega .
\end{array}\right.
$$

Keypoints: Under 1D-setting,

- the distribution ζ° is formally expressed by:

$$
\zeta_{i}^{\circ} \sim-\partial_{x}\left[\alpha\left(\eta_{i}\right) \mathfrak{d}\left(\partial_{x} \theta_{i}^{\circ}\right) \partial_{x} v_{i}^{\circ}\right] \text { in } \mathscr{D}^{\prime}(\Omega), \text { and spt } \zeta_{i}^{\circ} \sim\left\{\partial_{x} \theta_{i}^{\circ}=0\right\}, \text { by using Dirac's delta } \mathfrak{d}
$$

- as $\varepsilon \downarrow 0$, the limiting component $\partial_{x} \theta^{\circ} \in C(\bar{\Omega})$ is approached in the uniform topology on $\bar{\Omega}$
- the set $\left\{\partial_{x} \theta_{i}^{\circ}=0\right\}$ corresponds to a closed region of locally constant parts (crystalline facets on grains) the set $\left\{\partial_{x} \theta_{i}^{\circ} \neq 0\right\}$ is an open set, corresponding to a neighborhood of grain boundary

Theorem D (A precise characterization of the limiting necessary condition of optimality)

Let us take any $\rho \in C^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R})$ with $\rho(0)=\rho^{\prime}(0)=0$. Then,

$$
\begin{aligned}
& \rho\left(\partial_{x} \theta_{i}^{\circ}\right)\left(\frac{1}{\tau}\left(p_{i}^{\circ}-p_{i+1}^{\circ}\right)-\partial_{x}^{2} p_{i}^{\circ}+\left(g^{\prime}\left(\eta_{i}^{\circ}\right)+\alpha^{\prime \prime}\left(\eta_{i}^{\circ}\right)\left|\partial_{x} \theta_{i-1}^{\circ}\right|\right) p_{i}^{\circ}+\alpha^{\prime}\left(\eta_{i}^{\circ}\right) \omega_{i}^{\circ} \partial_{x} z_{i}^{\circ}\right. \\
& \left.\quad+\frac{1}{\tau} \alpha_{0}^{\prime}\left(\eta_{i}^{\circ}\right)\left(\theta_{i+1}^{\circ}-\theta_{i}^{\circ}\right) z_{i+1}^{\circ}-\left(\eta_{i}^{\circ}-\eta_{\text {ad }, i}\right)\right)=0 \text { in } X, \\
& \rho\left(\partial_{x} \theta_{i}^{\circ}\right)\left(\frac{1}{\tau}\left(\alpha_{0}\left(\eta_{i-1}^{\circ}\right) z_{i}^{\circ}-\alpha_{0}\left(\eta_{i}^{\circ}\right) z_{i+1}^{\circ}\right)-\nu^{2} \partial_{x}^{2} z_{i}^{\circ}-\alpha^{\prime}\left(\eta_{i+1}^{\circ}\right) \omega_{i}^{\circ} p_{i+1}^{\circ}-\left(\theta_{i}^{\circ}-\theta_{\text {ad }, i}\right)\right)=0 \text { in } X, \\
& \xi_{i}^{\circ}=\omega_{i}^{\circ} \partial_{x} z_{i}^{\circ} \text { and } \zeta_{i}^{\circ}=0 \text { in } \mathscr{D}^{\prime}\left(\left\{\partial_{x} \theta_{i}^{\circ} \neq 0\right\}\right), \text { with } \omega_{i}^{\circ} \in \operatorname{Sgn}\left(\nabla \theta_{i}^{\circ}\right) \text { in } \Omega, \text { for } i=n, \ldots, 3,2,1 .
\end{aligned}
$$

Therefore,

$$
\left\{\begin{array}{l}
\frac{1}{\tau}\left(p_{i}^{\circ}-p_{i+1}^{\circ}\right)-\partial_{x}^{2} p_{i}^{\circ}+\left(g^{\prime}\left(\eta_{i}^{\circ}\right)+\alpha^{\prime \prime}\left(\eta_{i}^{\circ}\right)\left|\partial_{x} \theta_{i-1}^{\circ}\right|\right) p_{i}^{\circ}+\alpha^{\prime}\left(\eta_{i}^{\circ}\right) \frac{\partial_{x} \theta_{i}^{\circ}}{\left|\partial_{x} \theta_{i}^{\circ}\right|} \partial_{x} z_{i}^{\circ} \\
\quad+\frac{1}{\tau} \alpha_{0}^{\prime}\left(\eta_{i}^{\circ}\right)\left(\theta_{i+1}^{\circ}-\theta_{i}^{\circ}\right) z_{i+1}^{\circ}=\eta_{i}^{\circ}-\eta_{\mathrm{ad}, i}, \\
\frac{1}{\tau}\left(\alpha_{0}\left(\eta_{i-1}^{\circ}\right) z_{i}^{\circ}-\alpha_{0}\left(\eta_{i}^{\circ}\right) z_{i+1}^{\circ}\right)-\nu^{2} \partial_{x}^{2} z_{i}^{\circ}-\alpha^{\prime}\left(\eta_{i+1}^{\circ}\right) \frac{\partial_{x} \theta_{i}^{\circ}}{\left|\partial_{x} \theta_{i}^{\circ}\right|} p_{i+1}^{\circ}=\theta_{i}^{\circ}-\theta_{\mathrm{ad}, i},
\end{array} \quad \text { in }\left\{\partial_{x} \theta_{i}^{\circ} \neq 0\right\}\right.
$$

Sketch of the proof (2nd eq. of the adjoint system):

$\forall i \in\{1, \ldots, n\}$, let us take $\psi \in Y_{0}$, and test 2nd eq. by $\rho\left(\partial_{x} \theta_{i}^{\circ}\right) \psi \in Y_{0}\left(\theta_{i}^{\circ} \in H^{2}(\Omega)\right)$:

$$
\begin{aligned}
\left(\text { principal part } I_{\varepsilon}^{\circ}\right. & :=\int_{\Omega}\left(\alpha\left(\eta_{\varepsilon, i}^{*}\right) f_{\varepsilon}^{\prime \prime}\left(\partial_{x} \theta_{\varepsilon, i}^{*}\right) \partial_{x} z_{\varepsilon, i}^{*}\right) \cdot \partial_{x}\left(\rho\left(\partial_{x} \theta_{i}^{\circ}\right) \psi\right) d x \\
& =\int_{\operatorname{spt} \rho\left(\partial_{x} \theta_{i}^{\circ}\right)} \partial_{x} z_{\varepsilon, i}^{*} \cdot \sqrt{\alpha\left(\eta_{\varepsilon, i}^{*}\right) \frac{\varepsilon^{2}}{\sqrt{\varepsilon^{2}+\left|\partial_{x} \theta_{\varepsilon, i}^{*}\right|^{2}}}\left(\rho^{\prime}\left(\partial_{x} \theta_{i}^{\circ}\right) \partial_{x}^{2} \theta_{i}^{\circ} \psi+\rho\left(\partial_{x} \theta_{i}^{\circ}\right) \partial_{x} \psi\right)}(* 1)_{\varepsilon}
\end{aligned} d x
$$

(Step 1): the case when $0 \notin K^{\circ}:=\operatorname{spt} \rho$, i.e. $\exists \delta^{\circ}>0$ s.t. $K^{\circ} \cap\left(-\delta^{\circ}, \delta^{\circ}\right)=\emptyset$

- uniform convergence on $\bar{\Omega}$ of $\eta_{\varepsilon, i}^{*} \rightarrow \eta_{i}^{\circ}$, and $\partial_{x} \theta_{\varepsilon, i}^{*} \rightarrow \partial_{x} \theta_{i}^{\circ}$:

$$
\begin{aligned}
& \exists \varepsilon^{\circ}>0 \text { s.t. }\left|\partial_{x} \theta_{\varepsilon, i}^{*}\right| \geq \delta^{\circ} / 2, \text { uniformly on } \operatorname{spt} \rho\left(\partial_{x} \theta_{i}^{\circ}\right), \forall \varepsilon \in\left(0, \varepsilon^{\circ}\right) \\
\Longrightarrow & \left|(* 1)_{\varepsilon}\right|_{X} \leq \text { Const. } \frac{\varepsilon^{2}}{{\sqrt{\varepsilon^{2}+\left|\partial_{x} \theta_{\varepsilon, i}\right|^{2}}}^{3}}\left(\left|\partial_{x}^{2} \theta_{i}^{\circ}\right|_{X}+\left|\partial_{x} \psi\right|_{X}\right) \leq \text { Const. } \frac{2}{\delta^{\circ}}\left(\left|\partial_{x}^{2} \theta_{i}^{\circ}\right|_{X}+\left|\partial_{x} \psi\right|_{X}\right) \rightarrow 0, \text { as } \varepsilon \downarrow 0 \\
\Longrightarrow & I_{\varepsilon}^{\circ} \rightarrow 0, \text { as } \varepsilon \downarrow 0
\end{aligned}
$$

(Step 2): the case when $0 \in K^{\circ}:=\operatorname{spt} \rho \quad\left(\rho(0)=\rho^{\prime}(0)=0\right)$
This case is obtained by means of approximating argument of ρ in $W^{1, \infty}(\mathbb{R})$

6. Future problems

(I) Optimal control problems for anisotropic Kobayashi-Warren-Carter system

Issue: 2D state-system with crystalline anisotropy
(II) Optimal control problems for WKLC system (cf. [Warren-Kobayashi-Lobkovsky -Carter] (2003))

Issue : state-system of "Fix-Caginalp model of phase transition" VS.
"Kobayashi-Warren-Carter system"
(III) Generalization of boundary conditions

Issue: unification of the methods for nonhomogeneous Dirichlet / Neumann / Robin B.C., and dynamic B.C.
(IV) Issues for time-discrete state-systems in higher dimension

Issue: expression of ξ_{i}° and ζ_{i}°

