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du+ [div (u
u)+rp]dt = ��udt+dB
div u = 0

x2T3; t2R

� trace class Brownian motion B on (
;F ;P)

� velocity u: 
�R�T3!R3

� pressure p: 
�R�T3!R

� viscosity � > 0 � Navier�Stokes equations � > 0 and Euler equations � =0

� high Reynolds number limit �! 0 � highly turbulent regime

Statistically stationary solutions

� exact trajectories of solutions are not suitable for predictions (high sensitivity)

� statistical properties are well reproducible

� Law[u(t+ �)]=Law[u(�)] for all t2R � as a pushforward probability measure on C(R;L2)



Kolmogorov 1941 turbulence theory 3/12

� physical theory taking theoretical hypotheses and making predictions

� confirmed to large extent by experiments

� largely open in terms of rigorous mathematics

Key problems of interest:

1. Existence and (non)uniqueness of ergodic stationary solutions u� to the Navier�Stokes equa-
tions

2. Relative compactness of stationary solutions u�, � > 0, and the convergence towards a
stationary solution to the Euler equations

3. Anomalous dissipation along the vanishing viscosity limit �! 0

4. Existence and (non)uniqueness of ergodic stationary solutions to the Euler equations

� up to now, results only for simplified settings

� shell models of turbulence, passive scalar models of turbulence
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� basic assumption in turbulence theory

� time averages along trajectories converge to ensemble averages wrt a probability measure

lim
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F (u(t))dt=
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� the measure is invariant � stationary solutions

� for an ergodic stationary solution

lim
T!1

1
T

Z
0

T

F (u(t))dt=E[F (u(0))]

� unique ergodicity for stoch. NSE with nondegenerate noise for a selected Markov process

� Da Prato�Debussche '03 (analysis of the Kolmogorov equation)

� Flandoli�Romito '08 (based on Markov selection)

� even mere existence of stationary solutions to stoch. Euler unknown
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@tu+div (u
u)+rp = ��u
div u = 0

x2T3; t2 [0;1)

� assume u is smooth � test the equation by u

h@tu; ui+ hdiv (u
u); ui+ hrp; ui= � h�u; ui

) 1
2
@tkukLx2

2 + �krukLx2
2 =0

� energy conservation for Euler equations

) 1
2
@tkukLx2

2 =0

� vanishing viscosity limit in a class of smooth solutions would imply

lim
�!0

�kru�kLx2
2 =0
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� such solutions do not exist globally in time for general initial conditions

� Leray solutions to NSE exist globally in time and satisfy the energy inequality
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� anomalous dissipation predicted by Kolmogorov

lim
�!0

�E[kru�kLx2
2 ] = �> 0

� energy estimates do not give the necessary compactness to construct weak solutions to Euler

� we work with a different class of solutions (but not necessarily larger)

� in C(R;H#)\C#(R;L2) for some (small) #> 0 uniformly in � > 0

� u(t)2/H1 and energy inequality not satisfied

� we use a new stochastic convex integration
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� based on the convex integration by Buckmaster�Vicol '19

� iterative procedure, explicit construction of solutions scale by scale

� decomposition u= z+ v

dz ¡ (�¡ 1)zdt=dB; div z=0

@tv¡�v¡ z+div ((v+ z)
 (v+ z))+rp=0; div v=0

� iterations satisfy the equations up to an error

@tvq¡�vq¡ zq+div ((vq+ zq)
 (vq+ zq))+rpq=divRq; div vq=0

zq=P6f(q)z

� having already found (vq; Rq)

� how to find (vq+1; Rq+1)?

� so that also vq has a limit and Rq! 0?
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� roughly speaking, we look for a (small) perturbation wq+1 so that

� vq+1= vq+wq+1

� Rq+1 is (much) smaller than Rq

� then looking at @tvq+1¡ @tvq we get a formula for Rq+1

divRq+1=div (Rq+wq+1
wq+1)+ ���

� intermittent jets W introduced by Buckmaster�Vicol, geometric lemma

wq+1= a(Rq)Wq+1

� amplitude function a(Rq) oscillates slowly, large oscillations in Wq+1

� large oscillations resonate through the nonlinearity so that

kRq+wq+1
wq+1k�kRqk

� additionally: mollification step, compressibility and time corrector
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� for the long time behavior, work with norms of the form�
sup
t2R

E
�

sup
t6s6t+1

kvq(s)kH#
2r

��
1/(2r)

;

�
sup
t2R

E[kvqkC#([t;t+1];L2)2r ]

�
1/(2r)

� uniform moment estimates locally in C(R;H#)\C#(R;L2)

� previous versions worked with stopping times � not good for stationary solutions

� iterative estimates (a sample): r > 1 fixed, any m2N

sup
t2R

E
�

sup
t6s6t+1

kRq(s)kL1r
�
6 1

48
�q+2! 0 as q!1
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6 (6q�4mL2)(6
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� due to the quadratic nonlinearity the estimates are superliner � control all the moments

� use small factors to absorb the blow up
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H., Zhu, Zhu '22 Let r > 1 and a smooth e:R! (0;1) with a compact range be given.

There exists # > 0 so that for every � > 0 there is an adapted u� 2C(R;H#) \C#(R; L2)
a.s. solving the stoch. NS/Euler equations so that

sup
�>0

�
sup
t2R

E
�

sup
t6s6t+1

ku�(s)kH#
2r

�
+ sup
t2R

E[ku�kC#([t;t+1];L2)2r ]
�
<1;

Eku�(t)kL22 = e(t):

� solutions are probabilistically strong, analytically weak

� the bounds good enough to apply

� Krylov�Bogoliubov � existence of stationary solutions

� Krein�Milman � existence of ergodic stationary solutions

� nonuniqueness of the above by choosing different e(t)=K
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� instead of Markov semigroup, work with shifts on trajectories

St(u;B)(�)= (u(t+ �); B(t+ �)¡B(t)) t2R

� continuity on T =C(R;L2)�C(R;L2) for free! (cf. Feller property)

� Krylov�Bogoliubov applied to the ergodic averages

1
T

Z
0

T

L[St(u;B)]dt! � =L[u~; B~] T!1

� � is a shift invariant measure on trajectories and a law of a stationary solution (u~; B~)

� ergodicity understood as ergodicity of the dynamical system (T ; (St; t2R);L[u~; B~])

� bounds uniform in the viscosity �> 0

� the results apply to the stochastic Euler equations

� vanishing viscosity limit in the framework of stationary solutions
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Thanks for your attention!


