Symmetry properties for the Euler equations and semilinear elliptic equations

François HAMEL

Aix-Marseille Université

In collaboration with Nikolai NADIRASHVILI

Asia-Pacific Analysis and PDE Seminar

April 12, 2021

12M - Institut Archimède - ANR Resiste 🕨 🗸 🗇 🕨 🤄 🚍

Steady Euler equations for an inviscid incompressible fluid

$$\begin{cases} v \cdot \nabla v + \nabla p = 0 & \text{in } \Omega \\ \text{div } v = 0 & \text{in } \Omega \end{cases}$$

with $v \in C^2(\overline{\Omega})$

How does the flow inherit the geometry of the domain ?

- Circular domains \implies circular flows ?
- Parallel domains \implies parallel flows ?

Sufficient conditions in dimension 2 ?

I. Circular flows in annuli

★ E ► ★ E ► E

Theorem

Assume that $v \cdot e_r = 0$ on $\partial \Omega_{a,b}$ and |v| > 0 in $\overline{\Omega_{a,b}}$.

Then v is a circular flow

 $v(x) = V(|x|) e_{\theta}(x)$

with $V \neq 0$ in [a, b].

• The streamlines $\Xi_x = \{\xi_x(t) : t \in I\}$ are concentric circles $\dot{\xi}_x(t) = v(\xi_x(t)), \quad \xi_x(0) = x$

- Equivalent formulation: any non-circular flow must have a stagnation point in Ω_{a,b}.
- It is sufficient to assume that the set of stagnation points is properly included in C_a = {|x| = a} or in C_b = {|x| = b}.

э.

Without the assumption |v| > 0, the conclusion does not hold in general !

For any classical function u solving

 $\Delta u + f(u) = 0 \text{ in } \Omega_{a,b}$

with *u* constant on $\{|x| = a\}$ and on $\{|x| = b\}$, then

 $v = \nabla^{\perp} u$

obeys the Euler equations (pressure $p = -|\nabla u|^2/2 - F(u)$ and F' = f).

If u has critical points, then v has stagnation points.

If u is not radial, then v is not a circular flow.

Example:

$$\begin{cases} -\varphi'' - r^{-1}\varphi' + r^{-2}\varphi = \lambda \varphi \text{ and } \varphi > 0 \text{ in } (a, b) \\ \varphi(a) = \varphi(b) = 0 \end{cases}$$

Then $u(x) = \varphi(r) \cos(\theta)$ solves $\Delta u + \lambda u = 0$, with 6 critical points in $\overline{\Omega_{a,b}}$

 $\implies v = \nabla^{\perp} u$ is a non-circular flow with 6 stagnation points = , (

The condition |v| > 0 in $\overline{\Omega_{a,b}}$ is obviously not equivalent to being a circular flow !

There are circular flows with stagnation points (besides the trivial flow !)

Example:

$$\left\{ \begin{array}{l} -\phi^{\prime\prime}-r^{-1}\phi^{\prime}=\mu\,\phi \ \, \text{and} \ \, \phi>0 \ \, \text{in} \ \, (a,b) \\ \phi(a)=\phi(b)=0 \end{array} \right.$$

Then $u(x) = \phi(r)$ solves $\Delta u + \mu u = 0$, with

$${\text{critical points}} = C_{r^*} = {|x| = r^*}$$

for some $a < r^* < b$

 $\implies v = \nabla^{\perp} u$ is a circular flow with infinitely many stagnation points

A = A = A = A < A
</p>

Scheme of the proof

• Stream function *u* of the flow *v*:

 $\nabla^{\perp} u = v$

with

$$u(x) = c$$
 for $|x| = a$
 $u(x) = 0$ for $|x| = b$

• Any streamline Γ intersects any trajectory Σ of $\dot{\sigma}(t) = \nabla u(\sigma(t))$

문에서 문어 ...

э.

• Without loss of generality: c > 0

• Then

$$0 < u < c$$
 in $\Omega_{a,b}$

Vorticity

$$\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} = \Delta u$$

is constant along the streamlines (from the Euler equations !)

• Semilinear elliptic equation

 $\Delta u + f(u) = 0$

with $f(s) = -\Delta u(\sigma(\theta^{-1}(s)))$ for $s \in [0, c]$ and $\theta(t) = u(\sigma(t))$

글 🖌 🖌 글 🛌 👘

Theorem [Sirakov]

Let $f : [0, c] \rightarrow \mathbb{R}$ be Lipschitz continuous.

Let $\Omega_{a,b} = \{a < |x| < b\} \subset \mathbb{R}^n$ and $u \in C^2(\overline{\Omega_{a,b}})$ solve

$$\left\{ egin{array}{ll} \Delta u + f(u) = 0 & ext{in } \Omega_{a,b} \ 0 < u < c & ext{in } \Omega_{a,b} \end{array}
ight.$$

with u = 0 on $\{|x| = b\}$ and u = c on $\{|x| = a\}$.

Then u is radially symmetric and decreasing:

u(x) = U(|x|) in $\overline{\Omega_{a,b}}$

and U'(r) < 0 for all a < r < b.

• Conclusion of the theorem for the Euler equations (with $\Omega_{a,b} \subset \mathbb{R}^2$):

$$v = \nabla^{\perp} u = U'(|x|) e_{\theta}(x)$$

< = > < = >

э

Exterior domains $\Omega_{a,\infty} = \{|x| > a\}$ with a > 0

Theorem

Assume that $v \cdot e_r = 0$ on C_a , together with

$$\inf_{\Omega_{a,\infty}} |v| > 0 \quad \text{and} \quad v(x) \cdot e_r(x) = o\Big(\frac{1}{|x|}\Big) \text{ as } |x| \to +\infty.$$

Then v is a circular flow

$$v(x) = V(|x|) e_{\theta}(x)$$

with $V \neq 0$ in $[a, +\infty)$

- The streamlines Ξ_{x} are concentric circles
- The stream function *u* is radially symmetric (Liouville-type result)

• The flow is not assumed be bounded, example: $v(x) = |x| e_{\theta}(x)$

Counter-example without the condition $v(x) \cdot e_r(x) = o(1/|x|)$ as $|x| \to \infty$:

$$\begin{pmatrix} u = 2\left(\frac{r^2}{a^2} - 1\right) + \left(\frac{r}{a} - \frac{a}{r}\right)\cos\theta\\ \left(\Delta u = \frac{8}{a^2} \text{ in } \Omega_{a,\infty}, \quad u = 0 \text{ on } C_a \end{pmatrix}\\ v = \nabla^{\perp} u = \left[\frac{4r}{a^2} + \left(\frac{1}{a} + \frac{a}{r^2}\right)\cos\theta\right]e_{\theta} + \left[\left(\frac{1}{a} - \frac{a}{r^2}\right)\sin\theta\right]e_r$$

One has $\inf_{\Omega_{a,\infty}} |v| \ge 2/a > 0$. But

$$v(x)\cdot e_r(x)=\left(rac{1}{a}-rac{a}{|x|^2}
ight)rac{x_2}{|x|}
eq oigg(rac{1}{|x|}igg) ext{ as } |x|
ightarrow+\infty$$

and v is not a circular flow !

The limiting radial oscillation of the far streamlines is a/2.

< ⊒ >

Scheme of the proof

- Stream function u, with u = 0 and $\nabla u \cdot e_r > 0$ on C_a (w.l.o.g.)
- Trajectory of the gradient flow $\dot{\sigma}(t) = \nabla u(\sigma(t))$ with $\sigma(0) = A \in C_a$

 $|\sigma(t)|
ightarrow +\infty$ and $u(\sigma(t))
ightarrow +\infty$ as $t \stackrel{<}{
ightarrow} T_{max}$

- For each t ∈ [0, T_{max}), the streamline Ξ_{σ(t)} surrounds the origin (continuation argument, with assumption inf<sub>Ω_{a,∞} |v| > 0)
 </sub>
- All streamlines surround the origin
- u > 0 in $\Omega_{a,\infty}$ (and $u(x) \to +\infty$ as $|x| \to +\infty$)
- Radial oscillation $\max_{y \in \Xi_x} |y| \min_{y \in \Xi_x} |y| \to 0$ as $|x| \to +\infty$
- Equation $\Delta u + f(u) = 0$ in $\Omega_{a,\infty}$ for some C^1 function $f : \mathbb{R}_+ \to \mathbb{R}$
- Method of moving planes (Alexandroff, Gidas-Ni-Nirenberg) ⇒ monotonicity of *u* in any direction *e* in Ω_{Ξ_x} ∩ Ω_{a,∞} ∩ {*y* · *e* > ε}
- Limiting argument \implies radial symmetry of u_{a}

▲周レスヨレスヨレ ヨ りへの

Further results in $\Omega_{a,\infty}$ with $\inf_{\Omega_{a,\infty}} |v| > 0$:

$$v \cdot e_{\theta} > 0 \text{ on } C_a \implies \sup_{\Omega_{a,\infty}} \left(\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} \right) > 0$$

(argument by contradiction and inversion of variables)

Not true without the condition $\inf_{\Omega_{a,\infty}} |v| > 0$, example: $v(x) = |x|^{-2} e_{\theta}(x)$, vorticity $= -|x|^{-3} < 0$

Further results in punctured disks $\Omega_{0,b} = \{0 < |x| < b\}$ with conditions as $|x| \to 0$

Further results in the punctured plane $\Omega_{0,\infty} = \mathbb{R}^2 \setminus \{0\}$ with conditions as $|x| \to 0$ and $|x| \to +\infty$

Serrin-type free boundary problems, with overdetermined boundary conditions

Theorem

Let Ω be a C^2 non-empty simply connected bounded domain of \mathbb{R}^2 . Assume that $v \cdot n = 0$ and |v| is constant on $\partial \Omega$. Assume moreover that v has a unique stagnation point in $\overline{\Omega}$.

Then, up to a shift,

 $\Omega = B_R$

and the unique stagnation point of v is the center of the disk. Furthermore, v is a circular flow:

 $v(x) = V(|x|) e_{\theta}(x)$ for all $x \in \overline{B_R} \setminus \{0\}$

with $V \neq 0$ in (0, R] and V(0) = 0.

글 🖌 🔺 글 🕨 👘

Scheme of the proof

- Stream function u: u = 0 on $\partial \Omega$ and u > 0 in Ω (w.l.o.g.)
- Equation

 $\Delta u + f(u) = 0 \text{ in } \Omega$

(because of unique stagnation point z)

• Overdetermined boundary condition

 $\nabla u \cdot n = constant$ on $\partial \Omega$

- If f were Lipschitz continuous on [0, max_Ω u], then Ω is a ball and u is radially symmetric [Serrin]
- Here f can be non-Lipschitz-continuous at the left of $\max_{\overline{\Omega}} u = u(z)$ (example: $v(x) = -4|x|^2 x^{\perp}$ in $\overline{B_R}$, $u(x) = R^4 - |x|^4$, $\Delta u + 16\sqrt{R^4 - u} = 0$)
- Serrin-type argument in $\Omega \setminus \mathcal{N}(z, \varepsilon) \Longrightarrow$ almost monotonicity of Ω with respect to any line containing z

• $\implies \Omega = B(z, R)$ and *u* is radially symmetric, and *v* is a circular flow

Related free boundary problems:

- Vorticity = $\mathbf{1}_D$ in \mathbb{R}^2 and $\mathbf{v} \cdot \mathbf{n} = 0$ on ∂D (vortex patch) $\implies D$ is a disk (Rankine vortex)
- $\bullet\,$ Smooth solutions in \mathbb{R}^2 with nonnegative compactly supported vorticity are circular
- Further results for non-stationary uniformly-rotating solutions

[Fraenkel] [Gómez-Serrano, Park, Shi, Yao]

[Hmidi] [Hmidi, Mateu, Verdara] (doubly connected vortex patch)

Conjecture

If *D* is an open disk, $z \in D$ and $v \in C^2(\overline{D} \setminus \{z\})$ is bounded, and $v \cdot n = 0$ on ∂D and |v| > 0 in $\overline{D} \setminus \{z\}$, then *z* is the center of *D* (and then *v* is circular)

医下 化医下口

Theorem

Let ω_1 and ω_2 be two C^2 non-empty simply connected bounded domains of \mathbb{R}^2 such that $\overline{\omega_1} \subset \omega_2$, and let

 $\Omega = \omega_2 \setminus \overline{\omega_1}.$

Assume that $\mathbf{v} \cdot \mathbf{n} = 0$ and $|\mathbf{v}|$ is constant on $\partial \omega_1$ and on $\partial \omega_2$. Assume moreover that $|\mathbf{v}| > 0$ in $\overline{\Omega}$.

Then ω_1 and ω_2 are two concentric disks: up to shift,

 $\Omega = \Omega_{a,b}$

and v is a circular flow.

- Stream function: u = c on $\partial \omega_1$, u = 0 on $\partial \omega_2$ and 0 < u < c in Ω
- Equation $\Delta u + f(u) = 0$ in Ω with $f : [0, c] \to \mathbb{R}$ of class $C^1([0, c])$
- Overdetermined conditions: $\nabla u \cdot n$ is constant on $\partial \omega_1$ and on $\partial \omega_2$
- [Reichel] [Sirakov] $\implies \Omega = \Omega_{a,b}$ (up to shift)

EN E DOG

Parallel flow in dimension N

$$v=(v_1,0,\cdots,0)$$

(up to rotation) and

 $\mathbf{v}_1 = \mathbf{v}_1(\mathbf{x}_2, \cdots, \mathbf{x}_N)$

Parallel flow \iff the pressure *p* is constant

Parallel flows in two-dimensional domains $\Omega \subset \mathbb{R}^2$?

Two-dimensional strip

$$\Omega_2 = \mathbb{R} imes (0,1) = \left\{ x = (x_1, x_2) \in \mathbb{R}^2, \ 0 < x_2 < 1
ight\}$$

Theorem

Assume that $v_2 = 0$ on $\partial \Omega_2$ ($v \cdot n = 0$ on $\partial \Omega_2$) and

 $\inf_{\Omega_2} |v| > 0.$

Then \mathbf{v} is a parallel flow:

 $v(x_1, x_2) = (v_1(x_2), 0)$ in $\overline{\Omega_2}$.

Remark: The flow v is not assumed to be a priori bounded in Ω_2 . But it is a posteriori bounded from the conclusion, since $v = (v_1(x_2), 0)$ and the cross section [0, 1] is bounded.

[Kalisch] : additional assumption that $v_1 > 0$ in $\overline{\Omega_2}$

글 🖌 🖌 글 🛌 👘

Sufficient condition $\inf_{\Omega_2} |v| > 0$: no stagnation point in $\overline{\Omega_2}$ nor at infinity

- Theorem: any non-parallel flow which is tangential on ∂Ω₂ must have a stagnation point in Ω₂ or at infinity.
- Example 1: cellular flow (for $\alpha \neq 0$)

 $\begin{aligned} \mathbf{v}(\mathbf{x}_1, \mathbf{x}_2) &= \nabla^{\perp} \big(\sin(\alpha \mathbf{x}_1) \sin(\pi \mathbf{x}_2) \big) \\ &= \big(-\pi \sin(\alpha \mathbf{x}_1) \cos(\pi \mathbf{x}_2), \alpha \cos(\alpha \mathbf{x}_1) \sin(\pi \mathbf{x}_2) \big) \end{aligned}$

with $p(x_1, x_2) = (\pi^2/4) \cos(2\alpha x_1) + (\alpha^2/4) \cos(2\pi x_2)$.

Stagnation points in $\overline{\Omega_2}$.

• Example 2:

 $v(x_1, x_2) = \nabla^{\perp} (\sin(\pi x_2) e^{x_1}) = (-\pi \cos(\pi x_2) e^{x_1}, \sin(\pi x_2) e^{x_1})$ with $p(x_1, x_2) = -(\pi^2/2)e^{2x_1}$.

No stagnation point in $\overline{\Omega_2}$, but $\inf_{\Omega_2} |v| = 0$.

But parallel flows $v = (v_1(x_2), 0)$ do not necessarily satisfy $\inf_{\Omega_2} |v| > 0$!

通 とう ほう く ほ とう ほう

Theorem does not hold in dimension 3

$$\Omega = \left\{ x = (x_1, x_2, x_3) \in \mathbb{R}^3; \ x_2^2 + x_3^2 < 1 \right\}$$

Flow

$$v(x) = (1, -x_3, x_2)$$

tangential on the boundary $\partial \Omega$, and

 $1 \leq |\mathbf{v}| \leq \sqrt{2}$ in Ω .

Pressure
$$p(x) = \frac{x_2^2 + x_3^2}{2}$$
.

The flow is not a parallel flow !

э

Half-plane

$$\mathbb{R}^2_+ = \mathbb{R} imes (0, +\infty) = \{x = (x_1, x_2) \in \mathbb{R}^2, x_2 > 0\}$$

Theorem

Assume that $v_2 = 0$ on $\partial \mathbb{R}^2_+$ $(v \cdot n = 0$ on $\partial \mathbb{R}^2_+$) and

$$0 < \inf_{\mathbb{R}^2_+} |v| \leq \sup_{\mathbb{R}^2_+} |v| < +\infty.$$

Then v is a parallel flow:

 $v(x_1, x_2) = (v_1(x_2), 0)$ in $\overline{\mathbb{R}^2_+}$.

《臣》 《臣》 ---

The strict inequalities $0< \inf_{\mathbb{R}^2_+} |v| \leq sup_{\mathbb{R}^2_+} |v| < +\infty$ cannot be dropped in general

- Example 1: cellular flow $v(x_1, x_2) = \nabla^{\perp} (\sin(\alpha x_1) \sin(\pi x_2))$ $= (-\pi \sin(\alpha x_1) \cos(\pi x_2), \alpha \cos(\alpha x_1) \sin(\pi x_2))$ It is bounded in \mathbb{R}^2_+ , tangential on $\partial \mathbb{R}^2_+$. But $\inf_{\mathbb{R}^2_+} |v| = \min_{\mathbb{R}^2_+} |v| = 0$, and v is not a parallel flow.
- Example 2:

$$\begin{split} v(x_1, x_2) &= \nabla^{\perp} \left(x_2 \cosh(x_1) \right) = \left(-\cosh(x_1), x_2 \sinh(x_1) \right) \\ \text{with } p(x_1, x_2) &= -\cosh(2x_1)/4 + x_2^2/2. \\ \text{The flow } v \text{ is tangential on } \partial \mathbb{R}^2_+ \text{ and } \inf_{\mathbb{R}^2_+} |v| > 0. \\ \text{But } \sup_{\mathbb{R}^2_+} |v| &= +\infty, \text{ and } v \text{ is not a parallel flow.} \end{split}$$

Open question:

Can the assumption $0< {\rm inf}_{\mathbb{R}^2_+}|\nu| \leq {\rm sup}_{\mathbb{R}^2_+}|\nu| < +\infty$ be replaced with

$$orall A > 0, \ \ 0 < \inf_{\mathbb{R} imes (0,A)} |v| \leq \sup_{\mathbb{R} imes (0,A)} |v| < +\infty \ ?$$

Theorem

Assume that

$$0 < \inf_{\mathbb{R}^2} |v| \le \sup_{\mathbb{R}^2} |v| < +\infty.$$

Then v is a parallel flow: there exist a unit vector e and $V : \mathbb{R} \to \mathbb{R}$ s.t.

$$v(x) = V(x \cdot e^{\perp}) e$$
 in \mathbb{R}^2

(hence, $\mathbf{v} \cdot \mathbf{e}$ has a constant sign).

▶ < ∃ ▶</p>

Corollary

Let v be a $C^2(\mathbb{R}^2)$ periodic flow.

If |v| > 0 in \mathbb{R}^2 , then v is a parallel flow.

Corollary

Let v be a parallel flow such that $0 < \inf_{\mathbb{R}^2} |v| \le \sup_{\mathbb{R}^2} |v| < +\infty$.

If $\|v' - v\|_{L^{\infty}(\mathbb{R}^2)} \ll 1$ and v' is $C^2(\mathbb{R}^2)$, then v' is a parallel flow.

Remark: in the theorem, if one also assumes that $v \cdot e > 0$ in \mathbb{R}^2 for some unit vector e, then the proof is much easier!

э

III. Proofs in parallel domains

Proof in the case of the two-dimensional strip $\Omega_2 = \mathbb{R} \times (0, 1)$

• Stream function $u \in C^3(\overline{\Omega_2})$ defined by

$$\frac{\partial u}{\partial x_1} = v_2, \quad \frac{\partial u}{\partial x_2} = -v_1$$

 $|\nabla u| = |v| \ge \eta > 0$

Normalization u(0,0) = 0

 $v_2 = 0 \text{ on } \partial \Omega_2 \Longrightarrow$ $u = 0 \text{ on } \{x_2 = 0\} \text{ and } u = c \text{ on } \{x_2 = 1\} (c \in \mathbb{R})$

Each level curve Γ_z of u (connected component of the level set of u containing z) is the streamline of the flow v containing z

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

• The streamlines are unbounded:

Lemma

- Let $\Gamma \subset \overline{\Omega_2}$ be a streamline.
- Let $\gamma : \mathbb{R} \to \Gamma$ be a parametrization of Γ .

Then

 $|\gamma(t)| \rightarrow +\infty$ as $t \rightarrow \pm \infty$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへの

•
$$B(x,r) = \left\{ y \in \overline{\Omega_2}, |y-x| < r \right\}$$

Lemma

Given point $x \in \overline{\Omega_2}$ and given $\varepsilon > 0$.

Then, there is r > 0 such that:

 $\forall y, z \in B(x, r), \quad \text{dist}_{\mathcal{H}}(\Gamma_y, \Gamma_z) \leq \varepsilon.$

(f) Two streamlines with $y \simeq z$

• Streamlines go from $-\infty$ to $+\infty$ in the direction x_1

Lemma

Let $\Gamma \subset \overline{\Omega_2}$ be a streamline.

Then Γ has a parametrization $\gamma : \mathbb{R} \to \Gamma$, $t \mapsto \gamma(t) = (\gamma_1(t), \gamma_2(t))$ such that

 $\gamma_1(t) \to \pm \infty$ as $t \to \pm \infty$.

Proof: continuation argument

• $v_2 = 0$ on $\partial \Omega_2 \implies u = 0$ on $\{x_2 = 0\}$ and u = c on $\{x_2 = 1\}$

Assume
$$\frac{\partial u}{\partial x_2}(0,0) = -v_1(0,0) > 0$$
 (w.l.o.g.)

Lemma

The function u is bounded in Ω_2 .

Furthermore, c > 0 and

0 < u < c in Ω_2

Trajectory Σ of the gradient flow $\dot{\sigma}(t) = \nabla u(\sigma(t))$ with $\sigma(0) = (0, 0)$ and $t \in [0, \tau]$.

$$\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} = \Delta u$$

is constant along the streamlines:

$$v \cdot \nabla(\Delta u) = 0$$
 in $\overline{\Omega_2}$

• Semilinear elliptic equation

$$\Delta u + f(u) = 0$$
 in $\overline{\Omega_2}$

with $f(s) = -\Delta u(\sigma(\theta^{-1}(s)))$ for $s \in [0, c]$ and $\theta(t) = u(\sigma(t))$ $(\Delta u(\sigma(t)) + f(u(\sigma(t)) = 0)$

- [Berestycki, Caffarelli, Nirenberg] $\implies \frac{\partial u}{\partial x_2} \ge 0$
- Liouville-type theorem with sliding method \Longrightarrow

 $u(x_1, x_2) = U(x_2)$ and $v(x_1, x_2) = (-U'(x_2), 0)$ is a parallel flow.

(3)

Proof in the case of the half-plane $\mathbb{R}^2_+ = \mathbb{R} \times (0, +\infty)$

• Potential function $u \in C^3(\overline{\mathbb{R}^2_+})$ defined by

$$\frac{\partial u}{\partial x_1} = v_2, \quad \frac{\partial u}{\partial x_2} = -v_1$$

Normalization u(0,0) = 0

$$v_2 = 0 \text{ on } \partial \mathbb{R}^2_+ \Longrightarrow u = 0 \text{ on } \partial \mathbb{R}^2_+ = \{x_2 = 0\}$$

• The streamlines are unbounded.

Let $\gamma : \mathbb{R} \to \Gamma$ be a parametrization of a streamline $\Gamma \subset \overline{\mathbb{R}^2_+}$. Then $|\gamma(t)| \to +\infty$ as $t \to \pm\infty$.

• $B(x,r) = \left\{ y \in \overline{\mathbb{R}^2_+}, |y-x| < r \right\}$

For any point $x \in \overline{\mathbb{R}^2_+}$ and any $\varepsilon > 0$, there is r > 0 such that:

 $\forall y, z \in B(x, r), \operatorname{dist}_{\mathcal{H}}(\Gamma_y, \Gamma_z) \leq \varepsilon.$

э.

• All streamlines are bounded in the direction x₂:

Proof: continuation argument

• $v_2 = 0$ on $\partial \mathbb{R}^2_+ \Longrightarrow u = 0$ on $\{x_2 = 0\}$ Assume $\frac{\partial u}{\partial x_2}(0,0) = -v_1(0,0) > 0$ (wlog)

Trajectory Σ of the gradient flow $\dot{\sigma}(t) = \nabla u(\sigma(t))$ with $\sigma(0) = (0, 0)$ and $t \in [0, +\infty)$.

• Vorticity $\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} = \Delta u$ constant along the streamlines:

• Semilinear elliptic equation

 $\Delta u + f(u) = 0$ in $\overline{\mathbb{R}^2_+}$

with $f(s) = -\Delta u(\sigma(\theta^{-1}(s)))$ for $s \in [0, +\infty)$ and $\theta(t) = u(\sigma(t))$ $(\Delta u(\sigma(t)) + f(u(\sigma(t)) = 0)$

•
$$u = 0$$
 on $\partial \mathbb{R}^2_+$ and $u > 0$ in $\mathbb{R}^2_+ \Longrightarrow$
 $\frac{\partial u}{\partial x_2} > 0$ in \mathbb{R}^2_+

[Berestycki, Caffarelli, Nirenberg], [Dancer], [Farina, Sciunzi]

•
$$|\nabla u| = |v|$$
 bounded \Longrightarrow

$$u(x_1,x_2)=U(x_2)$$

[Farina, Valdinoci]

Conclusion: $v(x_1, x_2) = (-U'(x_2), 0)$ is a parallel flow.

Proof in the case of the plane \mathbb{R}^2

• Stream function $u \in C^3(\mathbb{R}^2)$ defined by

$$\frac{\partial u}{\partial x_1} = v_2, \quad \frac{\partial u}{\partial x_2} = -v_1$$

- The streamlines are unbounded.
- The trajectories of the gradient flow are unbounded.
- Each level set of *u* has only one connected component.
- Equation for the stream function:

 $\Delta u + f(u) = 0$ in \mathbb{R}^2 .

(3)

Argument
$$\phi$$
 of v :

$$\frac{v(x)}{|v(x)|} = (\cos \phi(x), \sin \phi(x)).$$

Uniformly elliptic equation

$$\mathsf{div}(|\boldsymbol{v}|^2\nabla\phi)=0$$

Key-estimate $|\phi(x)| = O(\ln |x|)$ as $|x| \to +\infty$.

• [Moser] $\Longrightarrow \phi$ is constant $\Longrightarrow v$ is a parallel flow.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q () ◆

Some references

- F. Hamel, N. Nadirashvili, Circular flows for the Euler equations in two-dimensional annular domains, and related free boundary problems, *J. Europ. Math. Soc.* (2021), to appear.
- F. Hamel, N. Nadirashvili, A Liouville theorem for the Euler equations in the plane, *Arch. Ration. Mech. Anal.* **233** (2019), 599-642.
- F. Hamel, N. Nadirashvili, Shear flows of an ideal fluid and elliptic equations in unbounded domains, *Comm. Pure Appl. Math.* **70** (2017), 590-608.

• • = •