Concavity properties of solutions to Robin problems

Ilaria Fragalà

Politecnico di Milano

joint work with Graziano Crasta, Universitá di Roma "La Sapienza"

Asia Pacific Analysis & PDE Seminar, July 2021

• The study of concavity properties of solutions to PDEs is a classical field. Most known results concern problems under Dirichlet boundary conditions

u = 0 on $\partial \Omega$

[Kawohl '86, Guan-Ma '05]

• The study of Robin boundary value problems is an emerging field, with plenty of open questions

$$\frac{\partial u}{\partial v} + \beta u = 0 \text{ on } \partial \Omega$$

[Bucur-Freitas-Kennedy' 17, Laugesen '19]

• What about the "crossway" of these two subjects?

OUTLINE

- I. Introduction: background, motivation, and statement of the problem
- II. The negative result for small β by Andrews-Clutterbuck-Hauer
- III. A positive result for large β , with some hints on the proof
- IV. Open questions

Background

• Two classical results from the 70's

[Makar Limanov '71]: Let Ω be a convex domain in \mathbb{R}^2 . Let *u* be the Dirichlet torsion function of Ω , that is the unique solution to

$$\begin{cases} -\Delta u = 1 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

Then $u^{1/2}$ is concave.

[Brascamp-Lieb '76]: Let Ω be a convex domain in \mathbb{R}^N .

Let u be the Dirichlet ground state of Ω , that is a positive solution to

$$\begin{cases} -\Delta u = \lambda_1^D(\Omega)u & \text{ in } \Omega\\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

Then $\log u$ is concave.

• New methods for a systematic approach from the 80's

[Korevaar '83]: concavity maximum principle [Caffarelli-Friedman '85]: continuity method [Caffarelli-Spruck '82, Kennington '85, Kawohl '86, Korevaar-Lewis '87] In particular, the results of the previous slide hold in any space dimension and as strict concavity inequalities

• Progress to fully nonlinear PDEs from the 90's & 00's

$$F(x,u,Du,D^2u)=0$$

[Alvarez-Laszry-Lions '97]: concavity under structure conditions on *F* [Caffarelli-Guan-Ma '07]: constant rank theorem for viscosity solutions Refinements of concavity from the 10's

[Ma-Shi-Ye '12, Henrot-Nitsch-Salani-Trombetti '18]

[And rews-Clutterbuck '11]: the Dirichlet ground state u of a convex domain Ω in \mathbb{R}^N with diameter d satisfies the refined concavity estimate

$$\langle \nabla \log u(y) - \nabla \log u(x), \frac{y-x}{\|y-x\|} \rangle \leq -2 \frac{\pi}{d} \operatorname{tan}\left(\frac{\pi}{d} \frac{\|x-y\|}{2}\right).$$

Consequence: proof of the gap conjecture

$$\lambda_2^D(\Omega) - \lambda_1^D(\Omega) \geq rac{3\pi^2}{d^2}$$

[Van den Berg '83, Ashbaugh-Benguria '89, Yau ' 86]

What about the Robin spectral gap?

$$\lambda_2^{\beta}(\Omega) - \lambda_1^{\beta}(\Omega) \quad ? \geq ? \quad \gamma_{\beta},$$

with γ_{β} increasing from $\frac{\pi^2}{d^2}$ to $3\frac{\pi^2}{d^2}$ as β goes from 0 to $+\infty$

[Andrews-Clutterbuck-Hauer '20]

Problem(s):

Is the Robin ground state of a convex domain Ω log-concave?

$$\begin{cases} -\Delta u = \lambda_1^\beta(\Omega) \, u & \text{in } \Omega \\ \frac{\partial u}{\partial v} + \beta \, u = 0 & \text{on } \partial \Omega \end{cases}$$

An affirmative answer would give the gap inequality with $\gamma_{eta}=\frac{\pi^2}{d^2}$.

Explicit computations for balls and rectangles suggest a positive answer.

• Is the Robin torsion function of a convex domain $\Omega\left(\frac{1}{2}\right)$ -concave?

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega\\ \frac{\partial u}{\partial v} + \beta u = 0 & \text{on } \partial \Omega. \end{cases}$$

... SURPRISE!

Tweet

The result involves the geometry of the domain!

Let Ω be a convex polyhedron in \mathbb{R}^N .

- Ω is a circumsolid if there is a ball which is tangent to all its faces.
- Ω is a product of circumsolids if it is the cartesian product of circumsolids contained into orthogonal subspaces of R^N

Theorem 1 [Andrews-Clutterbuck-Hauer '20]

Let Ω be a convex polyhedral domain in \mathbb{R}^N , $N \ge 2$.

If Ω is NOT a product of circumsolids, then for sufficiently small β the Robin ground state u^{β} is NOT log-concave.

- Adding more boundary regularity there is no hope to avoid non-concavity
- Strengthened hypotheses yield nonconvex level sets for sufficiently small β

• Proof strategy: perturbation from the Neumann case

$$\log u^{\beta} = \beta v + o(\beta),$$

where v is the unique solution to

$$\begin{cases} -\Delta v = \frac{|\partial \Omega|}{|\Omega|} & \text{ in } \Omega \\ \frac{\partial v}{\partial v} = -1 & \text{ on } \partial \Omega \end{cases}$$

The log-concavity of u^{β} relates directly to the concavity properties of v:

 $v \text{ concave } \Leftrightarrow v \in C^2(\overline{\Omega}) \Leftrightarrow v \text{ quadratic } \Leftrightarrow \Omega = \text{ product of circumsolids}$

Conjecture for large β [Andrews-Clutterbuck-Hauer '20]

For a given bounded convex domain $\Omega \subset \mathbb{R}^N$, is the Robin ground state u^β log-concave for $\beta \ge \beta^*$?

If affirmative, how β^* depends on N and on the geometry of the domain Ω ?

Theorem 2 [Crasta-F. '21]

Let $\Omega \subset \mathbb{R}^N$ be a uniformly convex open set of class C^m , with $[m - \frac{N}{2}] \ge 4$. There exists a positive threshold β^* such that, for $\beta \ge \beta^*$, the Robin ground state of Ω is strictly log-concave.

Moreover, β^* is uniform for convex domains of class C^m satisfying

$$d(\Omega) \leq \overline{d}, \qquad \delta_m(\Omega) \leq \overline{\delta}, \qquad \kappa_{min}(\Omega) \geq \overline{\kappa}$$

· $d(\Omega) :=$ the diameter of Ω ;

- $\delta_m(\Omega) := \sum_{|lpha| \le m} \max_{x_0 \in \partial \Omega} |\partial^{lpha} \varphi_{x_0}(0)| \quad (\text{max of "higher order curvatures"});$
- $\kappa_{\min}(\Omega) := \min_{x \in \partial \Omega} \min_{i=1,...,N-1} \{\kappa_i(x)\} \quad (\kappa_i = \text{principal curvatures}).$

A glance at the proof

The approach via continuity method:

Let Ω be given, let Ω_0 be a ball, and for $t \in [0,1]$ set

$$\Omega_t = (1-t)\Omega_0 + t\Omega, \qquad v_t^{\beta} = -\log u_t^{\beta}$$

<u>Goal</u>: $\nabla^2 v_1^{\beta}$ is positive definite in Ω (for large β).

By contradiction: assume this is *false*. Since $\nabla^2 v_0^\beta$ is positive definite in Ω_0 , $\exists s \in (0,1) : \nabla^2 v_s^\beta$ is positive semidefinite, but *not* positive definite in Ω_s . Since

$$\Delta v_s^\beta = \lambda_1^\beta(\Omega_s) + |\nabla v_s^\beta|^2,$$

 $\nabla^2 v_s^{\beta}$ has constant rank in $\Omega_s \Rightarrow$ contradiction provided $\nabla^2 v_s^{\beta}$ is positive definite close to $\partial \Omega_s$ (for large β). Strict convexity near the boundary

$$\langle \nabla^2(-\log u) \cdot \eta, \eta \rangle = \underbrace{-\frac{1}{u} \langle \nabla^2 u \cdot \eta, \eta \rangle}_{(1)} + \underbrace{\frac{|\nabla u \cdot \eta|^2}{u^2}}_{(2)} \qquad \forall \eta \in S^{N-1}$$

Dirichlet case

 $\begin{cases} \text{Tangential directions}: \quad (2) = 0, \quad (1) > 0 \quad \left(\langle \nabla^2 u^D \cdot \tau_i, \tau_i \rangle = -\kappa_i | \nabla u^D | \right) \\ \text{Normal direction}: \quad (1) = o(2), \quad (2) > 0 \end{cases}$

Robin case:

For large β , the idea is to treat it as a **<u>perturbation</u>** of the Dirichlet case:

$$\nabla^2(-\log u^\beta) = \nabla^2(-\log u^D) + \nabla^2(-\log u^\beta + \log u^D)$$

Needs: a strong convergence result + a control on the concavity threshold.

Global regularity and asymptotic estimates as $eta
ightarrow +\infty$

Theorem 3 [Crasta-F. '21]
For
$$\Omega \in C^m$$
, the Robin ground state u^{β} satisfies
 $u^{\beta} \in H^m(\Omega)$.
If in addition $[m - \frac{N}{2}] \ge 4$, it holds
 $\|u^{\beta} - u^D\|_{C^{2,\theta}(\overline{\Omega})} \le \frac{M}{\beta}$, with $M = M(d(\Omega)_{\uparrow}, \delta_m(\Omega)_{\uparrow}, \lambda_1^D(\Omega)_{\uparrow})$
 $|\lambda_k^{\beta}(\Omega) - \lambda_k^D(\Omega)| \le \frac{\Lambda_k}{\beta}$, with $\Lambda_k = \Lambda_k(\delta_2(\Omega)_{\uparrow}, \lambda_k^D(\Omega)_{\uparrow})$

- cf. [Filinovskiy '14]
- Convexity is not needed here
- Byproduct: lower bound for the Robin gap of convex C^2 domains

$$\lambda_2^{\,eta}(\Omega) - \lambda_1^{\,eta}(\Omega) \geq rac{3\pi^2}{d(\Omega)^2} - rac{1}{eta}\sqrt{6}(1+2\sqrt{N}\,\kappa_{max})(\lambda_2^D+1)^2\,.$$

Tracking the concavity threshold

By exploiting the previous convergence result, we obtain

 $\langle
abla^2(-\log u^{eta})(x)\eta,\eta
angle>0 \qquad orall x\in \mathscr{U}(\partial\Omega), \ \eta\in S^{N-1}, \ eta\geq eta^*$

$$\beta^* = \beta^*(d(\Omega)_{\uparrow}, \delta_m(\Omega)_{\uparrow}, \kappa_{min}(\Omega)_{\downarrow}, \lambda_1^D(\Omega)_{\uparrow}, q(\Omega)_{\downarrow})$$

where $q(\Omega) = \min_{\partial \Omega} |\nabla u^D|$.

with

<u>**Crucial question**</u>: is the threshold β^* <u>uniform</u> in the family of sets

$$\Omega_t = [(1-t)\Omega_0 + t\Omega] \quad \text{for } t \in [0,1]$$
 ??

<u>Yes!</u> The sets Ω_t are of class C^m [Ghomi '12], and

- red quantities are bounded (with \uparrow from above, with \downarrow from below)
- blue quantities are controlled by the red ones.

Theorem 4 [Crasta-F. '21]

Let u^D be the first Dirichlet Laplacian eigenfunction of a convex set $\Omega \subset \mathbb{R}^N$ satisfying a uniform interior sphere condition.

Then u^D satisfies the following boundary gradient estimate:

$$\min_{\partial\Omega} |\nabla u^D| \geq \frac{C_2}{\rho} \left(\max_{\overline{\Omega}} u^D \right) C_1^{-d(\sqrt{\lambda_1^D}/2 + 2\sqrt{N}/\sigma)}$$

where C_1 , C_2 are dimensional constants, while

- · $d = d(\Omega)$ is the diameter of Ω
- · $r = r(\Omega)$ is the inradius of Ω
- $\sigma := \min \{\frac{\rho}{2}, C_0 r\}$, with $\rho =$ radius of interior sphere, and $C_0 = \sqrt{\frac{0.833}{\lambda_r^D(B_1)}}$

Proof [thanks to David Jerison!]

Use a Harnack chain of balls, and an estimate for the location of the hot spot \overline{x} : dist $(\overline{x}, \partial \Omega) \ge C_0 r(\Omega)$ [Biswas-Lörinczi '19]

Theorem 5 [Crasta-F. '21]

Let $\Omega \subset \mathbb{R}^N$ be a uniformly convex open set of class C^m , with $[m - \frac{N}{2}] \ge 4$. There exists a positive threshold β^{**} such that, for $\beta \ge \beta^{**}$, the Robin torsion function of Ω is strictly (1/2)-concave.

Moreover, β^{**} is uniform for convex domains of class C^m satisfying

$$d(\Omega) \leq \overline{d}, \qquad \delta_m(\Omega) \leq \overline{\delta}, \qquad \kappa_{min}(\Omega) \geq \overline{\kappa}$$

- Can the regularity assumptions of our results be removed or weakened?
- What happens in the plane for triangles or circular sectors?
- Is it possible to characterize convex domains on which Robin solutions enjoy concavity properties for all values of the parameter?

• What about Brunn-Minkowski type inequalities for Robin energies?

MANY THANKS FOR YOUR ATTENTION!