Degeneration of the spectral gap with negative Robin parameter

Derek Kielty U. Illinois Urbana-Champaign, USA

Asia-Pacific Analysis and PDEs Seminar

August 30, 2021

What is a spectral gap?

ъ

$$u(x,t) = c_1 e^{-\lambda_1 t} u_1(x) + O(e^{-\lambda_2 t}), \text{ as } t \to \infty.$$

$$u(x,t) = c_1 e^{-\lambda_1 t} u_1(x) + O(e^{-\lambda_2 t}), \quad \text{as } t \to \infty.$$

Question: Rate the profile u(x,t) converges to profile $u_1(x)$ as $t \to \infty$?

$$u(x,t) = c_1 e^{-\lambda_1 t} u_1(x) + O(e^{-\lambda_2 t}), \quad \text{as } t \to \infty.$$

Question: Rate the profile u(x,t) converges to profile $u_1(x)$ as $t \to \infty$?

$$||e^{\lambda_1 t}u(x,t) - c_1 u_1(x)||_{L^2} \le C e^{-(\lambda_2 - \lambda_1)t}, \quad t \to \infty$$

$$u(x,t) = c_1 e^{-\lambda_1 t} u_1(x) + O(e^{-\lambda_2 t}), \quad \text{as } t \to \infty.$$

Question: Rate the profile u(x,t) converges to profile $u_1(x)$ as $t \to \infty$?

$$||e^{\lambda_1 t}u(x,t) - c_1 u_1(x)||_{L^2} \le C e^{-(\lambda_2 - \lambda_1)t}, \quad t \to \infty.$$

Spectral gap: $\lambda_2 - \lambda_1$ = rate heat profile converges to u_1

$$u(x,t) = c_1 e^{-\lambda_1 t} u_1(x) + O(e^{-\lambda_2 t}), \quad \text{as } t \to \infty.$$

Question: Rate the profile u(x,t) converges to profile $u_1(x)$ as $t \to \infty$?

$$||e^{\lambda_1 t}u(x,t) - c_1 u_1(x)||_{L^2} \le C e^{-(\lambda_2 - \lambda_1)t}, \quad t \to \infty.$$

Spectral gap: $\lambda_2 - \lambda_1$ = rate heat profile converges to u_1

Answer: Lower bound on gap \rightsquigarrow Lower bound convergence rate!

The Robin Laplacian

Robin eigenvalue problem $(\alpha \in \mathbb{R})$:

$$\begin{cases} -\Delta u_j = \lambda_j u_j, & \text{on } \mathcal{D} \subset \mathbb{R}^n \\ \partial_{\nu} u_j + \alpha u_j = 0, & \text{on } \partial \mathcal{D}. \end{cases}$$

The Robin Laplacian

Robin eigenvalue problem $(\alpha \in \mathbb{R})$:

$$\begin{cases} -\Delta u_j = \lambda_j u_j, & \text{on } \mathcal{D} \subset \mathbb{R}^n \\ \partial_{\nu} u_j + \alpha u_j = 0, & \text{on } \partial \mathcal{D}. \end{cases}$$

Robin interpolates: Neumann $(\alpha = 0)$ and Dirichlet $(\alpha = +\infty)$.

ъ

Robin eigenvalue problem $(\alpha \in \mathbb{R})$:

$$\begin{cases} -\Delta u_j = \lambda_j u_j, & \text{on } \mathcal{D} \subset \mathbb{R}^n \\ \partial_{\nu} u_j + \alpha u_j = 0, & \text{on } \partial \mathcal{D}. \end{cases}$$

Robin interpolates: Neumann $(\alpha = 0)$ and Dirichlet $(\alpha = +\infty)$. Discrete spectrum

$$\lambda_1(\mathcal{D},\alpha) < \lambda_2(\mathcal{D},\alpha) \le \lambda_3(\mathcal{D},\alpha) \le \dots \to \infty$$

when \mathcal{D} is a bounded domain (Lipschitz boundary).

Spectral gap: $\lambda_2(\mathcal{D}, \alpha) - \lambda_1(\mathcal{D}, \alpha) > 0$

Lower bounds: $\alpha = 0$ and ∞ (Neumann and Dirichlet)

I =interval of length $Diam(\mathcal{D})$

Theorem (Payne, Weinberger 1960/ Andrews, Clutterbuck 2011)

Let $n \geq 2$. If $\mathcal{D} \subset \mathbb{R}^n$ is a convex domain then

$$(\lambda_2 - \lambda_1)(\mathcal{D}, 0) \ge (\lambda_2 - \lambda_1)(I, 0) = \frac{\pi^2}{\operatorname{Diam}(\mathcal{D})^2}$$

and

$$(\lambda_2 - \lambda_1)(\mathcal{D}, \infty) \ge (\lambda_2 - \lambda_1)(I, \infty) = \frac{3\pi^2}{\operatorname{Diam}(\mathcal{D})^2},$$

and equality is attained in the limit of rectangular boxes collapsing to a line segment.

Conjectured lower bound for $0 \le \alpha \le +\infty$

I =interval of length $Diam(\mathcal{D})$

Conjecture (Robin Gap Conjecture; Andrews, Clutterbuck, Hauer)

Let $n \geq 2$ and $0 \leq \alpha \leq \infty$. If $\mathcal{D} \subset \mathbb{R}^n$ is a convex domain then

 $(\lambda_2 - \lambda_1)(\mathcal{D}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha).$

Conjectured lower bound for $0 \le \alpha \le +\infty$

I =interval of length $Diam(\mathcal{D})$

Conjecture (Robin Gap Conjecture; Andrews, Clutterbuck, Hauer)

Let $n \geq 2$ and $0 \leq \alpha \leq \infty$. If $\mathcal{D} \subset \mathbb{R}^n$ is a convex domain then

 $(\lambda_2 - \lambda_1)(\mathcal{D}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha).$

Holds for rectangular boxes and equality is attained in the limit of rectangular boxes collapsing to a line segment (Laugesen 2019).

Conjectured lower bound for $0 \le \alpha \le +\infty$

I =interval of length $Diam(\mathcal{D})$

Conjecture (Robin Gap Conjecture; Andrews, Clutterbuck, Hauer)

Let $n \geq 2$ and $0 \leq \alpha \leq \infty$. If $\mathcal{D} \subset \mathbb{R}^n$ is a convex domain then

 $(\lambda_2 - \lambda_1)(\mathcal{D}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha).$

Holds for rectangular boxes and equality is attained in the limit of rectangular boxes collapsing to a line segment (Laugesen 2019).

Question: Could the conjecture hold for $\alpha < 0$

Derek Kielty

Gap conjecture fails to extend to $\alpha < 0$

Figure: Double cone domain \mathcal{D}_{θ} in \mathbb{R}^2 and \mathbb{R}^3

 $\mathcal{D}_{\theta} = \{ (x, y) \in (-1, 1) \times \mathbb{R}^{n-1} : |y| < \tan(\theta/2)(1 - |x|) \}, \text{ for } \theta \in (0, \pi),$

Gap conjecture fails to extend to $\alpha < 0$

Figure: Double cone domain \mathcal{D}_{θ} in \mathbb{R}^2 and \mathbb{R}^3

 $\mathcal{D}_{\theta} = \{ (x, y) \in (-1, 1) \times \mathbb{R}^{n-1} : |y| < \tan(\theta/2)(1 - |x|) \}, \text{ for } \theta \in (0, \pi),$ Fix $\alpha < 0.$

Theorem (Kielty 2021)

If $\alpha < 0$ then $(\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \to 0$ as $\theta \to 0$. Moreover, there exists a constant C > 0 such that

 $(\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \le C \exp\{-4(1-\epsilon)|\alpha|/\theta\}, \text{ for all } \theta \text{ sufficiently small.}$

Gap conjecture fails to extend to $\alpha < 0$

Figure: Double cone domain \mathcal{D}_{θ} in \mathbb{R}^2 and \mathbb{R}^3

 $\mathcal{D}_{\theta} = \{ (x, y) \in (-1, 1) \times \mathbb{R}^{n-1} : |y| < \tan(\theta/2)(1 - |x|) \}, \text{ for } \theta \in (0, \pi),$ Fix $\alpha < 0.$

Theorem (Kielty 2021)

If $\alpha < 0$ then $(\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \to 0$ as $\theta \to 0$. Moreover, there exists a constant C > 0 such that

 $(\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \leq C \exp\{-4(1-\epsilon)|\alpha|/\theta\}, \text{ for all } \theta \text{ sufficiently small.}$

 $\implies (\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) < (\lambda_2 - \lambda_1)(I) \text{ for small } \theta$

 \implies Robin gap conjecture does not extend to $\alpha < 0$,

Derek Kielty

Theorem (Kielty 2021)

If $\alpha < 0$ then $(\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \to 0$ as $\theta \to 0$. Moreover, there exists a constant C > 0 such that

 $(\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \leq C \exp\{-4(1-\epsilon)|\alpha|/\theta\}, \text{ for all } \theta \text{ sufficiently small.}$

Heuristic for small gaps — infinite cone C_{θ}

Infinite cone w/opening angle θ

$$\mathcal{C}_{\theta} = \{(x, y) \in (0, \infty) \times \mathbb{R}^{n-1} : |y| < \tan(\theta/2)x\}$$

has ground state:

$$\phi_{\theta}(x,y) = A_{\theta} e^{\alpha x / \sin(\theta/2)}, \text{ when } \alpha < 0 \text{ and } \theta < \pi,$$

concentrates at vertex, as $\theta \to 0$.

Heuristic for small gaps — infinite cone C_{θ}

Infinite cone w/opening angle θ

$$\mathcal{C}_{\theta} = \{ (x, y) \in (0, \infty) \times \mathbb{R}^{n-1} : |y| < \tan(\theta/2)x \}$$

has ground state:

$$\phi_{\theta}(x,y) = A_{\theta} e^{\alpha x / \sin(\theta/2)}, \text{ when } \alpha < 0 \text{ and } \theta < \pi$$

concentrates at vertex, as $\theta \to 0$.

In fact, all e.f. (n = 2) concentrate at vertex, as $\theta \to 0$ (Khalile & Pankrashkin 2016).

Intuition: Robin b.c. \leftrightarrow potential $\alpha \delta_{\partial \mathcal{D}}$ (attractive for $\alpha < 0$)

Derek Kielty

Heuristic for small gaps (cont.)

Heuristic: e.f. of \mathcal{D}_{θ} also concentrate at vertices so expect that $\lambda_j(\mathcal{D}_{\theta}) \approx \lambda_j(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta})$, as $\theta \to 0$.

Heuristic for small gaps (cont.)

Heuristic: e.f. of \mathcal{D}_{θ} also concentrate at vertices so expect that $\lambda_j(\mathcal{D}_{\theta}) \approx \lambda_j(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta})$, as $\theta \to 0$.

$$\lambda_1(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta}) = \lambda_2(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta}) \implies (\lambda_2 - \lambda_1)(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta}) = 0$$

$$\stackrel{\text{heuristic}}{\Longrightarrow} (\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \to 0, \quad \text{as } \theta \to 0.$$

Heuristic for small gaps (cont.)

Heuristic: e.f. of \mathcal{D}_{θ} also concentrate at vertices so expect that $\lambda_j(\mathcal{D}_{\theta}) \approx \lambda_j(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta})$, as $\theta \to 0$.

$$\lambda_1(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta}) = \lambda_2(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta}) \implies (\lambda_2 - \lambda_1)(\mathcal{C}_{\theta} \sqcup \mathcal{C}_{\theta}) = 0$$

$$\stackrel{\text{heuristic}}{\Longrightarrow} (\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \to 0, \quad \text{as } \theta \to 0.$$

Proof: trial function argument $\rightsquigarrow \lambda_2(\mathcal{D}_{\theta}) \leq \lambda_1(\mathcal{C}_{\theta}) + E(\theta)$ and $\lambda_1(\mathcal{D}_{\theta}) \geq \lambda_1(\mathcal{C}_{\theta}) - E(\theta)$, with $E(\theta)$ exponential small.

Upper bound on $\lambda_2(\mathcal{D}_{\theta})$

Transplant a cutoff ground state $\chi \phi_{\theta}$ onto each vertex of \mathcal{D}_{θ} to make trial function $\psi_{\theta} = (\chi \phi_{\theta}) \circ F - (\chi \phi_{\theta}) \circ G$.

Upper bound on $\lambda_2(\mathcal{D}_{\theta})$

Transplant a cutoff ground state $\chi \phi_{\theta}$ onto each vertex of \mathcal{D}_{θ} to make trial function $\psi_{\theta} = (\chi \phi_{\theta}) \circ F - (\chi \phi_{\theta}) \circ G$.

 \mathcal{D}_{θ} symmetric $\implies u_1$ symmetric $\implies \psi_{\theta} \perp u_1$

Derek Kielty

Upper bound on $\lambda_2(\mathcal{D}_{\theta})$

Transplant a cutoff ground state $\chi \phi_{\theta}$ onto each vertex of \mathcal{D}_{θ} to make trial function $\psi_{\theta} = (\chi \phi_{\theta}) \circ F - (\chi \phi_{\theta}) \circ G$.

 \mathcal{D}_{θ} symmetric $\implies u_1$ symmetric $\implies \psi_{\theta} \perp u_1$

$$R_{\mathcal{D}_{\theta}}[f] = \frac{\int_{\mathcal{D}_{\theta}} |\nabla f|^2 \, dx + \alpha \int_{\partial \mathcal{D}_{\theta}} f^2 \, dS}{\int_{\mathcal{D}_{\theta}} f^2 \, dx}, \quad \text{for } f \in H^1(\mathcal{D}_{\theta}).$$

 $\lambda_2(\mathcal{D}_{\theta}) \le R_{\mathcal{D}_{\theta}}[\psi_{\theta}] = R_{\mathcal{C}_{\theta}}[\chi\phi_{\theta}] \le \lambda_1(\mathcal{C}_{\theta}) + C \exp\{-4(1-\epsilon)|\alpha|/\theta\},\$

as $\theta \to 0$.

Derek Kielty

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Ratio of e.f.

 $\phi \& u \text{ ground states of } C_{\theta} \& D_{\theta}, \Delta_{\tau}(\cdot) = \tau^{-1} \operatorname{div}(\tau \nabla(\cdot)) \text{ with } \tau = \phi^2,$ and $v = u/\phi$:

$$\begin{cases} -\Delta_{\tau} v = \mu_{1} v, & \text{on } \mathcal{T}_{\theta} \\ \partial_{\nu} v + (\alpha/\sin(\theta/2))v = 0, & \text{on } \Gamma_{\theta} \\ \partial_{\nu} v = 0, & \text{on } \Sigma_{\theta}, \end{cases} \xrightarrow{\boldsymbol{\mathcal{E}}_{\boldsymbol{\theta}}} \overbrace{\boldsymbol{\mathcal{F}}_{\boldsymbol{\theta}}} \\ \mu_{1} = \mu_{1}(\mathcal{T}_{\theta}) = \lambda_{1}(\mathcal{D}_{\theta}) - \lambda_{1}(\mathcal{C}_{\theta}) < 0 \end{cases}$$
Figure: Truncated cone \mathcal{T}_{θ}

Goal: Get lower bound to show $\mu_1(\mathcal{T}_{\theta}) \to 0$ as $\theta \to 0$.

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Ratio of e.f.

 $\phi \& u \text{ ground states of } C_{\theta} \& D_{\theta}, \Delta_{\tau}(\cdot) = \tau^{-1} \operatorname{div}(\tau \nabla(\cdot)) \text{ with } \tau = \phi^2,$ and $v = u/\phi$:

Goal: Get lower bound to show $\mu_1(\mathcal{T}_{\theta}) \to 0$ as $\theta \to 0$.

Limiting problem unclear: \mathcal{T}_{θ} collapsing, boundary parameter tending to $-\infty$, and $\tau = e^{2\alpha x / \sin(\theta/2)}$ concentrating at vertex

Solution: "Push out" problem on \mathcal{T}_{θ} to a radial problem on spherical sector, extend to B(1), rescale to $B(\theta^{-1})$.

Derek Kielty

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Push out to \mathcal{S}_{θ}

Define "push out" $P(\mathcal{T}_{\theta}) = \mathcal{S}_{\theta}$ stretch \mathcal{T}_{θ} linearly in radial direction and $\sigma = \tau \circ P = e^{\alpha r / \tan(\theta/2)}$

$$\begin{cases} -\Delta_{\sigma}w = \mu_{1}w, & \text{on } \mathcal{S}_{\theta} \\ \partial_{\nu}w + (\beta/\sin(\theta/2))w = 0, & \text{on } \tilde{\Gamma}_{\theta} \\ \partial_{\nu}w = 0, & \text{on } \Sigma_{\theta}, \\ \beta = (1 + o(1))\alpha, \text{ as } \theta \to 0 \end{cases} \xrightarrow{\text{Figure: Spherical sector}} \mathcal{S}_{\theta} = \mathcal{C}_{\theta} \cap B(1)$$

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Push out to \mathcal{S}_{θ}

Define "push out" $P(\mathcal{T}_{\theta}) = \mathcal{S}_{\theta}$ stretch \mathcal{T}_{θ} linearly in radial direction and $\sigma = \tau \circ P = e^{\alpha r / \tan(\theta/2)}$

$$\begin{cases} -\Delta_{\sigma}w = \mu_{1}w, & \text{on } \mathcal{S}_{\theta} \\ \partial_{\nu}w + (\beta/\sin(\theta/2))w = 0, & \text{on } \tilde{\Gamma}_{\theta} \\ \partial_{\nu}w = 0, & \text{on } \Sigma_{\theta}, \\ \beta = (1+o(1))\alpha, \text{ as } \theta \to 0 \end{cases} \xrightarrow{\mathsf{Figure: Spherical sector}} \mathcal{S}_{\theta} = \mathcal{C}_{\theta} \cap B(1) \end{cases}$$

Use $v \circ P \in H^1(\mathcal{S}_{\theta})$ as trial function & $P \approx Id$ in $C^1(\overline{\mathcal{S}_{\theta}}; \mathbb{R}^n)$

$$\implies \mu_1(\mathcal{S}_{\theta}) \le R_{\mathcal{S}_{\theta}}[v \circ P] \le (1 + o(1))R_{\mathcal{T}_{\theta}}[v] = (1 + o(1))\mu_1(\mathcal{T}_{\theta})$$

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Push out to \mathcal{S}_{θ}

Define "push out" $P(\mathcal{T}_{\theta}) = \mathcal{S}_{\theta}$ stretch \mathcal{T}_{θ} linearly in radial direction and $\sigma = \tau \circ P = e^{\alpha r / \tan(\theta/2)}$

$$\begin{cases} -\Delta_{\sigma}w = \mu_{1}w, & \text{on } \mathcal{S}_{\theta} \\ \partial_{\nu}w + (\beta/\sin(\theta/2))w = 0, & \text{on } \tilde{\Gamma}_{\theta} \\ \partial_{\nu}w = 0, & \text{on } \Sigma_{\theta}, \\ \beta = (1 + o(1))\alpha, \text{ as } \theta \to 0 \end{cases}$$

Figure: Spherical sector $\mathcal{S}_{\theta} = \mathcal{C}_{\theta} \cap B(1)$

Use $v \circ P \in H^1(\mathcal{S}_{\theta})$ as trial function & $P \approx Id$ in $C^1(\overline{\mathcal{S}_{\theta}}; \mathbb{R}^n)$

 $\implies \mu_1(\mathcal{S}_{\theta}) \le R_{\mathcal{S}_{\theta}}[v \circ P] \le (1 + o(1))R_{\mathcal{T}_{\theta}}[v] = (1 + o(1))\mu_1(\mathcal{T}_{\theta})$

Map P used to analyze Dirichlet e.v. of thin triangles (Freitas 2007)

Neumann conditions on Σ_{θ} and σ radial \implies ground state on S_{θ} extends to ball B(1)

Neumann conditions on Σ_{θ} and σ radial \implies ground state on \mathcal{S}_{θ} extends to ball B(1)

Rescale radial by $r \to \theta^{-1}r$ then let $\varphi(r) = \tilde{w}(r)/e^{-\alpha r}$:

$$\begin{cases} (-\Delta - \frac{(n-1)|\alpha|}{r} + \alpha^2)\varphi = \nu_1\varphi, & \text{on } B(\theta^{-1})\\ (\partial_r + \gamma)\varphi = 0, & \text{on } \partial B(\theta^{-1}). \end{cases}$$

where $\nu_1(\theta) = \theta^2 \cdot \mu_1(\mathcal{S}_{\theta})$ and $\gamma = \gamma(\theta) = o(1)$.

First e.v. of $-\Delta - (n-1)|\alpha|/r + \alpha^2$ on \mathbb{R}^n is 0 \implies expect that $\nu_1(\theta) \to 0$, as $\theta \to 0$.

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Special functions

Ground state of $-\Delta - (n-1)|\alpha|/r$ with e.v. E has form

$$\varphi(r) = M(a_0, b_0; 2\sqrt{|E|}r)e^{-\sqrt{|E|}r}, \quad \text{on } B(\theta^{-1}),$$

where $M(a_0, b_0; \cdot)$ is a confluent hypergeometric function.

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Special functions

Ground state of $-\Delta - (n-1)|\alpha|/r$ with e.v. E has form

$$\varphi(r) = M(a_0, b_0; 2\sqrt{|E|}r)e^{-\sqrt{|E|}r}, \quad \text{on } B(\theta^{-1}),$$

where $M(a_0, b_0; \cdot)$ is a confluent hypergeometric function.

Eigenvalues E given by solutions of transcendental equation involving $M(a_0, b_0; \cdot)$.

Lower bound on $\lambda_1(\mathcal{D}_{\theta})$: Special functions

Ground state of $-\Delta - (n-1)|\alpha|/r$ with e.v. E has form

$$\varphi(r) = M(a_0, b_0; 2\sqrt{|E|}r)e^{-\sqrt{|E|}r}, \quad \text{on } B(\theta^{-1}),$$

where $M(a_0, b_0; \cdot)$ is a confluent hypergeometric function.

Eigenvalues E given by solutions of transcendental equation involving $M(a_0, b_0; \cdot)$.

Estimates on power series for $\rho \mapsto M(a_0, b_0; \rho)$ and IVT

$$\implies -C \exp\{-4(1-\epsilon)|\alpha|/\theta\} \le \nu_1(\theta) < 0$$
$$\implies -C \exp\{-4(1-\epsilon)|\alpha|/\theta\} \le \lambda_1(\mathcal{D}_{\theta}) - \lambda_1(\mathcal{C}_{\theta}) < 0.$$

Combine w/ upper bound on $\lambda_2(\mathcal{D}_{\theta})$ $\implies (\lambda_2 - \lambda_1)(\mathcal{D}_{\theta}) \leq C \exp\{-4(1-\epsilon)|\alpha|/\theta\}$

Questions and open problems

RGC:
$$(\lambda_2 - \lambda_1)(\mathcal{D}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha), \text{ for } \alpha \in [0, +\infty].$$

Theorem (Laugesen 2019)

Let $\alpha \in (-\infty, +\infty]$. If $\mathcal{R} \subset \mathbb{R}^n$ is a rectangular box then

$$(\lambda_2 - \lambda_1)(\mathcal{R}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha).$$

RGC:
$$(\lambda_2 - \lambda_1)(\mathcal{D}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha), \text{ for } \alpha \in [0, +\infty].$$

Theorem (Laugesen 2019)

Let $\alpha \in (-\infty, +\infty]$. If $\mathcal{R} \subset \mathbb{R}^n$ is a rectangular box then

$$(\lambda_2 - \lambda_1)(\mathcal{R}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha).$$

Question: Can we extend the Robin gap conjecture to $\alpha < 0$ for a more general subclass of convex domains?

RGC:
$$(\lambda_2 - \lambda_1)(\mathcal{D}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha), \text{ for } \alpha \in [0, +\infty].$$

Theorem (Laugesen 2019)

Let $\alpha \in (-\infty, +\infty]$. If $\mathcal{R} \subset \mathbb{R}^n$ is a rectangular box then

$$(\lambda_2 - \lambda_1)(\mathcal{R}, \alpha) \ge (\lambda_2 - \lambda_1)(I, \alpha).$$

Question: Can we extend the Robin gap conjecture to $\alpha < 0$ for a more general subclass of convex domains?

Theorem (Ashbaugh & Kielty 2020)

Let $\lambda_j(V, \alpha)$ be the eigenvalues of $-\frac{d^2}{dx^2} + V$ with α -Robin b.c. If V is a symmetric single-well potential then

$$(\lambda_2 - \lambda_1)(V, \alpha) \ge (\lambda_2 - \lambda_1)(0, \alpha), \text{ for each } \alpha \in (-\infty, +\infty].$$

Open problems

Single-well potential with centered transition point.

Open Problem

Let $\lambda_j(V,\alpha)$ be the eigenvalues of $-\frac{d^2}{dx^2} + V$ with α -Robin b.c. If V is convex or single-well w/ centered transition point then

$$(\lambda_2 - \lambda_1)(V, \alpha) \ge (\lambda_2 - \lambda_1)(0, \alpha), \text{ for each } \alpha \in (-\infty, +\infty].$$

Known for:

- V convex when $\alpha \ge -1/L$ (Andrews, Clutterbuck, Hauer 2020)
- V single-well w/ centered transition point when $\alpha \ge 0$ (Ashbaugh, Kielty 2020)

Open problems

Single-well potential with centered transition point.

Open Problem

Let $\lambda_j(V,\alpha)$ be the eigenvalues of $-\frac{d^2}{dx^2} + V$ with α -Robin b.c. If V is convex or single-well w/ centered transition point then

$$(\lambda_2 - \lambda_1)(V, \alpha) \ge (\lambda_2 - \lambda_1)(0, \alpha), \text{ for each } \alpha \in (-\infty, +\infty].$$

Known for:

- V convex when $\alpha \ge -1/L$ (Andrews, Clutterbuck, Hauer 2020)
- V single-well w/ centered transition point when $\alpha \ge 0$ (Ashbaugh, Kielty 2020)

Thank you for your attention!

D 1	. T	<i></i>	
Dere	εk	<u>(1</u> 0	1t.v

Degeneration of Robin gap