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The equation

We consider here

some particles moving together with an incompressible flow in R2,
with stream function H.

If u(t, x) is the density of the particles at time t ≥ 0 and position
x ∈ R2, then the function u(t, x) satisfies the Liouville equation

!
"

#

∂tu(t, x) =
$
∇̄H(x),∇u(t, x)

%
, t > 0, x ∈ R2,

u(0, x) = ϕ(x), x ∈ R2.

(1)
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Suppose now that the flow has a small viscosity and the particles
take part in a slow reaction, with a deterministic and a stochastic
component, as described by the equation

!
&&&&&"

&&&&&#

∂t ûε(t, x) =
ε

2
∆ûε(t, x) +

$
∇̄H(x),∇ûε(t, x)

%

+ε b(ûε(t, x)) +
√
ε g(ûε(t, x))∂tW(t, x),

ûε(0, x) = ϕ(x), x ∈ R2.

(2)

Here, 0 < ε << 1 is a small parameter, included in equation (2) in
such a way that all perturbation terms have strength of the same
order, as ε ↓ 0.
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The problem

It is not difficult to check that for every fixed T > 0 and η > 0

lim
ε→0

P

'
sup

t∈ [0,T ]
|ûε(t, x)− u(t, x)| > η

(
= 0,

uniformly with respect to x in a bounded domain of R2.
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The problem

It is not difficult to check that for every fixed T > 0 and η > 0

lim
ε→0

P

'
sup

t∈ [0,T ]
|ûε(t, x)− u(t, x)| > η

(
= 0,

uniformly with respect to x in a bounded domain of R2.

But

on large time intervals of order ε−1, there is a non-trivial limit and
the difference ûε(t, x)− u(t, x) can have order 1, as ε ↓ 0.
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To describe the long-time behavior of the system it is convenient
to define

uε(t, x) := ûε(t/ε, x), t ≥ 0, x ∈ R2.

With this change of time, the new function uε(t, x) solves the
equation

!
&&&&&&"

&&&&&&#

∂tuε(t, x) =
1

2
∆uε(t, x) +

1

ε

$
∇̄H(x),∇uε(t, x)

%

+b(uε(t, x)) + g(uε(t, x))∂tW(t, x),

uε(0, x) = ϕ(x), x ∈ R2,

(3)

for some spatially homogeneous Wiener process W(t, x).
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Our goal

Here, we are interested in

the limiting behavior of the solution uε(t, x) of equation (3), as
ε ↓ 0, in any finite time interval.
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Our goal

Here, we are interested in

the limiting behavior of the solution uε(t, x) of equation (3), as
ε ↓ 0, in any finite time interval.

In particular, we will see that, in order to describe the limit of
uε(t, x),

one should consider SPDEs on a non standard setting, where the
space variable changes on the graph Γ obtained by identifying all

points in each connected component of the level sets of the
Hamiltonian H.
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The stream function H

We assume
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The stream function H

We assume

- H is in C∞(R2;R), with bounded second derivative.
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The stream function H

We assume

- H is in C∞(R2;R), with bounded second derivative.

- H has a finite number of critical points x1, . . . , xn. The
matrices D2H(xi ) are all non degenerate, and

H(xi ) ∕= H(xj), i ∕= j

Sandra Cerrai Incompressible viscous fluids in R2 and SPDEs on graphs



The stream function H

We assume

- H is in C∞(R2;R), with bounded second derivative.

- H has a finite number of critical points x1, . . . , xn. The
matrices D2H(xi ) are all non degenerate, and

H(xi ) ∕= H(xj), i ∕= j

- There exists a constant c > 0 such that

H(x) ≥ c |x |2, |∇H(x)| ≥ c |x |, ∆H(x) ≥ c ,

when |x | is large enough.
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The stream function H

We assume

- H is in C∞(R2;R), with bounded second derivative.

- H has a finite number of critical points x1, . . . , xn. The
matrices D2H(xi ) are all non degenerate, and

H(xi ) ∕= H(xj), i ∕= j

- There exists a constant c > 0 such that

H(x) ≥ c |x |2, |∇H(x)| ≥ c |x |, ∆H(x) ≥ c ,

when |x | is large enough.

For convenience, we assume

min
x∈R2

H(x) = 0.
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The noise

W is a spatially homogeneous Wiener process, with spectral
measure µ.
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The noise

W is a spatially homogeneous Wiener process, with spectral
measure µ.

This means that W is a Gaussian random field on some
(Ω,F , {F t}t≥0,P), such that

- the mapping (t, x) ∈ [0 +∞)× R2 *→ W(t, x) is continuous
in t ≥ 0 and measurable in both variables, P-almost surely;

- for each x ∈ R2, the process W(t, x), t ≥ 0, is a
one-dimensional Wiener process;

- for every t, s ≥ 0 and x , y ∈ R2

EW(t, x)W(s, y) = (t ∧ s)Λ(x − y),

where Λ is the Fourier transform of the spectral measure µ.
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Notice that the spatially homogeneous Wiener processes can be
represented as

W(t, x) =
∞)

j=1

*ujm(x)βj(t),

where {uj} is an orthonormal basis of L2(s)(R
2, µ) and {βj} is a

sequence of independent Brownian motions.
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Notice that the spatially homogeneous Wiener processes can be
represented as

W(t, x) =
∞)

j=1

*ujm(x)βj(t),

where {uj} is an orthonormal basis of L2(s)(R
2, µ) and {βj} is a

sequence of independent Brownian motions.

In what follows, we assume that

µ(dx) = m(x) dx ,

for some m ∈ Lp(R2), with p > 1, and we will distinguish the case
p = 1 and the case p > 1.

Sandra Cerrai Incompressible viscous fluids in R2 and SPDEs on graphs



The coefficients

We assume that

b, g : R2 → R are Lipschitz continuous.

1It is the dual of the closure of S(R2) w.r.t. the scalar product 〈µ̂,ϕ " ψ(s)〉.
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The coefficients

We assume that

b, g : R2 → R are Lipschitz continuous.

For every ρ ∈ L1(R2), u ∈ L2(R2, ρ dx) and v in the reproducing
kernel 1 RK of W, we define

B(u)(x) = b(u(x)), [G (u)v ](x) = g(u(x))v(x), x ∈ R2.

1It is the dual of the closure of S(R2) w.r.t. the scalar product 〈µ̂,ϕ " ψ(s)〉.
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The coefficients

We assume that

b, g : R2 → R are Lipschitz continuous.

For every ρ ∈ L1(R2), u ∈ L2(R2, ρ dx) and v in the reproducing
kernel 1 RK of W, we define

B(u)(x) = b(u(x)), [G (u)v ](x) = g(u(x))v(x), x ∈ R2.

It follows

- B : L2(R2, ρ dx) → L2(R2, ρ dx) is Lipschitz continuous,

- G : L2(R2, ρ dx) → L2(RK , L2(R2, ρ dx)) is Lipschitz
continuous, when p = 1.

1It is the dual of the closure of S(R2) w.r.t. the scalar product 〈µ̂,ϕ " ψ(s)〉.
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Under the above conditions and suitable other conditions on ρ,

for any T > 0 and q ≥ 1, equation (3) admits a unique mild
solution uε ∈ Lq(Ω;C ([0,T ]; L2(R2, ρ dx)).
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Under the above conditions and suitable other conditions on ρ,

for any T > 0 and q ≥ 1, equation (3) admits a unique mild
solution uε ∈ Lq(Ω;C ([0,T ]; L2(R2, ρ dx)).

This means that there exists a unique adapted process
uε ∈ Lq(Ω;C ([0,T ]; L2(R2, ρ dx)), such that

uε(t) = Sε(t)ϕ+ ε

+ t

0
Sε(t − s)B(uε(s)) ds

+
√
ε

+ t

0
Sε(t − s)G (uε(s)) dW(s),

where Sε(t) is the semigroup associated with the operator

L̂εϕ(x) =
1

2
∆ϕ(x) +

1

ε

$
∇̄H(x),∇ϕ(x)

%
, x ∈ R2.
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The linear deterministic problem

For every ε > 0, we consider the Cauchy problem

!
"

#

∂tvε(t, x) = Lεvε(t, x), t > 0, x ∈ R2,

vε(0, x) = ϕ(x), x ∈ R2,

where, we recall, Lε is the second order uniformly elliptic
differential operator defined by

Lεv(x) =
1

2
∆v(x) +

1

ε

$
∇̄H(x),∇v(x)

%
, x ∈ R2.
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The solution vε(t, x) can be represented in terms of the semigroup
Sε(t) associated with Lε.
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The solution vε(t, x) can be represented in terms of the semigroup
Sε(t) associated with Lε.

Namely,

vε(t, x) = Sε(t)ϕ(x) = E x ϕ(Xε(t)), x ∈ R2,

where Xε(t) is the solution of the SDE

dXε(t) =
1

ε
∇̄H(Xε(t)) dt + dw(t),

for some 2-dimensional Brownian motion w(t), defined on a
stochastic basis (Ω,F , {Ft}t≥0,P).
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The solution vε(t, x) can be represented in terms of the semigroup
Sε(t) associated with Lε.

Namely,

vε(t, x) = Sε(t)ϕ(x) = E x ϕ(Xε(t)), x ∈ R2,

where Xε(t) is the solution of the SDE

dXε(t) =
1

ε
∇̄H(Xε(t)) dt + dw(t),

for some 2-dimensional Brownian motion w(t), defined on a
stochastic basis (Ω,F , {Ft}t≥0,P).

Clearly, the first fundamental goal is studying the limiting behavior
of the semigroup Sε(t), as ε ↓ 0.
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Some notations

For every z ≥ 0, we denote by C (z) the z-level set

C (z) =
,
x ∈ R2 : H(x) = z

-
=

N(z).

k=1

Ck(z).

If X (t) is the solution of the Hamiltonian system

Ẋ (t) = ∇̄H(X (t)),

for every x ∈ R2 we have

X (0) = x =⇒ X (t) ∈ Ck(x)(H(x)), t ≥ 0,

where Ck(x)(H(x)) is the connected component of the level set
C (H(x)), containing x .
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Now, for every z ≥ 0 and k = 1, . . . ,N(z), we define

Tk(z) =

/

Ck (z)

1

|∇H(x)| dlz,k ,

where dlz,k is the length element on Ck(z).

It is possible to show that Tk(z) is the period of the motion along
the level set Ck(z).
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Now, for every z ≥ 0 and k = 1, . . . ,N(z), we define

Tk(z) =

/

Ck (z)

1

|∇H(x)| dlz,k ,

where dlz,k is the length element on Ck(z).

It is possible to show that Tk(z) is the period of the motion along
the level set Ck(z).

Moreover, the probability measure

dµz,k :=
1

Tk(z)

1

|∇H(x)| dlz,k

is invariant for the Hamiltonian system on the level set Ck(z).
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The graph Γ

If we identify all points in R2 belonging to the same connected
component of a given level set C (z) of the Hamiltonian H,

we obtain a graph Γ, given by several intervals I1, . . . In and vertices
O1, . . . ,Om.
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The graph Γ

If we identify all points in R2 belonging to the same connected
component of a given level set C (z) of the Hamiltonian H,

we obtain a graph Γ, given by several intervals I1, . . . In and vertices
O1, . . . ,Om.

The vertices will be of two different types,

external and internal vertices.

External vertices correspond to local extrema of H, while internal
vertices correspond to saddle points of H.
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The identification map

We denote by
Π : R2 → Γ

the identification map, that associates to every point x ∈ R2 the
corresponding point Π(x) on the graph Γ.
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The identification map

We denote by
Π : R2 → Γ

the identification map, that associates to every point x ∈ R2 the
corresponding point Π(x) on the graph Γ.

We have
Π(x) = (H(x), k(x)),

where k(x) denotes the number of the interval on the graph Γ,
containing the point Π(x).

Both k(x) and H(x) are first integrals for the Hamiltonian system

Ẋ (t) = ∇̄H(X (t)).
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A limiting result

Freidlin and Wentcell in 2002 have studied

the limiting behavior, as ε ↓ 0, of the (non Markov) process
Πε(t) := Π(Xε(t)), t ≥ 0, in the space C ([0,T ]; Γ), for any fixed

T > 0 and x ∈ R2.
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A limiting result

Freidlin and Wentcell in 2002 have studied

the limiting behavior, as ε ↓ 0, of the (non Markov) process
Πε(t) := Π(Xε(t)), t ≥ 0, in the space C ([0,T ]; Γ), for any fixed

T > 0 and x ∈ R2.

They have shown that

the process Πε, which describes the slow component of the motion
Xε, converges, in the sense of weak convergence of distributions in

C ([0,T ]; Γ), to a diffusion process Ȳ .
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A limiting result

Freidlin and Wentcell in 2002 have studied

the limiting behavior, as ε ↓ 0, of the (non Markov) process
Πε(t) := Π(Xε(t)), t ≥ 0, in the space C ([0,T ]; Γ), for any fixed

T > 0 and x ∈ R2.

They have shown that

the process Πε, which describes the slow component of the motion
Xε, converges, in the sense of weak convergence of distributions in

C ([0,T ]; Γ), to a diffusion process Ȳ .

Namely, they have proven that for any bounded and continuous
functional F : C ([0,T ]; Γ) → R and x ∈ R2

lim
ε→0

ExF (Πε(·)) = ĒΠ(x)F (Ȳ (·)).
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The case H has only one critical point

By applying Itô’s formula, we have

H(Xε(t)) = H(x) +
1

2

+ t

0
∆H(Xε(s)) ds +

+ t

0
∇H(Xε(s))dw(s).
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The case H has only one critical point

By applying Itô’s formula, we have

H(Xε(t)) = H(x) +
1

2

+ t

0
∆H(Xε(s)) ds +

+ t

0
∇H(Xε(s))dw(s).

Since Xε(t) rotates many times along the trajectories of H before
H(Xε(t)) changes in a sensible way, we expect that for ε small

1

2

+ t

0
∆H(Xε(s)) ds ∼

+ t

0
B(H(Xε(s))) ds,

where

B(z) =
1

2T (z)

/

C(z)

∆H(x)

|∇H(x)| dlz(x).
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In the same way, for ε small

+ t

0
|∇H(Xε(s))|2 ds ∼

+ t

0
A(H(Xε(s))) ds,

where

A(z) =
1

T (z)

/

C(z)

|∇H(x)|2
|∇H(x)| dlz =

1

T (z)

/

C(z)
|∇H(x)| dlz .
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In the same way, for ε small

+ t

0
|∇H(Xε(s))|2 ds ∼

+ t

0
A(H(Xε(s))) ds,

where

A(z) =
1

T (z)

/

C(z)

|∇H(x)|2
|∇H(x)| dlz =

1

T (z)

/

C(z)
|∇H(x)| dlz .

Therefore, since

+ t

0
∇H(Xε(s))dw(s) = w̃

0+ t

0
|∇H(Xε(s))|2 ds

1
,

we can conclude that the slow process H(Xε(t)), for small ε
approximately is the same as the process governed by the operator

Lf (z) = 1

2
A(z)f ′′(z) + B(z)f ′(z).
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The general case

In the case of several critical points,

the generator L̄ of Ȳ is given by a differential operator L̄k within
each edge Ik .
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The general case

In the case of several critical points,

the generator L̄ of Ȳ is given by a differential operator L̄k within
each edge Ik .

For each k = 1, . . . , n, the differential operator L̄k , acting on
functions f defined on the edge Ik , has the form

L̄k f (z) =
1

2
Ak(z)f

′′(z) + Bk(z)f
′(z).
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The general case

In the case of several critical points,

the generator L̄ of Ȳ is given by a differential operator L̄k within
each edge Ik .

For each k = 1, . . . , n, the differential operator L̄k , acting on
functions f defined on the edge Ik , has the form

L̄k f (z) =
1

2
Ak(z)f

′′(z) + Bk(z)f
′(z).

The domain D(L̄) is defined as the set of continuous functions on
the graph Γ, that are twice continuously differentiable in the

interior part of each edge of the graph, and satisfy suitable gluing
conditions at the vertices.
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The operator (L̄,D(L̄)) is a non-standard operator, because it is a
differential operator on a graph, endowed with suitable gluing
conditions.
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The operator (L̄,D(L̄)) is a non-standard operator, because it is a
differential operator on a graph, endowed with suitable gluing
conditions.

Nevertheless,

it is the generator of a Markov process Ȳ on the graph Γ.
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The operator (L̄,D(L̄)) is a non-standard operator, because it is a
differential operator on a graph, endowed with suitable gluing
conditions.

Nevertheless,

it is the generator of a Markov process Ȳ on the graph Γ.

In what follows, we shall denote by S̄(t) the semigroup associated
with Ȳ , defined by

S̄(t)f (z , k) = Ē(z,k)f (Ȳ (t)),

for every bounded Borel function f : Γ → R.
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Back to the linear problem

Since the solution of the problem

!
&"

&#

∂vε
∂t

(t, x , y) =
1

2
∆vε(t, x) +

1

ε
〈∇̄H(x),∇vε(t, x)〉,

vε(0, x) = ϕ(y),

is given by
vε(t, x) = Sε(t)ϕ(x) = Exϕ(Xε(t)),

in order to study the asymptotics of vε one would like to use the
limit

lim
ε→0

ExF (Π(Xε)) = ĒΠ(x)F (Ȳ ).
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Back to the linear problem

Since the solution of the problem

!
&"

&#

∂vε
∂t

(t, x , y) =
1

2
∆vε(t, x) +

1

ε
〈∇̄H(x),∇vε(t, x)〉,

vε(0, x) = ϕ(y),

is given by
vε(t, x) = Sε(t)ϕ(x) = Exϕ(Xε(t)),

in order to study the asymptotics of vε one would like to use the
limit

lim
ε→0

ExF (Π(Xε)) = ĒΠ(x)F (Ȳ ).

But things are more complicated...
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Functions defined on Γ and R2

- For every u : R2 → R and (z , k) ∈ Γ we have defined

u∧(z , k) =

/

Ck (z)
u(x) dµz,k(x),

where

dµz,k :=
1

Tk(z)

1

|∇H(x)| dlz,k .
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Functions defined on Γ and R2

- For every u : R2 → R and (z , k) ∈ Γ we have defined

u∧(z , k) =

/

Ck (z)
u(x) dµz,k(x),

where

dµz,k :=
1

Tk(z)

1

|∇H(x)| dlz,k .

- For every f : Γ → R and x ∈ R2 we have defined

f ∨(x) = f (Π(x)) = f (H(x), k(x)).
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Functions defined on Γ and R2

- For every u : R2 → R and (z , k) ∈ Γ we have defined

u∧(z , k) =

/

Ck (z)
u(x) dµz,k(x),

where

dµz,k :=
1

Tk(z)

1

|∇H(x)| dlz,k .

- For every f : Γ → R and x ∈ R2 we have defined

f ∨(x) = f (Π(x)) = f (H(x), k(x)).

Notice that
u ∕= (u∧)∨, f = (f ∨)∧.
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The weights in R2 and Γ

We have assumed that there exists a continuous mapping
γ : Γ → (0,+∞) such that

n)

k=1

+

Ik

γ(z , k)Tk(z) dz < ∞,

where, we recall,

Tk(z) =

/

Ck (z)

1

|∇H(x)| dlz,k .

In particular, this implies that

γ∨ ∈ L1(R2).
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The weighted L2 spaces on R2 and Γ

Once fixed γ, and hence γ∨, we have defined

Hγ = L2(R2, γ∨(x) dx),

and
H̄γ = L2(Γ, νγ),

where the measure νγ is defined as

νγ(A) :=
n)

k=1

+

Ik

IA(z , k) γ(z , k)Tk(z) dz , A ⊆ B(Γ).
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The semigroup Sε(t) in the weighted space Hγ

We assume that

the semigroup Sε(t) is well defined on Hγ , for every ε > 0.
Moreover, for every fixed T > 0, there exists cT > 0 such that

‖Sε(t)‖L(Hγ) ≤ cT , t ∈ [0,T ], ε > 0.
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The semigroup Sε(t) in the weighted space Hγ

We assume that

the semigroup Sε(t) is well defined on Hγ , for every ε > 0.
Moreover, for every fixed T > 0, there exists cT > 0 such that

‖Sε(t)‖L(Hγ) ≤ cT , t ∈ [0,T ], ε > 0.

In fact, we have proven that

there exists a strictly positive continuous function
γ : Γ → (0,+∞), that satisfies the condition above and such that

n)

k=1

+

Ik

γ(z , k)Tk(z) dz < ∞,
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Convergence of the semigroups

Together with M. Freidlin, I proved that

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(Xε(t))− ĒΠ(x) u
∧(Ȳ (t))

22 = 0, (4)

for any u ∈ Cb(R2) and x ∈ R2, and for any 0 ≤ τ ≤ T .
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Convergence of the semigroups

Together with M. Freidlin, I proved that

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(Xε(t))− ĒΠ(x) u
∧(Ȳ (t))

22 = 0, (4)

for any u ∈ Cb(R2) and x ∈ R2, and for any 0 ≤ τ ≤ T .

This means that

lim
ε→0

sup
t∈ [τ,T ]

|Sε(t)u(x)− S̄(t)u∧(Π(x))| = 0.
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Convergence of the semigroups

Together with M. Freidlin, I proved that

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(Xε(t))− ĒΠ(x) u
∧(Ȳ (t))

22 = 0, (4)

for any u ∈ Cb(R2) and x ∈ R2, and for any 0 ≤ τ ≤ T .

This means that

lim
ε→0

sup
t∈ [τ,T ]

|Sε(t)u(x)− S̄(t)u∧(Π(x))| = 0.

Moreover, the limit is also true in Hγ and H̄γ .
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Convergence of the semigroups

Together with M. Freidlin, I proved that

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(Xε(t))− ĒΠ(x) u
∧(Ȳ (t))

22 = 0, (4)

for any u ∈ Cb(R2) and x ∈ R2, and for any 0 ≤ τ ≤ T .

This means that

lim
ε→0

sup
t∈ [τ,T ]

|Sε(t)u(x)− S̄(t)u∧(Π(x))| = 0.

Moreover, the limit is also true in Hγ and H̄γ .

In the proof was critical assuming that

dTk(z)

dz
∕= 0, (z , k) ∈ Γ.
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How to prove limit (4)

Limit (4) is not a straightforward consequence of the limit

lim
ε→0

ExF (Π(Xε(·))) = ĒΠ(x)F (Ȳ (·)).
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How to prove limit (4)

Limit (4) is not a straightforward consequence of the limit

lim
ε→0

ExF (Π(Xε(·))) = ĒΠ(x)F (Ȳ (·)).

Actually, (4) is a consequence of the following two limits

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(X
ε(t))− Ex u

∧(Π(Xε(t)))
22 = 0, (5)

and

lim
ε→0

sup
t∈ [τ,T ]

22Exu
∧(Π(Xε(t)))− ĒΠ(x)u

∧(Ȳ (t))
22 = 0, (6)

that have to be valid for any 0 < τ < T and x ∈ R2 and for any
u ∈ Cb(R2).
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Limit (5)

The limit

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(X
ε(t))− Ex u

∧(Π(Xε(t)))
22 = 0,

is a consequence of the following

- an averaging principle in the interior of the edges of the graph
Γ;

- precise estimates on the time spent by the process Xε(t) near
the vertices.
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Limit (5)

The limit

lim
ε→0

sup
t∈ [τ,T ]

22Ex u(X
ε(t))− Ex u

∧(Π(Xε(t)))
22 = 0,

is a consequence of the following

- an averaging principle in the interior of the edges of the graph
Γ;

- precise estimates on the time spent by the process Xε(t) near
the vertices.

The proof is delicate and we had to introduce suitable sequences of
exit times of the process Xε(t) from small neighborhoods of the
critical points.
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Limit (6)

The limit

lim
ε→0

sup
t∈ [τ,T ]

22Exu
∧(Π(Xε(t)))− ĒΠ(x)u

∧(Ȳ (t))
22 = 0,

would be a consequence of

lim
ε→0

ExF (Π(Xε(·))) = ĒΠ(x)F (Ȳ (·)),

if for any u ∈ Cb(R2), the function u∧ were a continuous function
on Γ̄.
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Limit (6)

The limit

lim
ε→0

sup
t∈ [τ,T ]

22Exu
∧(Π(Xε(t)))− ĒΠ(x)u

∧(Ȳ (t))
22 = 0,

would be a consequence of

lim
ε→0

ExF (Π(Xε(·))) = ĒΠ(x)F (Ȳ (·)),

if for any u ∈ Cb(R2), the function u∧ were a continuous function
on Γ̄.

The lack of continuity of u∧ at the internal vertices of Γ, requires a
more thorough analysis, which also involves estimates of the exit
times of Xε(t) from small neighborhoods of the critical points.
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From the SPDE on R2 to the SPDE on the graph Γ

We are interested in the SPDE
!
"

#

∂tu
ε(t, x) = Lεu

ε(t, x) + b(uε(t, x)) + g(uε(t, x))∂tW(t, x),

uε(0, x) = ϕ(x), x ∈ R2,

where

Lεu(x) =
1

2
∆u(x) +

1

ε
〈∇̄H(x),∇u(x)〉, x ∈ R2.
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From the SPDE on R2 to the SPDE on the graph Γ

We are interested in the SPDE
!
"

#

∂tu
ε(t, x) = Lεu

ε(t, x) + b(uε(t, x)) + g(uε(t, x))∂tW(t, x),

uε(0, x) = ϕ(x), x ∈ R2,

where

Lεu(x) =
1

2
∆u(x) +

1

ε
〈∇̄H(x),∇u(x)〉, x ∈ R2.

Our purpose here is to study the

limiting behavior of its unique mild solution uε in the space
Lq(Ω;C ([0,T ];Hγ)), as ε ↓ 0.
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We recall that the noise can be written as

W(t, x) =
∞)

j=1

3ujµ(x)βj(t), t ≥ 0,

where µ is the spectral measure of the noise, {uj}j∈N is an
orthonormal basis of L2(s)(R

2, dµ) and {βj}j∈N is a sequence of
independent Brownian motions.
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We recall that the noise can be written as

W(t, x) =
∞)

j=1

3ujµ(x)βj(t), t ≥ 0,

where µ is the spectral measure of the noise, {uj}j∈N is an
orthonormal basis of L2(s)(R

2, dµ) and {βj}j∈N is a sequence of
independent Brownian motions.

A continuous adapted process uε(t), taking values in Hγ is a mild
solution to the equation above if

uε(t) = Sε(t)ϕ+

+ t

0
Sε(t − s)B(uε(s)) ds

+

+ t

0
Sε(t − s)G (uε(s)) dW(s),

(see Peszat and Zabczyk, 1997, for the well posedness).
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The SPDE on the graph Γ

We introduce now the following SPDE on the graph Γ

!
"

#

∂t ū(t, z , k) = L̄ ū(t, z , k) + b(ū(t, z , k)) + g(ū(t, z , k)) ∂tW̄(t, z , k), t > 0,

ū(0, z , k) = ϕ∧(z , k), (z , k) ∈ Γ,
(7)

where L̄ is the generator of the limiting Markov process Ȳ (t).
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The SPDE on the graph Γ

We introduce now the following SPDE on the graph Γ

!
"

#

∂t ū(t, z , k) = L̄ ū(t, z , k) + b(ū(t, z , k)) + g(ū(t, z , k)) ∂tW̄(t, z , k), t > 0,

ū(0, z , k) = ϕ∧(z , k), (z , k) ∈ Γ,
(7)

where L̄ is the generator of the limiting Markov process Ȳ (t).

The random forcing W̄ is defined by

W̄(t, z , k) =
∞)

j=1

(*ujm)∧(z , k)βj(t), t ≥ 0 (z , k) ∈ Γ.
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The limit theorem

For any initial condition ϕ ∈ Hγ , q ≥ 1 and 0 < τ < T we have

lim
ε→0

E sup
t∈ [τ,T ]

|uε(t)− ū(t)∨|qHγ

= lim
ε→0

E sup
t∈ [τ,T ]

|uε(t)∧ − ū(t)|q
H̄γ

= 0,

where uε and ū are the unique mild solutions of the SPDE on R2

and of the SPDE on Γ, respectively.
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The case of finite spectral measure

As for Sε(t), it is possible to show that S̄(t) is well defined in H̄γ

and for any T > 0

‖S̄(t)‖L(H̄γ)
≤ cT , t ∈ [0,T ].
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The case of finite spectral measure

As for Sε(t), it is possible to show that S̄(t) is well defined in H̄γ

and for any T > 0

‖S̄(t)‖L(H̄γ)
≤ cT , t ∈ [0,T ].

Moreover, the noise W̄(t) takes values in H̄γ , so that

the stochastic convolution associated with S̄(t) and W̄(t) is well
defined in L2(Ω;C ([0,T ]; H̄γ)).
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The case of finite spectral measure

As for Sε(t), it is possible to show that S̄(t) is well defined in H̄γ

and for any T > 0

‖S̄(t)‖L(H̄γ)
≤ cT , t ∈ [0,T ].

Moreover, the noise W̄(t) takes values in H̄γ , so that

the stochastic convolution associated with S̄(t) and W̄(t) is well
defined in L2(Ω;C ([0,T ]; H̄γ)).

In particular, equation (7) has a unique mild solution ū(t)

ū(t) = S̄(t)ϕ∧ +

+ t

0
S̄(t − s)B(ū(s)) ds +

+ t

0
S̄(t − s)G (ū(s)) dW̄(s).

Sandra Cerrai Incompressible viscous fluids in R2 and SPDEs on graphs



We have seen that when µ is finite, then

‖G (u1)− G (u2)‖L2(RK ,Hγ) ≤ c ‖u1 − u2‖Hγ .
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We have seen that when µ is finite, then

‖G (u1)− G (u2)‖L2(RK ,Hγ) ≤ c ‖u1 − u2‖Hγ .

This means that we do not need regularization from Sε(t) and
S̄(t) and

the limit result for the semigroups is enough to prove the
convergence of the solutions of the SPDEs on R2 to the SPDE on

Γ.
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We have seen that when µ is finite, then

‖G (u1)− G (u2)‖L2(RK ,Hγ) ≤ c ‖u1 − u2‖Hγ .

This means that we do not need regularization from Sε(t) and
S̄(t) and

the limit result for the semigroups is enough to prove the
convergence of the solutions of the SPDEs on R2 to the SPDE on

Γ.

But if we only assume that µ has a density m ∈ Lp(R2), for some
p > 1, things are more complicated...
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The case of infinite spectral measure

Let Gε(t, x , y) be the kernel corresponding to Sε(t), i.e.

Sε(t)u(x) =

+

R2

Gε(t, x , y)u(y)dy , x ∈ R2.

The convergence of Sε(t)u(x) implies that the kernels Gε(t, x , ·)
converge weakly to some Ḡ (t, x , ·), which satisfies

S̄(t)∨u(x) =

+

R2

Ḡ (t, x , y)u(y)dy .
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Together with G. Xi, I have shown that

sup
ε>0

Gε(t, x , y) ≤
C

t
exp

'
−
(
4

H(y) + 1−
4

H(x) + 1)2

4Ct

(
.

In particular, given any compact K ⊂ R2, there exist λK and RK d
such that for any t ∈ (0,∞) and y ∈ R2.

sup
x∈K

Gε(t, x , y) ≤

!
&&"

&&#

λK

t
, |y | ≤ RK

λK

t
exp

0
− |y |2

Ct

1
, |y | > RK .
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Together with G. Xi, I have shown that

sup
ε>0

Gε(t, x , y) ≤
C

t
exp

'
−
(
4

H(y) + 1−
4

H(x) + 1)2

4Ct

(
.

In particular, given any compact K ⊂ R2, there exist λK and RK d
such that for any t ∈ (0,∞) and y ∈ R2.

sup
x∈K

Gε(t, x , y) ≤

!
&&"

&&#

λK

t
, |y | ≤ RK

λK

t
exp

0
− |y |2

Ct

1
, |y | > RK .

Due to the weak convergence of Gε(t, x , y) to Ḡ (t, x , y), the same
bounds are valid for Ḡ (t, x , y).
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The bounds above allowed us to prove that for each 0 ≤ t ≤ T
and ψ ∈ Hγ ,

sup
ε>0

‖Sε(t)M(ψ)‖2L2(RK ,Hγ)
≤ CT‖m‖Lp t−(p−1)/p|ψ|2Hγ

,

where the operator M(ψ) is defined by

M(ψ)ξ = ψξ.
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The bounds above allowed us to prove that for each 0 ≤ t ≤ T
and ψ ∈ Hγ ,

sup
ε>0

‖Sε(t)M(ψ)‖2L2(RK ,Hγ)
≤ CT‖m‖Lp t−(p−1)/p|ψ|2Hγ

,

where the operator M(ψ) is defined by

M(ψ)ξ = ψξ.

Moreover,

‖S̄(t)M(ψ)‖2L2(R̄K ,H̄γ)
≤ CT‖m‖Lp t−(p−1)/p|ψ|2

H̄γ
,

for all 0 ≤ t ≤ T and ψ ∈ H̄γ .
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The bounds above allowed us to prove that for each 0 ≤ t ≤ T
and ψ ∈ Hγ ,

sup
ε>0

‖Sε(t)M(ψ)‖2L2(RK ,Hγ)
≤ CT‖m‖Lp t−(p−1)/p|ψ|2Hγ

,

where the operator M(ψ) is defined by

M(ψ)ξ = ψξ.

Moreover,

‖S̄(t)M(ψ)‖2L2(R̄K ,H̄γ)
≤ CT‖m‖Lp t−(p−1)/p|ψ|2

H̄γ
,

for all 0 ≤ t ≤ T and ψ ∈ H̄γ .

In particular, the SPDE on R2 and the SPDE on Γ are both
well-posed.
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A more refined limit

A fundamental step was proving that for any ψ ∈ Hγ , for any fixed
0 < τ < T

lim
ε→0

sup
t∈ [τ,T ]

∞)

j=1

22(Sε(t)− S̄(t)∨) (ψej)
222
Hγ

= 0,

where {ej} is a complete orthonormal system for the reproducing
kernel.
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A more refined limit

A fundamental step was proving that for any ψ ∈ Hγ , for any fixed
0 < τ < T

lim
ε→0

sup
t∈ [τ,T ]

∞)

j=1

22(Sε(t)− S̄(t)∨) (ψej)
222
Hγ

= 0,

where {ej} is a complete orthonormal system for the reproducing
kernel.

This limit allowed to treat the convergence of stochastic
convolutions and conclude that the solutions of the SPDEs on R2

converge to the solution of the SPDE on Γ.
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A weaker type of convergence

One of the key assumptions in order to prove that

lim
ε→0

sup
t∈[τ,T ]

22Exu(Xε(t))− ĒΠ(x)u
∧(Ȳ (t))

22 = 0,

for any u ∈ Hγ and 0 < τ < T , is

dTk(z)

dz
∕= 0, (z , k) ∈ Γ. (8)
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A weaker type of convergence

One of the key assumptions in order to prove that

lim
ε→0

sup
t∈[τ,T ]

22Exu(Xε(t))− ĒΠ(x)u
∧(Ȳ (t))

22 = 0,

for any u ∈ Hγ and 0 < τ < T , is

dTk(z)

dz
∕= 0, (z , k) ∈ Γ. (8)

Assumption (8) allows to say that if α ∈ (4/7, 2/3) then for every
u ∈ C 2

b (R2) and for every compact set K ∈ R2

lim
ε→0

sup
x∈K

22Exu(Xε(ε
α))− (u∧)∨(x)

22 = 0.
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What does it happen when (8) is not verified?

We have tried to understand if it is still possible to have some limit
in this case, and have proven that for any 0 ≤ τ < T and any
compact set K ⊂ R2,

lim
ε→0

sup
x∈K

2222
+ T

τ

5
Exϕ(Xε(t))− ĒΠ(x)ϕ

∧(Ȳ (t))
6
θ(t)dt

2222 = 0

for any ϕ ∈ Cb(R2) and θ ∈ Cb([τ,T ]).
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The previous limit allowed us to prove that when

b = 0, g = constant

for any fixed T > 0, q ≥ 1 and θ ∈ C ([0,T ])

lim
ε→0

E
2222
+ T

0

5
uε(t)− ū(t)∨

6
θ(t)dt

2222
q

Hγ

= lim
ε→0

E
2222
+ T

0

5
uε(t)

∧ − ū(t)
6
θ(t)dt

2222
q

H̄γ

= 0.
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Thank you
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Gluing conditions

For any vertex Oi = (zi , ki1) = (zi , ki2) = (zi , ki3) there exist finite

lim
(z,kij )→Oi

L̄f (z , kij ), j = 1, 2, 3,

and the limits do not depend on the edge Ikij ∼ Oi . Moreover, for

each interior vertex Oi the following gluing condition is satisfied

3)

j=1

±αkij
(zi )dkij f (zi , kij ) = 0,,

where

αk(z) =

/

Ck (z)
|∇H(x)| dlz,k .

Here dkij is the differentiation along Ikij and + is taken if the

H-coordinate increases along Ikij and − otherwise.

Sandra Cerrai Incompressible viscous fluids in R2 and SPDEs on graphs


