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Eigenvalue Problem

Ω ⊂ Rn bounded open.
Eigenvalue problem for clamped plate under compression κ > 0

∆2u + κ∆u = λu in Ω

u = |∇u| = 0 on ∂Ω

 (2.1)

We take κ < λbuckling where

λbuckling = inf

{∫
Ω
|∆ϕ|2 dx∫

Ω
|∇ϕ|2 dx

: ϕ ∈ H2
0 (Ω) \ {0}

}
(2.2)

whereby, the operator ∆2 + κ∆ is uniformly elliptic and self-adjoint.
First eigenvalue λ = λ(Ω, κ) given by the variational characterization

λ(Ω, κ) := inf

{∫
Ω

(
|∆ϕ|2 − κ|∇ϕ|2

)
dx∫

Ω
|ϕ|2 dx

: ϕ ∈ H2
0 (Ω) \ {0}

}
. (2.3)
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A useful reformulation of this is

λ(Ω, κ) = inf

{ ∫
Ω
|∇ϕ|2∫

Ω
|ϕ|2 dx

(∫
Ω
|∆ϕ|2∫

Ω
|∇ϕ|2

− κ

)
: ϕ ∈ H2

0 (Ω)\{0}

}
. (2.4)
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Shape Optimization Problem

Do we have
λ(Ω, κ) ≥ λ(Ω∗, κ) ,

where Ω∗ is a ball of the same volume as Ω?
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History

For the clamped plate problem (κ = 0) this is one of Rayleigh’s
conjectures.

Szegő [9, 10] showed the conjecture under the assumption that first
eigenfunction u keeps same sign. Essentially by rearranging ∆u in Ω.
But this hypothesis is not true as follows from the works of Duffin,
Shaffer, Coffman.
For any n, Talenti [12] showed λ(Ω, κ = 0) ≥ cnλ(Ω∗, κ = 0) for
some constant cn ∈ (0, 1]. cn depends on the dimension.
For n = 2, Nadirashvili [8] shows the optimal result with c2 = 1.
For n = 3 (and n = 2), Ashbaugh and Benguria [1] showed the
optimal result with c3 = 1.

For clamped plate and buckling problem in higher dimensions with
better constants, see Ashbaugh, Benguria, and Laugesen [2, 3].

Free plate problem under tension - see Weinstein and Chien [13],
Chasman [4].

Clamped plate in Gauss space and related matters - see Chasman
and Langford [5], [6].

Clamped plate in curved spaces - see A. Kristály [7].
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Result

Theorem (M. S. A.; R. Benguria; R. Mahadevan)

For n = 2, we have λ(Ω, κ) ≥ λ(Ω∗, κ) for κ ∈ [0, a] for some
a < λbuckling .
Ω∗ is a ball of the same volume as Ω (and whose radius we denote by L).

Note: The value of a is calculable but not optimal.
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Idea

The idea of the proof is much the same as that in Ashbaugh and
Benguria [1].

Reduce to a two-ball optimization problem [1, 2, 3, 8, 12] using a
rearrangement result of Talenti [11].

Then study the two-ball optimization problem carefully using
properties of Bessel functions.

For n = 2, the analysis shows us that the solution of the two-ball
problem corresponds to the situation where one ball degenerates to a
point for κ ∈ [0, a] for some value of a < λbuckling .
Note: We don’t obtain the result for n = 3 unlike the clamped plate
problem [1].
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Reduction to the two ball problem

We shall use the following theorem, a slight variant of a result of Talenti.

Theorem (cf. Talenti [11], Theorem 1)

Let G be a domain in R2, F ∈ Lp(Ω) for some p > 1 if n = 2. Let U be
the solution of

−∆U = F in G

U = 0 on ∂G

}
(6.5)

and let Z be the solution of

−∆Z = F ∗ in G∗

Z = 0 on ∂G∗

}
(6.6)

where F ∗ is radially symmetric decreasing and equimeasurable with F on
G∗. Then, if U ≥ 0 on G , we have:

Z ≥ U∗ ≥ 0 on G∗ and therefore,
∫
G∗ |Z |2 dx ≥

∫
G
|U|2 dx .∫

G∗ |∇Z |2 dx ≥
∫
G
|∇U|2 dx

Note: If n > 2, the same result is true when F ∈ L
2n
n+2 (Ω).
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Reduction to the two ball problem

Ω∗ ball centered at the origin of radius L with volume |Ω|.
u any first eigenfunction for (2.1) in Ω. Since u may not keep the
same sign, we take
Ω+ = {x ∈ Ω : u(x) > 0} and Ω− = {x ∈ Ω : u(x) < 0}
Ω∗± balls with the same volume as Ω+ and Ω− centered at the
origin, with a and b their radii.
We have a2 + b2 = L2.

f (x) = (−∆u)∗(x), x ∈ Ω∗+; g(x) = (∆u)∗(x), x ∈ Ω∗−. Let v and
w solve

−∆v = f in Ω∗+
v = 0 on ∂Ω∗+

}
(6.7)

and
−∆w = g in Ω∗−

w = 0 on ∂Ω∗− .

}
(6.8)
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Reduction to the two-ball problem

We have∫
Ω

|∆u|2 dx =

∫
Ω+

| −∆u|2 dx +

∫
Ω−

|∆u|2 dx

=

∫
Ω∗

+

f 2 dx +

∫
Ω∗

−

g2 dx

=

∫
Ω∗

+

|∆v |2 dx +

∫
Ω∗

−

|∆w |2 dx . (6.9)

By Talenti’s theorem, we also have∫
Ω∗

+

|v |2 dx ≥
∫

Ω∗
+

|u∗+|2 dx and

∫
Ω∗

−

|w |2 dx ≥
∫

Ω∗
−

|u∗−|2 dx (6.10)

and∫
Ω∗

+

|∇v |2 dx ≥
∫

Ω∗
+

|∇u∗+|2 dx and

∫
Ω∗

−

|∇w |2 dx ≥
∫

Ω∗
−

|∇u∗−|2 dx .

(6.11)
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Reduction to the two-ball problem

So, we conclude∫
Ω

(
|∆u|2 − κ|∇u|2

)
dx∫

Ω
|u|2 dx

≥

∫
Ω∗

+

(
|∆v |2 − κ|∇v |2

)
dx +

∫
Ω∗

−

(
|∆w |2 − κ|∇w |2

)
dx∫

Ω∗
+
|v |2 dx +

∫
Ω∗

−
|w |2 dx

.

This gives
λ(Ω, κ) ≥ Ja,b (6.12)

for some a, b with a2 + b2 = 1 where

Ja,b = min
v ,w

∫
|x|≤a

(
|∆v |2 − κ|∇v |2

)
dx +

∫
|x|≤b

(
|∆w |2 − κ|∇w |2

)
dx∫

|x|≤a |v |2 dx +
∫
|x|≤b |w |2 dx

(6.13)
minimum over v ∈ H2(Ba), w ∈ H2(Bb) radial and a ∂v

∂r

∣∣
∂Ba

= b ∂w
∂r

∣∣
∂Bb

.

Consequently,
λ(Ω, κ) ≥ min

Ω
λ(Ω, κ) ≥ min

a,b
Ja,b . (6.14)

We will be done if we can show

min
a,b

Ja,b ≥ JL,0 = λ(Ω∗, κ) (6.15)
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Variational equations for the two-ball problem

Before we analyze mina,b Ja,b, let us write the variational equations at the
minimum for Ja,b for fixed a, b.

∆2v + κ∆v = λv in Ba

v = 0 on ∂Ba

}
(6.16)

and
∆2w + κ∆w = λw in Bb

w = 0 on ∂Bb .

}
(6.17)

In addition,

a
∂v

∂r

∣∣∣∣
∂Ba

= b
∂w

∂r

∣∣∣∣
∂Bb

(6.18)

and
∆v |∂Ba + ∆w |∂Bb

= 0 . (6.19)
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Solution of the variational equations for the two-ball
problem

For given a, b, want to obtain radial solutions v ,w in the two-balls to

(∆2 + κ∆)U = λU .

Writing this as
(∆− α2)(∆ + β2)U = 0

with (α, β > 0)

α2 =
√
λ+ κ2/4− κ/2 , β2 =

√
λ+ κ2/4 + κ/2

we get v ,w to be of the form

v(r) = AJ0(βr) + BI0(αr) , w(r) = CJ0(βr) + DI0(αr) . (6.20)

v(a) = 0 = w(b), av ′(a) = bw ′(b) and ∆v |∂Ba + ∆w |∂Bb
= 0 lead to a

system of 4 homogeneous equations in A,B,C ,D.
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Solution of the variational equations for the two-ball
problem

The above has a non-trivial solution iff λ is a zero of

F (α, β, a) = f (α, β, a) + f (α, β, b) , (a2 + b2 = L2) (6.21)

with

f (α, β, a) = aβ
J1(βa)

J0(βa)
+ aα

I1(αa)

I0(αa)
. (6.22)
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