Traveling wave dynamics for a one-dimensional constrained Allen-Cahn equation

Goro Akagi

(Mathematical Institute, Tohoku University)

Based on a joint work with
C. Kuehn (München) and K.-I. Nakamura (Kanazawa)

Asia-Pacific Analysis and PDE Seminar
13 Sep 2021, The University of Sydney (via Zoom)

1. PDEs with non-decreasing constraints

Non-decreasing constraints

In this talk, "non-decreasing constraints on evolution" mean

$$
u(x, t) \geq u(x, s) \text { if } t \geq s
$$

or equivalently,

$$
\partial_{t} u(x, t) \geq 0
$$

Background: Irreversible Phase-field models (e.g., for brittle fracture)
Let $u=u(x, t)$ denote a displacement field and $z=z(x, t)$ a phase field, which intuitively means

$$
z(x, t)= \begin{cases}1 & \text { if the material is cracked at }(x, t) \\ 0 & \text { if the material is not cracked at }(x, t)\end{cases}
$$

Then $t \mapsto z(x, t)$ is supposed to be non-decreasing, unlike $\boldsymbol{t} \mapsto \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$.

Phase-field model for brittle fracture

The phase-field model reads,

$$
\begin{aligned}
0 & =\operatorname{div}\left(\alpha_{\varepsilon}(z) \nabla u\right) & & \text { in } \Omega \times \mathbb{R}_{+}, \\
\partial_{t} z & =\left(\varepsilon \Delta z-\frac{z}{\varepsilon}-\alpha_{\varepsilon}^{\prime}(z)|\nabla u|^{2}\right)_{+} & & \text {in } \Omega \times \mathbb{R}_{+},
\end{aligned}
$$

which is an irreversible quasi-static evolution, i.e.,

$$
0=\partial_{u} \mathcal{F}_{\varepsilon}(u, z), \quad \partial_{t} z=\left(-\partial_{z} \mathcal{F}_{\varepsilon}(u, z)\right)_{+}
$$

of the free energy $\mathcal{F}_{\varepsilon}(u, z)$ (= Ambrosio-Tortorelli regularization of the Francfort-Marigo energy) given by

$$
\mathcal{F}_{\varepsilon}(u, z)=\frac{1}{2} \int_{\Omega} \alpha_{\varepsilon}(z)|\nabla u|^{2} \mathrm{~d} x+\int_{\Omega}\left(\frac{\varepsilon}{2}|\nabla z|^{2}+\frac{1}{2 \varepsilon} z^{2}\right) \mathrm{d} x .
$$

[Frémond-Nedjar '96], [Bonetti-Schimperna '04], [Mielke-Roubiček '08], [Knees-Rossi-Zanini '13-], [Takaishi-Kimura '09,'11],...,[A-Schimperna '21]

Gradient flows with non-decreasing constraints

Let us focus on the gradient flow structure with non-decreasing constraints, roughly speaking,

$$
\partial_{t} u(t)=(-\partial J(u(t)))_{+} \geq 0
$$

for some (possibly non-convex) functional $J: X \rightarrow \mathbb{R}$, say $X=L^{2}(\Omega)$. Equivalently, it can be rewritten as

$$
\partial_{t} u(t)=-\partial J(u(t))-\mu
$$

where $\boldsymbol{\mu}$ can be characterized as

$$
\mu \in \partial I_{[0,+\infty)}\left(\partial_{t} u\right) \quad \text { and } \quad \mu=-(-\partial J(u(t)))_{-}
$$

Stabilization \leftrightarrow Constraint

Aim of this talk

Address ourselves onto simpler PDEs with non-decreasing constraints and discuss asymptotic behavior of solutions.

In particular, we shall discuss traveling wave dynamics for the 1D Allen-Cahn equation with non-decreasing constraints,
(*)

$$
u_{t}=\left(u_{x x}-W^{\prime}(u)\right)_{+} \text {in } \mathbb{R} \times \mathbb{R}_{+}
$$

cf.) [A-Efendiev '19] Cauchy-Dirichlet problem in bounded domains of \mathbb{R}^{N}

- well-posedness, (partial) smoothing effect
- energy-dissipation estimates, absorbing set, global attractor
- reformulation of $(*)$ as an obstacle problem
- convergence to equilibria as $t \rightarrow+\infty$ and steady-state equation

2. Traveling wave dynamics

Allen-Cahn equation in \mathbb{R}

Let us recall the Cauchy problem for the classical Allen-Cahn equation,

$$
(\mathrm{AC}) \begin{cases}u_{t}=u_{x x}-f(u) & \text { in } \mathbb{R} \times \mathbb{R}_{+}, \\ \left.u\right|_{t=0}=u_{0} & \text { in } \mathbb{R}\end{cases}
$$

where f satisfies

$$
\left\{\begin{array}{l}
f\left(a_{ \pm}\right)=f\left(a_{0}\right)=0, \quad f^{\prime}\left(a_{ \pm}\right)>0 \\
f>0 \text { in }\left(a_{-}, a_{0}\right), \quad f<0 \text { in }\left(a_{0}, a_{+}\right)
\end{array}\right.
$$

for some $a_{-}<a_{0}<a_{+}$, i.e., $f=W^{\prime}$ with a double-well potential W.

Allen-Cahn equation in \mathbb{R}

Let us recall the Cauchy problem for the classical Allen-Cahn equation,

$$
(\mathrm{AC}) \begin{cases}u_{t}=u_{x x}-f(u) & \text { in } \mathbb{R} \times \mathbb{R}_{+}, \\ \left.u\right|_{t=0}=u_{0} & \text { in } \mathbb{R}\end{cases}
$$

A phase separation model (e.g., binary alloy),
© L^{2} gradient flow of the free energy

$$
J(u):=\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u(x)\right|^{2} \mathrm{~d} x+\int_{\mathbb{R}} W(u(x)) \mathrm{d} x
$$

where $W^{\prime}=f$. Namely,
$(\mathrm{AC}) \Leftrightarrow u_{t}=-\partial J(u)$ in $L^{2}(\mathbb{R}), \quad t>0$.
Hence $t \mapsto J(u(t))$ is non-increasing.

Traveling wave solutions for (AC)

The traveling wave solution $u(x, t)=\phi(x-c t)$ is characterized by a profile function ϕ and a velocity constant c satisfying

$$
\begin{cases}-c \phi^{\prime}=\phi^{\prime \prime}-f(\phi) & \text { in } \mathbb{R}, \\ \phi(\xi) \rightarrow a_{ \pm} & \text {as } x \rightarrow \pm \infty\end{cases}
$$ and

$$
c \begin{cases}<0 & \text { if } W\left(a_{+}\right)<W\left(a_{-}\right) \\ =0 & \text { if } W\left(a_{-}\right)=W\left(a_{+}\right) \\ >0 & \text { if } W\left(a_{-}\right)<W\left(a_{+}\right)\end{cases}
$$

Traveling wave solutions for (AC)

[Fife-McLeod '72]

- Existence and "uniqueness" of TWs

Phase-plain analysis

- Exponential stability of TWs: if

$$
u_{0}(x) \in\left[a_{-}, a_{+}\right], \quad \limsup _{x \rightarrow-\infty} u_{0}(x)<a_{0}, \quad \liminf _{x \rightarrow+\infty} u_{0}(x)>a_{0}
$$

then there exist constants $x_{0} \in \mathbb{R}, K, \kappa>0$ such that

$$
\left\|u(\cdot, t)-\phi\left(\cdot-c t-x_{0}\right)\right\|_{L^{\infty}(\mathbb{R})} \leq K \mathrm{e}^{-\kappa t} \text { for all } t \geq 0
$$

Schauder estimate, precompactness of $\{u(\cdot+c t, t): t \geq 0\}$, sub / supersolution method
[X. Chen '92] Non-local reaction, Sub / supersolution method only

Constrained Allen-Cahn equation

Now, we shall consider

$$
(\mathrm{AC})_{+} \begin{cases}u_{t}=\left(u_{x x}-f(u)\right)_{+} & \text {in } \mathbb{R} \times \mathbb{R}_{+} \\ \left.u\right|_{t=0}=u_{0} & \text { in } \mathbb{R}\end{cases}
$$

where f satisfies

$$
\left\{\begin{array}{l}
f\left(a_{ \pm}\right)=f\left(a_{0}\right)=0, \quad f^{\prime}\left(a_{ \pm}\right)>0 \\
f>0 \text { in }\left(a_{-}, a_{0}\right), \quad f<0 \text { in }\left(a_{0}, a_{+}\right)
\end{array}\right.
$$

for some $a_{-}<a_{0}<a_{+}$and

$$
(s)_{+}:=\max \{s, 0\} \geq 0
$$

Constrained Allen-Cahn equation

Now, we shall consider

$$
(\mathrm{AC})_{+} \begin{cases}u_{t}=(\underbrace{u_{x x}-f(u)}_{=-\partial J(u)})_{+} & \text {in } \mathbb{R} \times \mathbb{R}_{+} \\ \left.u\right|_{t=0}=u_{0} & \text { in } \mathbb{R}\end{cases}
$$

Then $t \mapsto J(u(t))$ is still non-increasing.
Moreover, $(\mathrm{AC})_{+}$is equivalent to

- $u_{t}=-\boldsymbol{\partial} \boldsymbol{J}(\boldsymbol{u})-\mu, \quad \mu \in \partial I_{[0,+\infty)}\left(u_{t}\right),\left.\quad \boldsymbol{u}\right|_{t=0}=u_{0}$,
$\cdot \min \left\{u-u_{0}, u_{t}-u_{x x}+f(u)\right\}=0,\left.\quad u\right|_{t=0}=u_{0}$

$$
\Leftrightarrow \quad u_{t}=-\partial J(u)-\mu, \quad \mu \in \partial I_{\left[u_{0}(x), \infty\right)}(u),\left.\quad u\right|_{t=0}=u_{0}
$$

Traveling wave dynamics for $(\mathrm{AC})_{+}$

We shall discuss

- existence and uniqueness of traveling wave solutions,
- convergence to a traveling wave solution.

In what follows, we may restrict ourselves to a balanced potential:

$$
a_{ \pm}= \pm 1, \quad a_{0}=0, \quad W(u)=\frac{1}{4}\left(u^{2}-1\right)^{2}
$$

for which the TW of (AC) fulfills
$c=0 \quad$ and $\quad \phi(\pm \infty)= \pm 1$.
3. Existence and uniqueness of traveling waves

Balanced double-well potential

Balanced double-well potential $W(u)$

Heuristic construction

Substitute $u(x, t)=\phi(x-c t)$ to $(\mathrm{AC})_{+}$. Then a profile equation reads,

$$
-c \phi^{\prime}=\left(\phi^{\prime \prime}-f(\phi)\right)_{+}
$$

How can we solve it ?

Instead, we shall derive an alternative profile equations...

Heuristic construction

Suppose that $u(-\infty) \equiv \alpha \in(-1,0)$, which is a steady-state for $(\mathrm{AC})_{+}$.
(i) Due to the non-decreasing constraint $u_{t} \geq 0$,

$$
u(x, t) \geq \alpha
$$

Then the region $[u<\alpha]$ on the graph of $W(u)$ is prohibited.
(ii) Analogously to the reformulation, \boldsymbol{u} may solve the obstacle problem,

$$
\boldsymbol{u}_{\boldsymbol{t}}-\boldsymbol{u}_{\boldsymbol{x} \boldsymbol{x}}+\underbrace{\boldsymbol{f}(\boldsymbol{u})}_{=W^{\prime}(u)}+\partial \boldsymbol{I}_{[\alpha,+\infty)}(u) \ni \mathbf{0} \text { in } \mathbb{R} \times \mathbb{R} .
$$

Roughly speaking,

$$
W^{\prime}(u)+\partial I_{[\alpha,+\infty)}(u)=\partial(W+\underbrace{I_{[\alpha,+\infty)}}_{\text {truncation ! }})(u) .
$$

Heuristic construction

Truncated balanced double-well potential $\boldsymbol{W}(\boldsymbol{u})$

Profile equation for traveling waves

Let $\alpha \in(-1,0)$ and substitute $u=\phi(x-c t)$. Then

$$
(*) \quad-\boldsymbol{c} \phi^{\prime}-\phi^{\prime \prime}+\underbrace{\boldsymbol{W}^{\prime}(\phi)+\partial I_{[\alpha, \infty)}(\phi)}_{=\partial\left(W+I_{[\alpha, \infty)}\right)(\phi)} \ni 0 \text { in } \mathbb{R}
$$

is derived along with

$$
\phi(-\infty)=\alpha \quad \text { and } \quad \phi(+\infty)=1 \quad \text { and } \quad \phi^{\prime} \geq 0
$$

as a profile equation.

Indeed, let ϕ_{α} be a solution of $(*)$ for some $c=c_{\alpha}$.
Then $u(x, t)=\phi_{\alpha}\left(x-c_{\alpha} t\right)$ solves $(\mathrm{AC})_{+}$

$$
\text { and } c_{\alpha}<0 \text { if } \alpha \neq-1
$$

Existence of traveling wave solutions

Existence of traveling wave solutions

Theorem 1 (Traveling wave solutions [A-K-N])
For each $\alpha \in(-1,0),(\mathbf{A C})_{+}$has a solution $u(x, t)=\phi_{\alpha}\left(x-c_{\alpha} t\right)$ for some profile function $\phi_{\alpha}(\xi)$ and a velocity constant c_{α} satisfying

$$
\lim _{\xi \rightarrow+\infty} \phi_{\alpha}(\xi)=1, \quad \lim _{\xi \rightarrow-\infty} \phi_{\alpha}(\xi)=\alpha .
$$

Moreover, it holds that
(i) $-\boldsymbol{c} \phi_{\alpha}^{\prime}-\phi_{\alpha}^{\prime \prime}+\boldsymbol{f}\left(\phi_{\alpha}\right)+\partial I_{[\alpha, \infty)}\left(\phi_{\alpha}\right) \ni 0$ in \mathbb{R}, $\Leftrightarrow \quad \min \left\{\phi_{\alpha}-\alpha,-\boldsymbol{c}_{\boldsymbol{\alpha}} \phi_{\alpha}^{\prime}-\phi_{\alpha}^{\prime \prime}+\boldsymbol{f}\left(\phi_{\alpha}\right)\right\}=0$ in \mathbb{R},
(ii) $\phi_{\alpha} \in W^{2, \infty}(\mathbb{R}), \quad \phi_{\alpha}^{\prime} \in L^{2}(\mathbb{R})$,
(iii) $\alpha \leq \phi_{\alpha}<1, \quad 0 \leq \phi_{\alpha}^{\prime}<+\infty$ in $\mathbb{R}, \quad-\infty<c_{\alpha}<0$,

Existence of traveling wave solutions

Theorem 1 (Traveling wave solutions [A-K-N] (contd.))
There exists $s_{0} \in \mathbb{R}$ such that

$$
\phi_{\alpha}(s)=\alpha \text { on }\left(-\infty, s_{0}\right], \quad \phi_{\alpha}(s)>\alpha \text { on }\left(s_{0}, \infty\right)
$$

Furthermore, $-c_{\alpha} \phi_{\alpha}^{\prime}-\phi_{\alpha}^{\prime \prime}+f\left(\phi_{\alpha}\right)=0$ in $\left(s_{0},+\infty\right)$, and hence,

$$
\phi_{\alpha}^{\prime \prime}\left(s_{0}-0\right)=0 \text { and } \phi_{\alpha}^{\prime \prime}\left(s_{0}+0\right)=f(\alpha)>0
$$

which implies $\phi \notin C^{2}(\mathbb{R})$.

In what follows, we set $s_{0}=0$ by translation. Hence

$$
\phi_{\alpha}=\alpha \text { on }(-\infty, 0], \quad \phi_{\alpha}>\alpha \text { on }(0, \infty)
$$

Existence of traveling wave solutions

Uniqueness of profile and velocity

Theorem 2 (Uniqueness of traveling waves [A-K-N])

Concerning traveling wave solutions discussed in Theorem 1, it holds that
(i) the velocity c_{α} is unique for each α,
(ii) the profile function ϕ_{α} is unique (up to translation) for each α.

4. Convergence to traveling waves

Question

Question
Can we also prove the (exponential) convergence of solutions for (AC) ${ }_{+}$ to traveling waves as in the classical Allen-Cahn equation ?

We cannot expect stability of traveling wave solutions.
Proposition 3 (Instability of traveling waves $[\mathrm{A}-\mathrm{K}-\mathrm{N}]$)
For each $\alpha \in\left(a_{-}, a_{0}\right)$, the traveling wave solution $\phi_{\alpha}\left(x-c_{\alpha} t\right)$ of $(\mathrm{AC})_{+}$is unstable in $L^{\infty}(\mathbb{R})$.

Hence the basin of attraction of the traveling wave solution for $(A C)_{+}$is smaller than those for (AC).

Hypotheses for initial data

For $\alpha \in\left(a_{-}, a_{0}\right)$, we assume (with $a_{ \pm}= \pm 1$ and $a_{0}=0$):

$$
\begin{aligned}
&(\mathbf{H})_{\alpha}\left\{\begin{array}{l}
u_{0} \in H_{\mathrm{loc}}^{2}(\mathbb{R}), \quad \liminf _{x \rightarrow+\infty} u_{0}(x)>a_{0} \\
a_{-} \leq \inf _{x \in \mathbb{R}} u_{0}(x) \leq \sup _{x \in \mathbb{R}} u_{0}(x)<a_{+} \\
u_{0} \equiv \alpha \text { on }\left(-\infty, \xi_{1}\right] \text { for some } \xi_{1} \in \mathbb{R} .
\end{array}\right. \\
& \overline{a_{+}}
\end{aligned}
$$

Then one can define

$$
r(t):=\sup \{r \in \mathbb{R}: u(x, t)=\alpha \text { for all } x \leq r\} \in \mathbb{R} \text { for } t \geq 0
$$

Main result

Theorem 4 (Exponential convergence to a TW [A-K-N])

Let $\alpha \in\left(a_{-}, a_{0}\right)$ be such that $f^{\prime}(\alpha)>0$ and assume that u_{0} satisfies $(\mathrm{H})_{\alpha}$. Let $u=u(x, t)$ be the $L_{\text {loc }}^{2}$ solution to $(\mathrm{AC})_{+}$for the initial datum u_{0}. Then there exist $x_{0} \in \mathbb{R}$ and $K, \kappa>0$ such that

$$
\left\|u(\cdot, t)-\phi_{\alpha}\left(\cdot-c_{\alpha} t-x_{0}\right)\right\|_{L^{\infty}(\mathbb{R})} \leq K \mathrm{e}^{-\kappa t} \text { for all } t \geq 0 .
$$

Set $r(t):=\sup \{r>0: u(\cdot, t) \equiv \alpha$ on $(-\infty, r]\}$. Then

$$
\left|r(t)-c_{\alpha} t-x_{0}\right| \lesssim \mathrm{e}^{-\frac{\kappa}{2} t} \text { as } t \rightarrow+\infty .
$$

Supersolutions of $(\mathrm{AC})_{+}$cannot decrease !

We note that

$$
U_{t} \geq\left(U_{x x}-f(U)\right)_{+} \geq 0
$$

implies

$$
U(x, t) \text { cannot decrease in time! }
$$

Hence the sub- and supersolution method does not work well for $(\mathbf{A C})_{+}$ (cf. Fife-McLeod \& Chen).
\Rightarrow Our proof consists of " 4 phases".

Rough outline of proof

Phases 1 \& 2 Reduction to a simplified system

Reduction to a constant obstacle problem
There exists $t_{1}>0$ such that, for all $t \geq t_{1}$,

$$
u(x, t)=u_{0}(x) \quad \text { if and only if } \quad u(x, t)=\alpha
$$

Hence $(\mathbf{A C})_{+}$is reduced to

$$
(\mathbf{A C})_{\alpha} \quad \min \left\{u-\alpha, u_{t}-u_{x x}+f(u)\right\}=0 \text { in } \mathbb{R} .
$$

Phase 3 Quasi-convergence of the orbit $\mathcal{O}=\left\{u\left(\cdot+c_{\alpha} t, t\right): t \geq t_{1}\right\}$ to the limit $\phi_{\alpha}\left(\cdot-x_{0}\right)$ unif. in \mathbb{R} for some $x_{0} \in \mathbb{R} \quad$ Energy method

Phase 4 Exponential convergence of $u(\cdot, t)$ to $\phi_{\alpha}\left(\cdot-c_{\alpha} t-x_{0}\right)$ uniformly in \mathbb{R} as $t \rightarrow+\infty$ Sub- and supersolution method

Initial Phase

A Initial Phase

Claim

$$
\exists t_{1}>0 ; \inf _{x \in \mathbb{R}} u\left(x, t_{1}\right)>a_{-}
$$

Let $u_{a c}$ be the unique solution to (AC) with the same datum u_{0}. Moreover,

$$
u_{t}=\left(u_{x x}-f(u)\right)_{+} \geq u_{x x}-f(u) \text { in } \mathbb{R} \times \mathbb{R}_{+} .
$$

By comparison principle,

$$
u(x, t) \geq u_{a c}(x, t) \rightarrow \phi_{a c}(x) \text { as } t \rightarrow+\infty
$$

where $\phi_{a c}$ is a TW with $c=0$ connecting $a_{ \pm}$at $x= \pm \infty$.

Initial Phase

Let $u_{a c}(x, t)$ be the solution to (AC) with $u_{a c}(x, 0)=u_{0}(x)$.

Initial Phase

Let $u_{a c}(x, t)$ be the solution to (AC) with $u_{a c}(x, 0)=u_{0}(x)$.

Initial Phase

Then $u_{a c}(x, t)$ converges to a layer solution $\phi_{a c}(x)$ (with $c=0$).

Initial Phase

The solution $u(x, t)$ of $(\mathrm{AC})_{+}$is a supersolution to (AC). Hence $u(x, t) \geq u_{a c}(x, t)$.

Second Phase

© Second Phase

Lemma 5 (Reduction to a constant obstacle problem)
There exists $t_{2}>t_{1}$ such that, for all $t>t_{2}$,

$$
u(x, t)=u_{0}(x) \quad \Leftrightarrow \quad u(x, t)=\alpha .
$$

We employ a subsolution to $(\mathbf{A C})_{+}$given by

$$
\boldsymbol{U}_{\gamma}(x, t):=\phi_{\gamma}\left(\boldsymbol{x}-\boldsymbol{c}_{\gamma} t-\sigma \delta\left(1-\mathrm{e}^{-\beta t}\right)-\boldsymbol{h}^{-}\right)-\delta \mathrm{e}^{-\beta t}
$$

for some $h^{-} \in \mathbb{R}, \beta, \delta, \sigma>0$ and $\gamma \in\left(a_{-}, a_{0}\right)$ satisfying

$$
a_{-}<\gamma-\delta<\inf _{x \in \mathbb{R}} u\left(x, t_{1}\right)
$$

Then we assure that $c_{\gamma}<0$.

Second Phase

a-

$$
\inf _{x \in \mathbb{R}} u\left(x, t_{1}\right)>a_{-}
$$

Second Phase

Eventually, $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}+\boldsymbol{s}) \geq U_{\beta, \gamma}(x, s)>\alpha=\boldsymbol{u}_{\mathbf{0}}(\boldsymbol{x})$ for all $x \geq \xi_{1}$. Therefore $u(x, t)=u_{0}(x) \Leftrightarrow u(x, t)=\alpha$.

Second Phase

Thanks to the reformulation, we assure that

$$
(\mathrm{AC})_{+} \Leftrightarrow(\mathrm{AC})_{\alpha} \min \left\{\boldsymbol{u}-\alpha, \boldsymbol{u}_{t}-\boldsymbol{u}_{\boldsymbol{x} \boldsymbol{x}}+\boldsymbol{f}(\boldsymbol{u})\right\}=0 \text { in } \mathbb{R}
$$

for all $t>t_{2}$.

Third Phase

© Third Phase
Lemma 6 (Quasi-convergence of $u\left(\cdot-c_{\alpha} t, t\right)$)
There exist a sequence $t_{n} \rightarrow+\infty$ and $\xi \in \mathbb{R}$ such that

$$
\left\|u\left(\cdot, t_{n}\right)-\phi_{\alpha}\left(\cdot-c_{\alpha} t_{n}+\xi\right)\right\|_{L^{\infty}(\mathbb{R})} \rightarrow 0 .
$$

We prove the precompactness of $\left\{u\left(\cdot-c_{\alpha} t, t\right): t>t_{2}\right\}$ in $H_{\text {loc }}^{1}(\mathbb{R})$ by developing local energy estimates for ($\mathbf{A C})_{\alpha}$ and identify the limit of the orbit.

Thereby, for any $\delta>0$ (small), one can take $\boldsymbol{n}_{\delta} \in \mathbb{N}$ such that

$$
\phi_{\alpha}\left(x-c_{\alpha} t_{n_{\delta}}\right)-\delta \leq u\left(x, t_{n_{\delta}}\right) \leq \phi_{\alpha}\left(x-c_{\alpha} t_{n_{\delta}}\right)+\delta
$$

for any $x \in \mathbb{R}$ (after a suitable translation).

Third Phase

Set

$$
v(y, t):=u\left(y+c_{\alpha} t, t\right)-a_{+} \in\left[\alpha-a_{+}, 0\right], \quad y \in \mathbb{R}_{+}, \quad t>t_{2}
$$

Then (AC) ${ }_{\alpha}$ implies

$$
\partial_{t} v-\partial_{y}^{2} v+\eta+f\left(v+a_{+}\right)=c_{\alpha} \partial_{y} v, \quad \eta \in \partial I_{[\alpha, \infty)}\left(v+a_{+}\right)
$$

in $\mathbb{R}_{+} \times \mathbb{R}_{+}$. We can assume WLOG (by translation) that

$$
v(0, t)=\alpha-a_{+}, \quad \partial_{y} v(0, t)=0, \quad v(y, 0)=u(y, 0)
$$

A key step is to establish local-energy estimates for $v(y, t)$.
Step 1 Based on [A-Efendiev '19], we can prove that

$$
\sup _{t \geq 0} \int_{\mathbb{R}}|\eta(\cdot, t)|^{2} \rho \mathrm{~d} x \leq \int_{\mathbb{R}}\left|\left(\partial_{x}^{2} u_{0}-f\left(u_{0}\right)\right)_{-}\right|^{2} \rho \mathrm{~d} x \quad \forall \rho \in C_{c}^{\infty}(\mathbb{R})
$$

Third Phase

Step 2 (Caccioppoli type estimate) Let $\zeta_{R} \in C_{c}^{\infty}(\mathbb{R})$ be such that

$$
\zeta_{R} \equiv 1 \text { in }[0, R], \quad \zeta_{R} \equiv 0 \text { in }[2 R,+\infty), \quad\left\|\zeta_{R}^{\prime}\right\|_{L^{\infty}\left(\mathbb{R}_{+}\right)} \leq \frac{2}{R}
$$

Test $(\mathbf{A C})_{\alpha}$ by $\mathrm{e}^{-\lambda t} \mathrm{e}^{c_{\alpha} y} \boldsymbol{v} \boldsymbol{\zeta}_{\boldsymbol{R}}^{2}$. Then

$$
\begin{array}{r}
\frac{1}{2} \mathrm{e}^{-2 \lambda t} \int_{0}^{+\infty} \mathrm{e}^{c_{\alpha} y} v(\cdot, t)^{2} \zeta_{R}^{2} \mathrm{~d} y+\frac{1}{2} \int_{0}^{t} \mathrm{e}^{-2 \lambda \tau}\left(\int_{0}^{+\infty} \mathrm{e}^{c_{\alpha} y}\left|\partial_{y} v\right|^{2} \zeta_{R}^{2} \mathrm{~d} y\right) \mathrm{d} \tau \\
\leq \frac{1}{2\left|c_{\alpha}\right|}\|v(\cdot, 0)\|_{L^{\infty}\left(\mathbb{R}_{+}\right)}^{2}+\frac{4}{\lambda\left|c_{\alpha}\right| R^{2}}\|v\|_{L^{\infty}\left(Q_{T}\right)}^{2}
\end{array}
$$

where we used the fact that $f^{\prime \prime} \geq-\lambda$ and $v \eta \geq 0$. Let $\boldsymbol{R} \rightarrow+\infty$. Then

$$
\int_{0}^{t} \mathrm{e}^{-2 \lambda \tau}\left(\int_{0}^{+\infty} \mathrm{e}^{c_{\alpha} y}\left|\partial_{y} v\right|^{2} \mathrm{~d} y\right) \mathrm{d} \tau \leq C
$$

Third Phase

Step 3 (Weighted energy estimate for $\partial_{t} v$) Test $(\mathbf{A C})_{\alpha}$ by $\mathrm{e}^{c_{\alpha} y} \partial_{t} v$. Then $\int_{0}^{\infty} \mathrm{e}^{c_{\alpha} y}\left|\partial_{t} v\right|^{2} \mathrm{~d} y+\frac{\mathrm{d}}{\mathrm{d} t}(\underbrace{\frac{1}{2} \int_{0}^{\infty} \mathrm{e}^{c_{\alpha} y}\left|\partial_{y} v\right|^{2} \mathrm{~d} y+\int_{0}^{\infty} \mathrm{e}^{c_{\alpha} y} h(v) \mathrm{d} y}_{=E(v(\cdot, t))})=0$.
where $h(v)=\hat{f}\left(v+a_{+}\right) \geq 0$, since $\eta \partial_{t} v \equiv 0$ by $\eta \in \partial I_{[0,+\infty)}\left(\partial_{t} u\right)$. Integrate it over $\left(\tau_{0}, t\right)$ with $\tau_{0}>0$. It then follows from Step 1 that
$\int_{\tau_{0}}^{t} \int_{0}^{\infty} \mathrm{e}^{c_{\alpha} y}\left|\partial_{t} v(y, \tau)\right|^{2} \mathrm{~d} y \mathrm{~d} \tau+E(v(\cdot, t)) \leq E\left(v\left(\cdot, \tau_{0}\right)\right) \quad \forall t \geq \tau_{0}$.
Step 4 (Quasi-convergence local in space) One can take $\boldsymbol{t}_{\boldsymbol{n}} \rightarrow \infty$ such that

$$
\partial_{t} v\left(\cdot, t_{n}\right) \rightarrow 0 \quad \text { strongly in } L^{2}\left(\mathbb{R}_{+} ; \mathrm{e}^{c_{\alpha} y} \mathrm{~d} y\right)
$$

Third Phase

$$
\begin{array}{ll}
\eta\left(\cdot, t_{n}\right) \rightarrow \eta_{\infty} & \text { weakly in } L^{2}(0, R) \\
v\left(\cdot, t_{n}\right) \rightarrow \psi & \text { weakly in } H^{2}(0, R) \\
& \text { strongly in } C^{1}([0, R])
\end{array}
$$

for some $\psi \in \boldsymbol{H}_{\text {loc }}^{2}\left(\mathbb{R}_{+}\right)$and any $\boldsymbol{R}>0$. Set

$$
\phi(y)= \begin{cases}\psi(y)+a_{+} & \text {if } y \geq 0 \\ \alpha & \text { if } y<0\end{cases}
$$

which then solves

$$
-\phi^{\prime \prime}+f(\phi)+I_{[\alpha, \infty)}(\phi) \ni c_{\alpha} \phi^{\prime} \text { in } \mathbb{R}, \quad \phi(0)=\alpha, \quad \phi^{\prime}(0)=0
$$

Claim: $\exists h_{1} \in \mathbb{R}$ such that $\phi(x)=\phi_{\alpha}\left(x-h_{1}\right) \forall x \in \mathbb{R}$.

Third Phase

Thus there exists a sequence $t_{n} \rightarrow+\infty$ such that

$$
\sup _{y \leq R}\left|u\left(y+c_{\alpha} t_{n}, t_{n}\right)-\phi_{\alpha}\left(y-h_{1}\right)\right| \rightarrow 0 \quad \text { for } \quad R>0
$$

Step 5 (Quasi-convergence global in space)
Recall U_{γ} and ϕ_{α} and use comparison argument to
$\left|u\left(y+c_{\alpha} t_{n}, t_{n}\right)-\phi_{\alpha}\left(y-h_{1}\right)\right| \leq a_{+}-\min \left\{u\left(y+c_{\alpha} t_{n}, t_{n}\right), \phi_{\alpha}\left(y-h_{1}\right)\right\}$.

Final Phase

Final Phase Modifying the argument in [X. Chen '92], we shall prove exponential convergence of $u(\cdot, t)$ to $\phi_{\alpha}\left(\cdot-c_{\alpha} t\right)$ over \mathbb{R} as $t \rightarrow+\infty$ (without taking any subsequence). Set

$$
\boldsymbol{w}^{ \pm}(\boldsymbol{x}, \boldsymbol{t}):=\phi_{\alpha}\left(\boldsymbol{x}-\boldsymbol{c}_{\boldsymbol{\alpha}} \boldsymbol{t} \pm \sigma \delta\left(1-\mathrm{e}^{-\beta t}\right)-\boldsymbol{h}^{ \pm}\right) \pm \delta \mathrm{e}^{-\beta t}
$$

for $h^{ \pm} \in \mathbb{R}, \delta \in\left(0, \delta_{0}\right)$ and $\beta, \sigma>0$. Then $w^{ \pm}$turns out to be a superand a subsolution to $(\mathrm{AC})_{\alpha}$, provided $\delta_{0}, \beta, \sigma$ are small enough.

Lemma 7 (Enclosing)

Set $h^{+}=0$ and assume $\phi_{\alpha}\left(\cdot-h^{-}\right)-\delta \leq u(\cdot, 0) \leq \phi_{\alpha}(\cdot)+\delta$ in \mathbb{R}. If $\delta \in\left(0, \delta_{0}\right)$ and $h^{-} \geq 0$ are small enough, one can take $\varepsilon \in(0,1)$ and $t \gg 1$ such that

$$
\phi_{\alpha}\left(x-c_{\alpha} t-\varepsilon\left(h^{-}-\delta\right)\right)-\varepsilon \delta \leq \boldsymbol{u}(x, t) \leq \phi_{\alpha}\left(x-c_{\alpha} t+\varepsilon \delta\right)+\varepsilon \delta
$$

Final Phase

By comparison principle, $w^{-}(x, t) \leq u(x, t) \leq w^{+}(x, t)$.

Final Phase

Set $\boldsymbol{W}^{ \pm}:= \pm\left(\boldsymbol{w}^{ \pm}-\boldsymbol{u}\right) \geq 0$. Then

$$
\partial_{t} \boldsymbol{W}^{ \pm}-\partial_{x}^{2} \boldsymbol{W}^{ \pm} \geq \mp\left(f\left(\boldsymbol{w}^{ \pm}\right)-\boldsymbol{f}(u)\right) \geq-\boldsymbol{M} \boldsymbol{W}^{ \pm}
$$

By strong maximum principle, one has $W^{+} \geq{ }^{\exists} c_{0}>0$ or $W^{-} \geq c_{0}>0$.

Final Phase

On the intermediate region, $W^{+} \geq c_{0}>0$ implies

$$
\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \leq \phi_{\alpha}\left(\boldsymbol{x}-\boldsymbol{c}_{\alpha} t+\sigma \delta\left(1-\mathrm{e}^{-\beta t}\right)-\Delta\right)+\delta \mathrm{e}^{-\beta t}
$$

for some $\Delta>0(\leftarrow$ improvement! $)$.

Final Phase

If $\phi_{\alpha}^{\prime} \ll 1$, one can then enclose $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ with smaller error:

$$
\phi_{\alpha}\left(x-c_{\alpha} t\right) \approx \phi_{\alpha}\left(x-c_{\alpha} t-\Delta\right)-\Delta \phi_{\alpha}^{\prime}\left(x-c_{\alpha} t\right)
$$

On the left region, $0<r_{0}<h^{-}$should be small enough.

Final remark

For sufficiently regular solutions, one can derive a motion equation for the free boundary $r(t)$ as follows:

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}(t)=-\frac{\partial_{x}^{3} u(r(t), t)}{f(\alpha)} \quad \text { for } t>0
$$

cf.) Stefan problem

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}(t)=-\mu \partial_{x} u(r(t), t) \quad \text { for } t>0
$$

[Du-Lin'10][Du-Guo'11,'12][Du-Lou-Zhou'15][Du-Matsuzawa-Zhou'15][Kaneko-Yamada'11,'18][Kaneko-Matsuzawa'15,'18][Kaneko-Matsuzawa-Yamada'20]...
cf.) The solution $u(x, t)$ turns out to satisfy

$$
u(r(t), t)=\alpha, \quad \partial_{x} u(r(t), t)=0, \quad \partial_{x}^{2} u(r(t)+0, t)=f(\alpha)
$$

for any $t>0$.

Thank you for your attention !

Goro Akagi
Tohoku University, JP goro.akagi@tohoku.ac.jp

