Current progress in higher-order curvature flow

Glen Wheeler

6th October 2020 Asia-Pacific Analysis and PDE Seminar

A (1) < A (1) < A (1) < A (1) </p>

The Plan

Glen Wheeler Current progress in higher-order curvature flow

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

• Terms of reference

・ロト ・四ト ・ヨト ・ヨト

э

- Terms of reference
 - Definition: A higher-order curvature flow is an evolution equation for an immersion that involves four or more derivatives of the immersion ((1) surface diffusion flow, (2) Willmore flow, (3) Chen's flow)

- Terms of reference
 - Definition: A higher-order curvature flow is an evolution equation for an immersion that involves four or more derivatives of the immersion ((1) surface diffusion flow, (2) Willmore flow, (3) Chen's flow)
 - Focus: Submanifolds without boundary

- Terms of reference
 - Definition: A higher-order curvature flow is an evolution equation for an immersion that involves four or more derivatives of the immersion ((1) surface diffusion flow, (2) Willmore flow, (3) Chen's flow)
 - Focus: Submanifolds without boundary, isotropic flows

- Terms of reference
 - Definition: A higher-order curvature flow is an evolution equation for an immersion that involves four or more derivatives of the immersion ((1) surface diffusion flow, (2) Willmore flow, (3) Chen's flow)
 - Focus: Submanifolds without boundary, isotropic flows
 - General ideas: Existence, concentration-compactness, blowup, stability, convergence, **issues**

Three curvature flow

Surface diffusion flow. (Horizontal graphical) H^{-1} -gradient flow of area functional; Mullins '57 proposed:

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• • = • • = •

Three curvature flow

Surface diffusion flow. (Horizontal graphical) H^{-1} -gradient flow of area functional; Mullins '57 proposed:

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

The Willmore flow. L_g^2 -gradient flow of $||H||_2^2$ (2D); 'conformal' invariant; Kuwert-Schätzle '00 proposed:

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N$$
 (2)

Three curvature flow

Surface diffusion flow. (Horizontal graphical) H^{-1} -gradient flow of area functional; Mullins '57 proposed:

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

The Willmore flow. L_g^2 -gradient flow of $||H||_2^2$ (2D); 'conformal' invariant; Kuwert-Schätzle '00 proposed:

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N$$
 (2)

Chen's flow. Biharmonic heat flow for immersions; Bernard-W-Wheeler '19 proposed:

$$\partial_t f = -\Delta^2 f = -(\Delta H - H|A|^2)N \tag{3}$$

Issues and Challenges

Glen Wheeler Current progress in higher-order curvature flow

э

Fun Fact

Higher-order PDE do not preserve positivity

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

イロト イボト イヨト イヨト

Fun Fact

Higher-order PDE do not preserve positivity (in general)

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

Fun Fact

Higher-order PDE do not preserve positivity (in general)

Consequences:

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt

'09, Blatt '10, W '13

<ロト < 同ト < ヨト < ヨト

Fun Fact

Higher-order PDE do not preserve positivity (in general)

Consequences:

• No avoidance principle (viscosity, level sets)

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

Higher-order PDE do not preserve positivity (in general)

Consequences:

- No avoidance principle (viscosity, level sets)
- No self-avoidance principle (embeddedness preserving)

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

Higher-order PDE do not preserve positivity (in general)

Consequences:

- No avoidance principle (viscosity, level sets)
- No self-avoidance principle (embeddedness preserving)
- No preservation of convexity (mean convexity, star-shaped)

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

Higher-order PDE do not preserve positivity (in general)

Consequences:

- No avoidance principle (viscosity, level sets)
- No self-avoidance principle (embeddedness preserving)
- No preservation of convexity (mean convexity, star-shaped)
- No preservation of graphicality

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

イロト イポト イラト イラト

Higher-order PDE do not preserve positivity (in general)

Consequences:

- No avoidance principle (viscosity, level sets)
- No self-avoidance principle (embeddedness preserving)
- No preservation of convexity (mean convexity, star-shaped)
- No preservation of graphicality
- Pinchoff

Refs: Giga-Ito '98, Giga-Ito '99, Ito '99, Mayer-Simonett '00 and '03, Elliott-MaierPaape '01, Escher-Ito '05, Blatt '09, Blatt '10, W '13

Glen will now draw a beautiful picture

イロト イボト イヨト イヨト

э

Challenges

Fun Fact

Higher-order PDE seem to behave, mostly, quite well

Refs: Mantegazza '02 Eminenti-Mantegazza '03, Bellettini-Mantegazza-Novaga '04, Blatt '09, W '10, Giga '13, W

'13, McCoy-W '16, Edwards-Bourke-McCoy-W-Wheeler '16, Blatt '18

Challenges

Fun Fact

Higher-order PDE seem to behave, mostly, quite well

In particular:

Refs: Mantegazza '02 Eminenti-Mantegazza '03, Bellettini-Mantegazza-Novaga '04, Blatt '09, W '10, Giga '13, W

'13, McCoy-W '16, Edwards-Bourke-McCoy-W-Wheeler '16, Blatt '18

Challenges

Fun Fact

Higher-order PDE seem to behave, mostly, quite well

In particular:

• We need to prove that **finite-time** singularities exist for *natural configurations*

Refs: Mantegazza '02 Eminenti-Mantegazza '03, Bellettini-Mantegazza-Novaga '04, Blatt '09, W '10, Giga '13, W

'13, McCoy-W '16, Edwards-Bourke-McCoy-W-Wheeler '16, Blatt '18

Challenges

Fun Fact

Higher-order PDE seem to behave, mostly, quite well

In particular:

- We need to prove that **finite-time** singularities exist for *natural configurations*
- We need more ways to classify singularities, beyond concentration (Giga's question)

Refs: Mantegazza '02 Eminenti-Mantegazza '03, Bellettini-Mantegazza-Novaga '04, Blatt '09, W '10, Giga '13, W

'13, McCoy-W '16, Edwards-Bourke-McCoy-W-Wheeler '16, Blatt '18

Challenges

Fun Fact

Higher-order PDE seem to behave, mostly, quite well

In particular:

- We need to prove that **finite-time** singularities exist for *natural configurations*
- We need more ways to classify singularities, beyond concentration (Giga's question)
- We need more examples of special solutions

Refs: Mantegazza '02 Eminenti-Mantegazza '03, Bellettini-Mantegazza-Novaga '04, Blatt '09, W '10, Giga '13, W

'13, McCoy-W '16, Edwards-Bourke-McCoy-W-Wheeler '16, Blatt '18

Challenges

Fun Fact

Higher-order PDE seem to behave, mostly, quite well

In particular:

- We need to prove that **finite-time** singularities exist for *natural configurations*
- We need more ways to classify singularities, beyond concentration (Giga's question)
- We need more examples of special solutions
- We need to understand stability in more ways

Refs: Mantegazza '02 Eminenti-Mantegazza '03, Bellettini-Mantegazza-Novaga '04, Blatt '09, W '10, Giga '13, W

'13, McCoy-W '16, Edwards-Bourke-McCoy-W-Wheeler '16, Blatt '18

Glen will graffiti this

Refs: Kuwert-Schätzle '01, '02, '04, Castro-Guven '07

Glen will graffiti this

Refs: Gonzalez-Massari-Tamanini '83, Grüter '87, Morgan '00, Rosales '04, Castro-Guven '07,

Bellettini-Wickramasekera '18

* E > < E >

æ

The Plan Surface diffusion Issues and Challenges Willmore flow What we *can* do Chen's flow

What we *can* do

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N \tag{1}$$

• **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$;

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• Existence. Escher-Mucha '10 Besov $B_{\rho,2}^{\frac{5}{2}-\frac{4}{\rho}}$; Koch-Lamm '09 small Lip;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• Existence. Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2);

伺 ト イヨト イヨト

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2); Lecrone-Shao-Simonett '19 $C^{1,\alpha}$

伺下 イヨト イヨト

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2); Lecrone-Shao-Simonett '19 $C^{1,\alpha}$

Concentration-compactness. $\exists \varepsilon_0, \delta_0 > 0 \text{ s.t.}$

$$\sup_{x} \int_{f_0^{-1}(B_{\rho}(x))} |A|^2 \, d\mu < \varepsilon_0 \quad \Longrightarrow \quad T \ge \delta_0 \rho^4 \,,$$

with estimates.

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

- **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2); Lecrone-Shao-Simonett '19 $C^{1,\alpha}$
- Concentration-compactness. Yes; W '10 *n* = 2

周 ト イ ヨ ト イ ヨ ト

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

- **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2); Lecrone-Shao-Simonett '19 $C^{1,\alpha}$
- Concentration-compactness. Yes; W '10 n = 2, Bernard-W-Wheeler '19 n = 4

伺下 イヨト イヨト

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

- **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2); Lecrone-Shao-Simonett '19 $C^{1,\alpha}$
- Concentration-compactness. Yes; W '10 n = 2, Bernard-W-Wheeler '19 n = 4
- Blowup. Yes, Lemniscate of Bernoulli Edwards-Bourke-McCoy-W-Wheeler '16;

周 ト イ ヨ ト イ ヨ ト

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N \tag{1}$$

- **Existence.** Escher-Mucha '10 Besov $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$; Koch-Lamm '09 small Lip; Fonseca-Fusco-Leoni-Morini $W^{2,p}$ graph (p > 2); Lecrone-Shao-Simonett '19 $C^{1,\alpha}$
- Concentration-compactness. Yes; W '10 n = 2, Bernard-W-Wheeler '19 n = 4
- Blowup. Yes, Lemniscate of Bernoulli Edwards-Bourke-McCoy-W-Wheeler '16; Axial stability-instability Lecrone-Simonett '15

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N \tag{1}$$

• Convergence. Lip nbhd of planes Koch-Lamm '09;

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N \tag{1}$$

Convergence. Lip nbhd of planes Koch-Lamm '09;
 'W^{2,2}' nbhd of spheres W'10;

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• **Convergence.** Lip nbhd of planes Koch-Lamm '09; ' $W^{2,2}$ ' nbhd of spheres W'10; $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$ nbhd of spheres Escher-Mucha '10;

- 4 同 ト 4 ヨ ト 4 ヨ ト

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• **Convergence.** Lip nbhd of planes Koch-Lamm '09; ' $W^{2,2}$ ' nbhd of spheres W'10; $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$ nbhd of spheres Escher-Mucha '10; $C^{1,\alpha}$ nbhd of spheres LeCrone-Shao-Simonett '19;

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

Convergence. Lip nbhd of planes Koch-Lamm '09;
 'W^{2,2}' nbhd of spheres W'10; B^{5/2-4/p}_{p,2} nbhd of spheres Escher-Mucha '10; C^{1,α} nbhd of spheres LeCrone-Shao-Simonett '19; symmetric W^{2,2} nbhd of circles Miura-Okabe '20

Surface diffusion flow Willmore flow Chen's flow

Surface diffusion flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} = -(\Delta H)N$$
 (1)

• **Convergence.** Lip nbhd of planes Koch-Lamm '09; ' $W^{2,2}$ ' nbhd of spheres W'10; $B_{p,2}^{\frac{5}{2}-\frac{4}{p}}$ nbhd of spheres Escher-Mucha '10; $C^{1,\alpha}$ nbhd of spheres LeCrone-Shao-Simonett '19; symmetric $W^{2,2}$ nbhd of circles Miura-Okabe '20

Giga's Question and **Chou's Conjecture** – more on these later.

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

Kuwert-Schätzle '01, '02, '04. Conc.-Compctness (BWW '19 for n = 4). Flows of surfaces in ℝ³ with W[f₀] ≤ W[2 × S²] converge smoothly to a sphere.

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

- Kuwert-Schätzle '01, '02, '04. Conc.-Competness (BWW '19 for n = 4). Flows of surfaces in \mathbb{R}^3 with $W[f_0] \leq W[2 \times \mathbb{S}^2]$ converge smoothly to a sphere.
- Existence. Koch-Lamm '09, LeCrone-Shao-Simonett '19

周 ト イ ヨ ト イ ヨ ト

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

- Kuwert-Schätzle '01, '02, '04. Conc.-Competness (BWW '19 for n = 4). Flows of surfaces in ℝ³ with W[f₀] ≤ W[2 × S²] converge smoothly to a sphere.
- Existence. Koch-Lamm '09, LeCrone-Shao-Simonett '19
- **Blowup.** Blatt '09: rot sym flows have blowups of spheres, planes and catenoids; energy identity;

Surface diffusion flov Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

- Kuwert-Schätzle '01, '02, '04. Conc.-Competness (BWW '19 for n = 4). Flows of surfaces in ℝ³ with W[f₀] ≤ W[2×S²] converge smoothly to a sphere.
- Existence. Koch-Lamm '09, LeCrone-Shao-Simonett '19
- Blowup. Blatt '09: rot sym flows have blowups of spheres, planes and catenoids; energy identity; ∀ε > 0, ∃ a surf w./ W[f₀] ≤ W[2 × S²] + ε s.t. the blowup is a single catenoid;

イロト イポト イラト イラト

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

- Kuwert-Schätzle '01, '02, '04. Conc.-Competness (BWW '19 for n = 4). Flows of surfaces in ℝ³ with W[f₀] ≤ W[2×S²] converge smoothly to a sphere.
- Existence. Koch-Lamm '09, LeCrone-Shao-Simonett '19
- Blowup. Blatt '09: rot sym flows have blowups of spheres, planes and catenoids; energy identity; ∀ε > 0, ∃ a surf w./ W[f₀] ≤ W[2 × S²] + ε s.t. the blowup is a single catenoid; Lamm-Nguyen '15: closed surf with W[f₀] ≤ W[3 × S²] flows to sphere or catenoid; ≤ W[4 × S²] add trinoid and Enneper's

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

• **Convergence.** Koch-Lamm '09, LeCrone-Shao-Simonett '19 as before. Kuwert-Schätzle;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

 Convergence. Koch-Lamm '09, LeCrone-Shao-Simonett '19 as before. Kuwert-Schätzle; Mondino-Nguyen '14 W^{2,2} ∩ C¹ nbhd of conf. Clifford torus;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Surface diffusion flow Willmore flow Chen's flow

Willmore flow

$$\partial_t f = -\Delta_g^{\perp} \vec{H} + Q(A^o) \vec{H} = -(\Delta H + H |A^o|^2) N \qquad (2)$$

 Convergence. Koch-Lamm '09, LeCrone-Shao-Simonett '19 as before. Kuwert-Schätzle; Mondino-Nguyen '14 W^{2,2} ∩ C¹ nbhd of conf. Clifford torus; Dall'Acqua-Müller-Schätzle-Spener '20 rotational tori w./ W[f₀] ≤ W[2 × S²] (sharp)

Most powerful results are 2D in one or two condimension.

The Plan Surface diffu Issues and Challenges Willmore flo What we *can* do Chen's flow

Chen's flow

$$\partial_t f = -\Delta^2 f = -(\Delta H - H|A|^2)N$$
 (3)

Drives submanifolds to points (think MCF)

• Existence. Maximal regularity

Chen's flow

$$\partial_t f = -\Delta^2 f = -(\Delta H - H|A|^2)N \tag{3}$$

Drives submanifolds to points (think MCF)

- Existence. Maximal regularity
- **Concentration-compactness.** Yes; Bernard-W-Wheeler '19 *n* = 2, *n* = 4

The Plan Surface diffu Issues and Challenges Willmore flor What we *can* do Chen's flow

Chen's flow

$$\partial_t f = -\Delta^2 f = -(\Delta H - H|A|^2)N$$
 (3)

Drives submanifolds to points (think MCF)

- Existence. Maximal regularity
- **Concentration-compactness.** Yes; Bernard-W-Wheeler '19 *n* = 2, *n* = 4
- Blowup. Yes, Lemniscate of Bernoulli Cooper-W-Wheeler '19

The Plan Surface diffu Issues and Challenges Willmore flo What we *can* do Chen's flow

Chen's flow

$$\partial_t f = -\Delta^2 f = -(\Delta H - H|A|^2)N$$
 (3)

Drives submanifolds to points (think MCF)

- Existence. Maximal regularity
- **Concentration-compactness.** Yes; Bernard-W-Wheeler '19 *n* = 2, *n* = 4
- Blowup. Yes, Lemniscate of Bernoulli Cooper-W-Wheeler '19
- **Convergence.** '*W*^{2,2}' nbhd of spheres in 2D Bernard-W-Wheeler '19 and 1D Cooper-W-Wheeler '19

イロト イポト イラト イラト

Surface diffusion flow Willmore flow Chen's flow

Goals to keep in mind

Giga's Question (before '13)

Suppose $\gamma : \mathbb{S} \times [0, \mathcal{T}) \to \mathbb{R}^2$ is a curve diffusion flow with smooth initial data γ_0 that has the property:

 $\gamma(\cdot, t)$ is an embedding for each $t \in [0, T)$.

Must T then be ∞ ?

The Plan Surface diffusion Issues and Challenges Willmore flow What we *can* do Chen's flow

Chou's Conjecture '03

Suppose $\gamma: \mathbb{S} \times [0, T) \to \mathbb{R}^2$ is a curve diffusion flow with $T < \infty$ that satisfies the estimate

$$\|k\|_{2}^{2}(t) \leq C(T-t)^{-1/4}, \qquad (4)$$

for some $C \in \mathbb{R}$, and $t \in [0, T)$.

Then a parabolic rescaling (we assume the centre of mass of γ is the origin)

$$\eta(s,t) = (T-t)^{-\frac{1}{4}}\gamma(s,t)$$

about final time yields a self similar solution η to the curve diffusion flow, that is, η solves

$$\langle \eta,
u^\eta
angle = 4 k_{ss}^\eta$$
 . (Type I)

Thank you for your attention!

Glen Wheeler Current progress in higher-order curvature flow