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The Large N limit

From Microscopic Descriptions to Macroscopic Descriptions. Part of Hilbert’s 6th
Problem.

(a) Maxwell (1831-1879) (b) Boltzmann (1844-1906)

Deriving Boltzmann/Landau and Vlasov-type Kinetic Equations. Bose-Einstein
Condensation, Hydrodynamic Limit, Thermodynamic Limit...



Newton Dynamics (2nd order system)

Consider the classical Newton dynamics for N indistinguishable point particles in
the mean filed scaling in the classical regime. Denote (Xi ,Vi ) the position and
the velocity of particle number i . Then

Ẋi = Vi , V̇i =
1

N

∑
j 6=i

K (Xi − Xj), i = 1, 2, · · · ,N.

where Xi ,Vi ∈ R3.
As N →∞, the expected PDE is the famous Vlasov(-Poisson) equation

∂t f + v · ∇x f + K ?x ρ · ∇v f = 0,

where ρ(t, x) =
∫
R3 f (t, x , v)dv .

Gravitational or Coulomb force: K (x) = ± x
|x|3 , i.e. the inverse-square law. Still

open!
Hauray & Jabin (’07 and ’15) Lazarovici & Pickl (’15), Jabin & W. (’16), Serfaty
& Duerinckx (’18).



Our Setting: 1st order system

Consider the weakly interacting particle system for N indistinguishable point
particles. Denote Xi ∈ E = Πd (torus) the position of particle number i . The
dynamics reads

dXi =
1

N

∑
j 6=i

K (Xi − Xj)dt +
√

2σN dW i
t , i = 1, 2, · · · ,N, (IPS)

where Xi ∈ E , and W i are N independent Brownian motions which may model
random collisions on particles with rate

√
2σN . In particular, if σN = 0, the

system (IPS) is deterministic. The interaction kernels K model 2−body
interaction forces between particles.
The expected limit PDE reads (as N →∞)

∂t ρ̄+ divx (ρ̄K ?x ρ̄) = σ∆x ρ̄. (MFD)

Goal: Establish and quantify the convergence.



Particle Systems

Individual based models (First Principle) are conceptually simple.
Examples:

Physics (ions and electrons in plasmas, molecules in a fluid, galaxies in large
scale cosmological models);

Bio-sciences (modeling collective behaviors like flocking/swarming);

Economics or Social Science (Opinion dynamics, consensus model, mean
field games).

Distribution Sampling Algorithm (Stein Variational Gradient Descent.
Sinkhorn Descent (Shen, W. , Ribeiro and Hassani (’20) ), where
ẋi = −∇fµN

(xi ).) Neural Networks.

Difficulty:

The number N of particles are usually very large: Analytically and
computationally complicated. Note that N ∼ 1025 in typical physical
settings. Curse of dimensionality!



How large is N?

Cosmology/astrophysics: N ranges from 1010 to 1020 − 1050; some models
of dark matter even predict up to 1060 particles.

In plasma physics, N is typically of order 1020 − 1025. This is the typical
order of magnitude for physics settings.

When used for numerical purposes (particles’ method), the number is of
order 109 − 1012.

In biology or life sciences, typical population of micro-organisms is typically
of order 106 to 1012.

In other applications such as collective dynamics, social sciences or
economics, N can be much lower of order 103.

Whenever possible, it is critical to quantify how fast the convergence to the
continuous limit holds in terms of N.



Examples of Kernels

Classical Results: McKean (’67), Braun& Hepp (’77), Dobrusin (’79), Sznitmann
(’91)... K ∈W 1,∞ (K is Lipschitz!) (Coupling Method). Cauchy-Lipschitz.

The classical methods fail for systems with some singular kernels. But they are
still very useful in many applications.

Examples of Singular Kernels:

Biot-Savart Law with K (x) = 1
2π

x⊥

|x|2 .

The Poisson kernels K (x) = ±Cd
x
|x|d . (Repulsive or attractive.)

K = −∇V , with

V (x) = λ log |x |+ Ve(x), λ > 0.



Recent Results (1st order systems)

2D Euler: Goodman, Hou and Lowengrub (’90). Schochet (’96), Hauray
(’09). Well-prepared initial data. Point vortex system.

2D Navier-Stokes: Osada (’87), Fournier, Hauray and Mischer (’14). Long

(’98). (The Biot-Savart kernel K (x) = 1
2π

x⊥

|x|2 . Compactness argument. )

Patlak-Keller-Segel: Haskovec and Schmeiser (’11), Fournier and Jourdain
(’15) (very sub-critical regime, no rate...) Similar setting: Liu & Yang (’16),
Li, Liu & Yu (’19).

1st order systems with K ∈W−1,∞ (but also divK ∈W−1,∞). Jabin and
W. (’18). (Include 2D Navier-Stokes and 2D Euler).

Coulomb (like) flows or conservative flows, deterministic case. Serfaty (’18).

Stochastic systems with a large class of singular interactions. Bresch, Jabin
and W. (’19).



The Liouville Equation

Key object: the coupled law of N−particle ρN(t, x1, · · · , xN) governed by the
Liouville equation

∂tρN +
1

N

N∑
i=1

∑
j 6=i

divxi (ρN K (xi − xj)) = σN

N∑
i=1

∆xiρN .

Note: ρN ∈ Psym(EN) (Symmetric probability measures) but not
experimentally measurable.
The observable (statistical information: temperature, pressure for instance) is
contained in the marginals ρN,k of ρN as

ρN,k(t, x1, · · · , xk) =

∫
EN−k

ρN(t, x1, · · · , xN)dxk+1 · · · dxN ,

for fixed k = 1, 2, · · · .
The evolution of ρN,k involves ρN,k+1. BBGKY hierarchy.



Formal Derivation assuming Molecular Chaos

Integrating the Liouville Eq. w.r.t. x2, · · · , xN and using the symmetry of ρN ,

∂tρN,1 +
N − 1

N

∫
E

divx(ρN,2 K (x − y))dy = σN∆xρN,1.

If we assume that ρN,2(x , y) = ρN,1(x)ρN,1(y) (Molecular Chaos), then we obtain
the limit PDE (MFD) as N →∞,

∂tρ∞,1 + divx(ρ∞,1 K ?x ρ∞,1) = σ∆xρ∞,1.

Even initially ρN,2(0) = ρN,1(0)⊗2, as long as you run the dynamics of the particle
system, ρN,2(t) 6= ρN,1(t)⊗2. Correlation exists since particles do interact!

Relaxation: Kac’s chaos (’56). To derive the space homogeneous Boltzmann
equation.



Propagation of Chaos

• Tensorized/Chaotic initial law: ρ0
N = ρ̄⊗N0 .

Definition 1 (Kac’s chaos)

Let E = Πd . A sequence (ρN)N≥2 of symmetric probability measures, i.e.
ρN ∈ PSym(EN), is said to be ρ̄−chaotic for a probability measure ρ̄ on E , if for
any fixed k = 1, 2, 3, · · · , ρN,k ⇀ ρ̄⊗k , as N →∞.

“Asymptotic independence” for a finite group.

Definition 2 (Propagation of (Kac’s) chaos)

The diagram commutes.

ρN,k(0) ⇀ ρ̄⊗k(0)
⇓IPS ⇓MFD

ρN,k(t) ⇀ ρ̄⊗k(t)

We don’t use the hierarchy. We adopt a more straightforward way.



From Relative Entropy to Propagation of Chaos

We use the (scaled) relative entropy to quantify chaos

0 ≤ HN(ρN |ρ̄⊗N)(t) =
1

N

∫
EN

ρN log
ρN
ρ̄⊗N

dx1 · · · dxN .

Thanks to the monotonicity of the (scaled) relative entropy

Hk(ρN,k |ρ̄⊗k) :=
1

k

∫
EN

ρN,k log
ρN,k
ρ̄⊗k

dx1 · · · dxk ≤ HN(ρN |ρ̄⊗N)

and the classical Csiszár-Kullback-Pinsker inequality

‖ρN,k − ρ̄⊗k‖L1 ≤
√

2kHk(ρN,k |ρ̄⊗k),

one can obtain propagation of chaos given a vanishing sequence of HN(ρN |ρ̄⊗N).

Ben Arous & Zeitouni (’99).



The Previous Result

Theorem (Jabin & W. (’18))

Assume that K ∈ Ẇ−1,∞(Πd) with divK ∈ Ẇ−1,∞. Assume that σN ≡ σ > 0.
Assume finally that ρ̄ ∈ L∞([0, T ], W 2,p(Πd)) for any p <∞ solves (MFD)
with inf ρ̄ > 0 and

∫
Πd ρ̄ = 1. Then

HN(ρN | ρ̄N)(t) ≤eM̄ (‖K‖+‖K‖2) t

(
HN(ρ0

N | ρ̄0
N) +

1

N

)
,

where we denote ‖K‖ = ‖K‖Ẇ−1,∞ + ‖divK‖Ẇ−1,∞ and M̄ is a universal
constant.

This result applies to the Biot-Savart law, i.e. K (x) = 1
2π

x⊥

|x|2 , since K = divV

with

V =
1

2π

[
− arctan x1

x2
0

0 arctan x2

x1

]
.



Ideas of the proof

We write the tensorized law ρ̄N := ρ̄⊗N and compute the time evolution of the
relative entropy

d

dt
HN(ρN |ρ̄N)(t) ≤ − σ

N

∫
ΠdN

|∇ log
ρN
ρ̄N
|2 dρN +

∫
ΠdN

( 1

N2

N∑
i,j=1

φ(xi , xj)
)
dρN ,

where

φ(x , y) = ∇ log ρ̄(x) · (K ? ρ̄(x)− K (x − y)) + ( divK ? ρ̄(x)− divK (x − y)).

Using symmetrization, i.e. taking 1
2 (φ(x , y) + φ(y , x)) as the new φ(x , y), one

writes

φ(x , y) = −1

2
K (x − y) · (∇ log ρ̄(x)−∇ log ρ̄(y))− divK (x − y)

+ Bounded Terms.



Consider the 2D Navier-Stokes and the 2D Euler case. Then the kernel K is the
Biot-Savart kernel, which is divergence free, i.e. divxK = 0. Dropping the Fisher
information term,

d

dt
HN(ρN |ρ̄N)(t) ≤

∫
ΠdN

( 1

N2

N∑
i,j=1

φ(xi , xj)
)
dρN (∼ O(1) a prior!)

where after symmetrization, φ ∈ L∞ and more importantly∫
E

φ(x , y)ρ̄(y)dy = 0,∀x ,
∫
E

φ(x , y)ρ̄(x)dx = 0,∀y .

Recall a Jensen-type inequality, i.e. for any parameter η > 0,∫
ρNΦN ≤

1

η
HN(ρN |ρ̄N) +

1

η

1

N
log

∫
ρ̄N exp (ηNΦN) .

GOAL: Show the 2nd term is o(1) as N →∞.



Theorem (Uniform in N large deviation type estimate)

We have

sup
N≥2

∫
ΠdN

ρ̄⊗N exp

(
1

N

N∑
i,j=1

φ(xi , xj)

)
dXN

= sup
N≥2

∫
ΠdN

ρ̄⊗N exp
(
N

∫
Π2d

φ(x , y)(dµN − dρ̄)⊗2(x , y)
)
dXN ≤ C <∞,

provided that ‖φ‖L∞ ≤ c0 and∫
E

φ(x , y)ρ̄(y)dy = 0,∀x ,
∫
E

φ(x , y)ρ̄(x)dx = 0,∀y .

Ben Arous and Braunaud (’90): with φ continuous.
We need the estimate directly for discontinuous φ.
Carefully use two cancellation rules. Law of Large Numbers but for “Double
Indices”. A recent proof using martingales by Lim, Lu and Nolen (’19).



Discussion

Now we focus on gradient flows, i.e. K = −∇V .

Relative entropy (Jabin and W., (’18)) : Less structure and less singularity.

Recall that there is a term

− 1

N2

∑
i 6=j

∫
ΠdN

divK (xi − xj)dρN

in the time evolution of the relative entropy.

Modulated Energy (Serfaty (with an appendix with Duerinckx) (’18)): More
structure and also more singular (Riesz potentials+ possible perturbation!).
Deterministic flows.

Serfaty’s modulated (potential) energy is defined as

1

2

∫
x 6=y

V (x − y)( dµN(x)− ρ̄(x))( dµN(y)− ρ̄(y)).



Modulated Free Energy

Idea: introducing weights GN and Gρ̄N in the relative entropy to cancel the term
divK in its time evolution

EN(ρN |ρ̄N) =
1

N

∫
ΠdN

ρN log

(
ρN/GN

ρ̄N/Gρ̄N

)
dx1 · · · dxN ,

where GN is the Gibbs measure, Gρ̄N is a tilted Gibbs measure by the limit ρ̄.
In an equivalent way

EN(ρN |ρ̄N) = HN(ρN |ρ̄N) +KN(ρN |ρ̄N),

with

KN(ρN |ρ̄N) =
1

2σ
EρN

∫
x 6=y

V (x − y)(dµN(x)− dρ̄(x))(dµN(y)− dρ̄(y)).



Time Evolution of EN

Suppose that V is an even function. Then

d

dt
EN(ρN |ρ̄N) ≤ − σ

N

∫
ΠdN

∣∣∇ log
ρN
ρ̄N
−∇ log

GN

Gρ̄N

∣∣2 dρN
− 1

2

∫
ΠdN

dρN

∫
x 6=y

∇V (x − y) ·
(
∇ log

ρ̄

Gρ̄
(x)−∇ log

ρ̄

Gρ̄
(y)

)
(dµN − dρ̄)⊗2,

where Gρ̄(x) = exp
(
− 1

σV ? ρ̄(x) + 1
2σ

∫
Πd V ? ρ̄ρ̄

)
and hence

ψ(x) := ∇ log
ρ̄

Gρ̄
(x) = ∇ log ρ̄(x) +

1

σ
∇V ? ρ̄(x).



Derivation of the Patlak-Keller-Segel system

Take K = −∇V and V = λ log |x |+ Ve(x) where λ > 0. Then (MFD) is the
famous Patlak-Keller-Segel (PKS) model, which is one of the first models of
chemotaxis for micro-organisms. Note that in 2D, V is the attractive Poisson
potential.

Theorem (Bresch, Jabin & W. (’19))

Given the potential V and K = −∇V . Assume that ρN ∈ L∞(0,T ; L1(ΠdN)) is
an entropy solution to the Liouville equation, with initial condition that
ρN(0) = ρ̄⊗N(0). Assume that ρ̄ ∈ L∞(0,T ;W 2,∞(Πd)) solves (MFD) with
inf ρ̄ > 0. Assume further that λ < 2dσ. Then there exists a constant C > 0 and
an exponent θ > 0, independent of N, such that for any fixed k,

‖ρN,k − ρ̄⊗k‖L∞(0,T ;L1(Πkd )) ≤
Ck1/2

Nθ
.

The optimal constant 4σ in 2D corresponds to the critical mass 8πσ for which we
have blow-up in finite time for PKS. (Blanchet,Dolbeault and Perthame (’06)).



Comments

The modulated free energy EN “effectively” control the distance between ρN
and ρ̄N . Goal:

EN(ρN |ρ̄N) ≥ 1

C
HN(ρN |ρ̄N)− C

Nθ
.

Control d
dtEN above by EN or HN or KN + C/Nθ. The PKS case is okay by

the previous large deviation estimates, since now for |∇V (x)| ≤ C/|x |.

For more singular kernels, we need to establish that

− 1

2σ

∫
ΠdN

dρN

∫
x 6=y

∇V (x − y)(ψ(x)− ψ(y))( dµN − dρ̄)⊗2

≤ CKN(ρN |ρ̄N) + CHN(ρN |ρ̄N) + ε(N),

where ε(N)→ 0 as N →∞.



General Results

Theorem (Bresch, Jabin & W. (’19))

We establish the Mean Field limit from (IPS) towards (MFD) for the following
cases:

The case σN = σ > 0. Let K = −∇V , where V is an even potential with
V = Va + Vr and

Va, Vr ∈ Lp(Πd) ∩ C 2(Πd \ {0}), for p > 1;

Va(x) ≥ γ log |x |+ C , for 0 ≤ γ < 2dσ, |∇Va(x)| ≤ C

|x |
;

Vr ≥ 0, |∇Vr (x)| ≤ C

|x |k
for k > 0, |∇ξV̂r (ξ)| ≤ C

( V̂r (ξ)

1 + |ξ|
+

1

1 + |ξ|d+1

)
.

The case σN → 0. Just choose K = −∇Vr , where Vr is a repulsive potential
specified above.

We can cover the Riesz potentials with possible perturbations.



Further Discussion

1 What’s next for our program?

2 General large N limit problems.

3 Distribution sampling algorithm based on interacting particle system. As a
new solver for PDEs? As a new framework for learning theory?
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