The vanishing discount Problem for systems of Hamilton-Jacobi Equations

Hitoshi Ishii

Tsuda University
(Waseda University)
Asia-Pacific Analysis and PDE seminar. May 18, 2020

Vanishing discount problem

Convex, coercive HJ equations

Ergodic problem

An approach to Theorem 3

Systems of HJ equations

Appendix

VANISHING DISCOUNT PROBLEM

Scalar Case: We consider the Hamilton-Jacobi equation

$$
\left(\mathrm{P}_{\lambda}\right) \quad \lambda v(x)+H(x, D v(x))=0 \quad \text { in } \mathbb{T}^{n}
$$

Here

$$
\left\{\begin{array}{l}
\boldsymbol{v}=\boldsymbol{v}^{\boldsymbol{\lambda}} \text { the unknown function on } \mathbb{T}^{n} \\
\boldsymbol{D} \boldsymbol{v}=\left(\boldsymbol{v}_{\boldsymbol{x}_{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{x}_{n}}\right) \\
\boldsymbol{\lambda}>\boldsymbol{0} \text { a given constant, discount factor, } \\
\boldsymbol{H} \text { a given function of }(\boldsymbol{x}, \boldsymbol{p})=(\boldsymbol{x}, \boldsymbol{D} \boldsymbol{v}(\boldsymbol{x}))
\end{array}\right.
$$

Problem: asymptotic behavior of $\boldsymbol{v}^{\boldsymbol{\lambda}}$ as $\boldsymbol{\lambda} \rightarrow \mathbf{0}$.

Convex, coercive HJ equations
Hypotheses:
(H0) Continuity: $\quad \boldsymbol{H} \in C\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$.
(H1) \boldsymbol{H} is convex,

$$
\boldsymbol{p} \mapsto \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \text { is convex. }
$$

(H2) \boldsymbol{H} is coercive,

$$
\lim _{|p| \rightarrow \infty} \min _{x \in \mathbb{T}^{n}} H(x, p)=\infty .
$$

Property of \boldsymbol{H} :

$$
H(x, p) \geq \delta|p|-C \quad(\exists \delta>0, \exists C>0) .
$$

Example: $H(x, p)=|p|^{m}-f(x), m \geq 1, f \in C\left(\mathbb{T}^{n}\right)$.

Theorem $1 \quad$ For each $\boldsymbol{\lambda}>\mathbf{0}$ problem $\left(\mathrm{P}_{\boldsymbol{\lambda}}\right)$ has a unique solution $\boldsymbol{v}^{\boldsymbol{\lambda}}$. Furthermore,

$$
\begin{aligned}
& \left(\boldsymbol{v}^{\boldsymbol{\lambda}}\right)_{\lambda>0} \text { is uniformly bounded, } \\
& \left(\boldsymbol{v}^{\boldsymbol{\lambda}}\right)_{\lambda>0} \text { is equi-Lipschitz continuous. }
\end{aligned}
$$

- If $C_{0} \geq|\boldsymbol{H}(x, 0)|$, then

$$
\lambda\left(C_{0} / \lambda\right)+H(x, 0) \geq 0, \quad \lambda\left(-C_{0} / \lambda\right)+H(x, 0) \leq 0
$$

and, by comparison, $-C_{0} / \boldsymbol{\lambda} \leq \boldsymbol{v}^{\boldsymbol{\lambda}}(\boldsymbol{x}) \leq C_{0} / \boldsymbol{\lambda}$.

- Since $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \geq \delta|\boldsymbol{p}|-C$, we have

$$
\delta\left|D v^{\lambda}(x)\right| \leq C+\lambda\left\|v^{\lambda}\right\|_{\infty}
$$

Notation. Lagrangian of \boldsymbol{H} :

$$
L(x, \xi):=\sup _{p \in \mathbb{R}^{n}}[\xi \cdot p-H(x, p)] .
$$

Properties: L is convex and lower semicontinuous on $\mathbb{T}^{n} \times \mathbb{R}^{n}$.

$$
\begin{aligned}
L(x, \xi) & \geq-H(x, 0) \\
L(x, \xi) & \geq A|\xi|-H(x, A \xi /|\xi|) \\
& \geq A|\xi|-\max _{|p| \leq A} H(x, p) \quad \forall A>0 \\
L(x, \xi) & \leq \sup _{p}(|\xi||p|-\delta|p|+C)=C \quad \forall \xi \in B_{\delta} .
\end{aligned}
$$

Recall here that $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p}) \geq \boldsymbol{\delta}|\boldsymbol{p}|-\boldsymbol{C}$.

ERGODIC PROBLEM

Formal expansion of the solution of $\left(P_{\lambda}\right)$:

$$
v^{\lambda}(x) \approx a_{0}(x) \lambda^{-1}+a_{1}(x)+a_{2}(x) \lambda+\cdots
$$

Plug this into $\left(P_{\lambda}\right)$:

$$
\begin{aligned}
a_{0}(x) & +a_{1}(x) \lambda+a_{2}(x) \lambda^{2}+\cdots \\
& +H\left(x, D a_{0}(x) \lambda^{-1}+D a_{1}(x)+D a_{2}(x) \lambda+\cdots\right) \approx 0
\end{aligned}
$$

We deduce that

$$
\begin{aligned}
& D a_{0}(x)=0 \text { i.e. } a_{0}(x) \equiv a_{0}(\text { constant }) \\
& a_{0}+H\left(x, D a_{1}(x)\right)=0
\end{aligned}
$$

The ergodic problem or additive eigenvalue problem:

The problem of finding a constant $c \in \mathbb{R}$ and a function $u \in C\left(\mathbb{T}^{n}\right)$ satisfying $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u (x)})=\boldsymbol{c} \quad$ in \mathbb{T}^{n}.
A classical result:

Theorem 2 (Lions-Papanicolaou-Varadhan, 1987) Under (H0), (H2), there exists a solution $(c, u) \in \mathbb{R} \times C\left(\mathbb{T}^{n}\right)$ of (E). Moreover, the constant \boldsymbol{c} is unique.

- The constant \boldsymbol{c} is called the critical value, additive eigenvalue, or ergodic constant.
Their proof is to show that for some $(c, u) \in \mathbb{R} \times C\left(\mathbb{T}^{n}\right)$,

$$
\begin{cases}-\lambda v^{\boldsymbol{\lambda}}(x) \rightarrow & \boldsymbol{c} \\ \boldsymbol{v}^{\boldsymbol{\lambda}}(\boldsymbol{x})+\lambda^{-\mathbf{1}} \boldsymbol{c} & \rightarrow \\ & \boldsymbol{u}(\boldsymbol{x}) \text { uniformly on } \mathbb{T}^{\boldsymbol{n}} \\ & \text { uniformly on } \mathbb{T}^{\boldsymbol{n}} \\ \text { along a subsequence }\end{cases}
$$

Main question: does the whole family $\left\{v^{\boldsymbol{\lambda}}+\boldsymbol{\lambda}^{-\mathbf{1}} \boldsymbol{c}\right\}_{\boldsymbol{\lambda}>\mathbf{0}}$ converges to a function as $\boldsymbol{\lambda} \rightarrow \mathbf{0}+$?

- The ergodic problem (E) has multiple solutions. If \boldsymbol{u} is a solution of (E), then $\boldsymbol{u}+$ const is a solution. Consider the case

$$
D u \cdot(D u-D \psi)=0 \quad \text { in } \mathbb{T}^{n}, \quad \text { with } \psi \in C^{1}\left(\mathbb{T}^{n}\right)
$$

We have many solutions:

$$
u=C_{1}, \quad u=\psi+C_{2}, \quad u=\min \left\{C_{1}, \psi+C_{2}\right\}
$$

- Ergodic problem (E) arises in the ergodic optimal control, the homogenization of HJ equations, and the large-time behavior of solutions of evolutionary HJ equations.
A decisive result on the main question:

Theorem 3 (Davini-Fathi-Iturriaga-Zavidovique, 2016) Assume (H0)-(H2). Let \boldsymbol{c} be the critical value. Then, for some function $\boldsymbol{v}^{0} \in \boldsymbol{C}\left(\mathbb{T}^{n}\right)$, as $\boldsymbol{\lambda} \rightarrow \mathbf{0 +}$,

$$
v^{\lambda}(x)+\lambda^{-1} c \quad \rightarrow \quad v^{0}(x) \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

- If \boldsymbol{H} is not convex, the convergence of the whole family does not hold in general. A counterexample by B. Ziliotto (2019).

Related work:

1) A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique, Coercive, convex HJ equation on \mathbb{T}^{n} (closed manifold).
2) E. S. Al-Aidarous, E. O. Alzahrani, HI, A. M. M. Younas,

Coercive, convex HJ equation on a bounded domain with the
Neumann type BC.
3) H. Mitake, H. V. Tran

Viscous HJ equation on \mathbb{T}^{n}, with coercive and convex
Hamiltonian. (2nd-order degenerate elliptic PDEs.)
4) D. Gomes, H. Mitake, H. V. Tran

Coercive, quasi-convex HJ equation on \mathbb{T}^{n}.
5) HI, H. Mitake, H. V. Tran,

2nd-order fully nonlinear, convex, degenerate elliptic PDEs on \mathbb{T}^{n} or on a bounded domain with BC.
6) B. Ziliotto,

A counterexample, with non-convex Hamiltonian.

- Use of Mather measures.

An approach to Theorem 3
We review the proof of Theorem 3 (Davini et al.).
$\mathcal{P}=\mathcal{P}\left(\mathbb{T}^{n} \times \mathbb{R}^{n}\right)$ all Borel probability measures on $\mathbb{T}^{n} \times \mathbb{R}^{n}$.
$\mathcal{P}_{1}=\mathcal{P}_{1}\left(\mathbb{T}^{n} \times \mathbb{R}^{\boldsymbol{n}}\right)$ all $\boldsymbol{\mu} \in \mathcal{P}$ such that

$$
\langle\mu,| \xi\left\rangle:=\int_{\mathbb{T}^{n} \times \mathbb{R}^{n}}\right| \xi \mid \mu(d x d \xi)<\infty
$$

(the function $(\boldsymbol{x}, \boldsymbol{\xi}) \mapsto|\boldsymbol{\xi}|$ is denoted by $|\boldsymbol{\xi}|$)
$\operatorname{Fix}(z, \lambda) \in \mathbb{T}^{n} \times[0, \infty)$.
$\mathfrak{C}(z, \lambda) \quad$ (closed measures)

$$
:=\left\{\mu \in \mathcal{P}_{1} \mid \lambda \psi(z)=\langle\mu, \xi \cdot D \psi+\lambda \psi\rangle \quad \forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)\right\}
$$

Note that
$\lambda u(x)+H(x, D u(x))=\sup _{\xi}(\lambda u(x)+\xi \cdot D u(x)-L(x, \xi))$.

When $\boldsymbol{\lambda}=\mathbf{0}$, the defining condition reads

$$
\mathbf{0}=\langle\mu, \boldsymbol{\xi} \cdot \boldsymbol{D} \psi\rangle \quad \forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)
$$

So, we write $\mathfrak{C}(\mathbf{0})$ for $\mathfrak{C}(\boldsymbol{z}, \mathbf{0})$.

Theorem 4 Assume (H 0$)-(\mathrm{H} 2)$. If $\boldsymbol{\lambda}>\mathbf{0}$, then

$$
\lambda v^{\lambda}(z)=\min _{\mu \in \mathfrak{C}(z, \lambda)}\langle\mu, L\rangle
$$

- Any minimizer $\boldsymbol{\mu}$ of the optimization problem above is called a discounted Mather measure. $\quad \mathfrak{M}(z, \lambda)=\mathfrak{M}(z, \lambda, L)$.

Theorem 5 Assume (H0)-(H2). Let \boldsymbol{c} be the critical value. Then

$$
-c=\min _{\mu \in \mathfrak{C}(0)}\langle\mu, L\rangle
$$

- Any minimizer $\boldsymbol{\mu}$ of the optimization problem

$$
\min _{\mu \in \mathfrak{C}(0)}\langle\mu, L\rangle
$$

is called a Mather measure.

$$
\mathfrak{M}=\mathfrak{M}(\boldsymbol{L})
$$

- We assume henceforth that $\boldsymbol{c}=\mathbf{0}$. (Replace \boldsymbol{H} by $\boldsymbol{H}-\boldsymbol{c}$ if needed.)
The family $\left(\boldsymbol{v}^{\boldsymbol{\lambda}}\right)_{\boldsymbol{\lambda}>0}$ is equi-Lipschitz and uniformly bounded on $\mathbb{T}^{n}\left(\Rightarrow\right.$ relatively compact in $C\left(\mathbb{T}^{n}\right)$ by $\mathrm{A}^{\wedge} 2$ theorem $)$.
(Uniform boundedness) Let $\boldsymbol{v}_{\mathbf{0}} \in C\left(\mathbb{T}^{\boldsymbol{n}}\right)$ be a solution of (E). Let $\boldsymbol{C}>\mathbf{0}$ be a constant such that $\left\|v_{0}\right\|_{\infty} \leq C$, and note that $\boldsymbol{v}_{\mathbf{0}}+\boldsymbol{C}$ (reps. $\boldsymbol{v}_{\mathbf{0}}-\boldsymbol{C}$) is a supersolution (resp. a subsolution) of (P_{λ}).
By the comparison theorem, which is valid for $\left(\mathrm{P}_{\boldsymbol{\lambda}}\right)$ with $\boldsymbol{\lambda}>\mathbf{0}$,

$$
v_{0}-C \leq v^{\lambda} \leq v_{0}+C \quad \forall \lambda>0
$$

\mathcal{V} all accumulation points of $\left(v^{\boldsymbol{\lambda}}\right)_{\boldsymbol{\lambda}>0}$ in $C\left(\mathbb{T}^{n}\right)$ as $\boldsymbol{\lambda} \rightarrow 0+$. By the observation above, $\mathcal{V} \neq \emptyset$.

To show Theorem 3 (Davini et al.), it is enough to prove that $\#(\mathcal{V}) \leq 1$.

The main part of the proof (Theorem 3):
(Claim 1) $\langle\boldsymbol{\mu}, \boldsymbol{v}\rangle \leq \mathbf{0} \quad \forall \boldsymbol{v} \in \mathcal{V}, \forall \boldsymbol{\mu} \in \mathfrak{M}$.
(Claim 2) For $\forall \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}, \forall \boldsymbol{z} \in \mathbb{T}^{\boldsymbol{n}}, \exists \boldsymbol{\mu} \in \mathfrak{M}$ s.t.

$$
w(z) \leq v(z)+\langle\mu, w\rangle
$$

Claims 1 and 2 show that $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V} \Rightarrow \boldsymbol{v}=\boldsymbol{w}$. I.e., $\# \mathcal{V} \leq \mathbf{1}$.
Proof (sketch) of Claims 1 and 2

Davini et al. have obtained two representations of the limit function of $\left(v^{\boldsymbol{\lambda}}\right)$. Here is one of them.

Theorem 6 Assume (H 0$)-(\mathrm{H} 2)$ and that $\boldsymbol{c}=\mathbf{0}$. Let $\boldsymbol{v}^{0} \in C\left(\mathbb{T}^{n}\right)$ be the limit function of $\left(\boldsymbol{v}^{\boldsymbol{\lambda}}\right)$, that is,

$$
v^{0}=\lim _{\lambda \rightarrow 0+} v^{\lambda} \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

Then

$$
v^{0}(x)=\max \{w(x) \mid w \in \mathcal{S},\langle\mu, w\rangle \leq 0 \forall \mu \in \mathfrak{M}\}
$$

where \mathcal{S} denotes the set of all solutions of (E).

Remarks. - Davini et al. have proved Theorem 4 by using techniques from optimal control or dynamical systems
(value functions, the Hopf-Lax-Oleinik formula).
Mitake-Tran use the adjoint method introduced by L. C. Evans.
Mitake-Tran-HI use the convex duality argument similar to those used by Gomes (Duality principles for fully nonlinear elliptic equations, 2005) and Mikami-Thieullen (Duality theorem for the stochastic optimal control problem, 2006). A feature of this approach by Mitake-Tran- HI is that it belongs to functional analysis and is easily adopted to different situations, for instance, 2nd-order elliptic equations, nonlocal equations, systems of PDEs without going into detailed studies of the underlying dynamics.
Siconolfi-HI use the convex duality in the form of the Hahn-Banach theorem.

- The measures $\boldsymbol{\mu} \in \bigcup_{\boldsymbol{z}, \boldsymbol{\lambda}} \mathfrak{M}(\boldsymbol{z}, \boldsymbol{\lambda}, \boldsymbol{L})$ are supported in a common compact subset of $\mathbb{T}^{n} \times \mathbb{R}^{n}$. This is a consequence of the fact that $\sup _{\boldsymbol{\lambda}>\mathbf{0}}\left\|\boldsymbol{D} \boldsymbol{v}^{\boldsymbol{\lambda}}\right\|_{\infty}<\infty$ (equi-Lipschitz). The set $\bigcup_{z, \lambda} \mathfrak{M}(\boldsymbol{z}, \boldsymbol{\lambda}, \boldsymbol{L})$ is relatively compact in the topology of the weak convergence in the sense of measures.

Systems of HJ Equations

Some recent results with Liang Jin.
The problem is now the \boldsymbol{m}-system

$$
\left\{\begin{array}{c}
\lambda v_{1}^{\lambda}+H_{1}\left(x, D v_{1}^{\lambda}, v^{\lambda}\right)=0 \text { in } \mathbb{T}^{n} \\
\vdots \\
\lambda v_{m}^{\lambda}+H_{m}\left(x, D v_{m}^{\lambda}, v^{\lambda}\right)=0 \text { in } \mathbb{T}^{n}
\end{array}\right.
$$

We write for the system above simply
$\left(\mathrm{P}_{\lambda}\right) \quad \boldsymbol{\lambda} \boldsymbol{v}^{\boldsymbol{\lambda}}+\boldsymbol{H}\left(\boldsymbol{x}, D \boldsymbol{v}^{\boldsymbol{\lambda}}, \boldsymbol{v}^{\boldsymbol{\lambda}}\right)=\mathbf{0} \quad$ in \mathbb{T}^{n}, where $\boldsymbol{v}^{\boldsymbol{\lambda}}=\left(\boldsymbol{v}_{\boldsymbol{i}}^{\boldsymbol{\lambda}}\right)$ and $\boldsymbol{H}=\left(\boldsymbol{H}_{\boldsymbol{i}}\right)$.
Assume
(1) $\quad \boldsymbol{H}_{i} \in \boldsymbol{C}\left(\mathbb{T}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{m}}\right)$.
(2) $\boldsymbol{H}_{\boldsymbol{i}}$ is coercive, that is,
$\lim _{|p| \rightarrow \infty} H_{i}(x, p, u)=\infty$ uniformly for $(x, u) \in \mathbb{T}^{n} \times B_{R}^{m}, \forall R>0$.
(3) $\quad(\boldsymbol{p}, \boldsymbol{u}) \mapsto \boldsymbol{H}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{u})$ is convex for any $\boldsymbol{x} \in \mathbb{T}^{\boldsymbol{n}}$.
(4) $\boldsymbol{H}=\left(\boldsymbol{H}_{i}\right)$ is monotone, that is, for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{\boldsymbol{m}}$,
$(u-v)_{k}=\max _{i}(u-v)_{i} \geq 0 \quad \Longrightarrow \quad H_{k}(x, p, u) \geq H_{k}(x, p, v)$.
(5) $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u}, \boldsymbol{u})=\mathbf{0}$ has a solution $\boldsymbol{u} \in \boldsymbol{C}\left(\mathbb{T}^{n}\right)^{m}$.

Theorem $7 \quad$ Assume (1)-(5) above. Then, as $\boldsymbol{\lambda} \boldsymbol{\rightarrow} \mathbf{0}+$, we have

$$
\boldsymbol{v}^{\boldsymbol{\lambda}} \rightarrow \boldsymbol{v}^{0} \quad \text { in } C\left(\mathbb{T}^{n}\right)^{m}
$$

for some $\boldsymbol{v}^{0} \in C\left(\mathbb{T}^{n}\right)^{m}$.
Davini-Zavidovique (2019) have studied the case where the coupling is linear and the coupling coefficients are constants.

Examples (coupling)
(E1) $\quad\left\{\begin{aligned} \lambda u_{1}+\left|D u_{1}\right|+u_{1}-u_{2} & =f_{1}(x), \\ \lambda u_{2}+\left|D u_{2}\right|^{2}+u_{2}-u_{1} & =f_{2}(x) .\end{aligned}\right.$
(E2) $\quad\left\{\begin{array}{l}\lambda u_{1}+\left|D u_{1}\right|+\left(u_{1}-u_{2}\right)^{+}=f_{1}(x), \\ \lambda u_{2}+\left|D u_{2}\right|+\left(u_{2}-u_{1}\right)^{+}=f_{2}(x) .\end{array}\right.$
(E3)

$$
\left\{\begin{aligned}
\lambda u_{1}+\left|D u_{1}\right|+u_{1} & =f_{1}(x), \\
\lambda u_{2}+\left|D u_{2}\right|^{2}+u_{2} & =f_{2}(x) .
\end{aligned}\right.
$$

Some ideas for the proof.

- Set $\mathbb{I}=\{1, \ldots, m\}$ and

$$
\begin{aligned}
L_{i}(x, \xi, \eta) & =\sup _{(p, u)}\left[\xi \cdot p+\eta \cdot u-H_{i}(x, p, u)\right] \\
Y_{i} & =\left\{\eta \in \mathbb{R}^{m} \mid \sum_{j \in \mathbb{I}} \eta_{j} \geq 0, \eta_{j} \leq 0 \text { for } j \neq i\right\}
\end{aligned}
$$

Theorem 8 Assume (1)-(3). Then,
\boldsymbol{H} monotone $\Longleftrightarrow \boldsymbol{L}_{i}(\boldsymbol{x}, \boldsymbol{\xi}, \boldsymbol{\eta})=\infty$ for $\boldsymbol{\eta} \in \mathbb{R}^{\boldsymbol{m}} \backslash \boldsymbol{Y}_{i}$

- When $\boldsymbol{\lambda}>0$, we set $\boldsymbol{T}^{\boldsymbol{\lambda}}(\boldsymbol{\eta})=1+\boldsymbol{\lambda}^{-1} \sum_{j} \boldsymbol{\eta}_{\boldsymbol{j}}$ for $\boldsymbol{\eta} \in \mathbb{R}^{\boldsymbol{m}}$. Note that

$$
\begin{aligned}
& T^{\lambda}(\eta) \geq 1 \quad \forall \eta \in Y_{i}, i \in \mathbb{I} \\
& H_{\phi+\lambda T^{\lambda} \mathbf{1}}^{\lambda}(x, D(u+\mathbf{1}), u+\mathbf{1})=H_{\phi}^{\lambda}(x, D u, u)
\end{aligned}
$$

where $\mathbf{1}=(1, \ldots, 1) \in \mathbb{R}^{m}$ and

$$
H_{\phi}^{\lambda}(x, p u)=\left(\lambda u_{i}+\sup _{(\xi, \eta)}\left(\xi \cdot+\eta \cdot u-\phi_{i}(x, \xi, \eta)\right)\right)_{i \in \mathbb{I}}
$$

$\mathcal{P}(\boldsymbol{\lambda})$ the set of collections $\boldsymbol{\mu}=\left(\mu_{i}\right)_{i \in \mathbb{I}}$ of
nonnegative Borel measures μ_{i} on $\mathbb{T}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{Y}_{\boldsymbol{i}}$ such that

$$
\left\langle\mu_{i},\right| \xi|+|\eta|\rangle<\infty \quad \forall i \in \mathbb{I} \quad \text { and } \quad \sum_{i \in \mathbb{I}}\left\langle\mu_{i}, T^{\boldsymbol{\lambda}}\right\rangle=1
$$

$\mathcal{P}(0)$ the set of collections $\boldsymbol{\mu}=\left(\mu_{i}\right)$ of
nonnegative Borel measures $\boldsymbol{\mu}_{\boldsymbol{i}}$ on $\mathbb{T}^{\boldsymbol{n}} \times \mathbb{R}^{\boldsymbol{n}} \times \boldsymbol{Y}_{\boldsymbol{i}}$ such that

$$
\left\langle\mu_{i},\right| \xi|+|\boldsymbol{\eta}|\rangle<\infty \quad \text { and } \quad \sum_{i \in \mathbb{I}}\left\langle\mu_{i}, \mathbf{1}\right\rangle \leq 1
$$

- $\operatorname{Fix}(z, k, \lambda) \in \mathbb{T}^{n} \times I \times[0, \infty)$.
$\mathfrak{C}(z, k, \lambda)$, closed measures all $\boldsymbol{\mu}=\left(\boldsymbol{\mu}_{i}\right) \in \mathcal{P}(\boldsymbol{\lambda})$ such that

$$
\lambda \psi_{k}(z)=\sum_{i \in \mathbb{I}}\left\langle\mu_{i}, \xi \cdot D \psi_{i}+\eta \cdot \psi+\lambda \psi_{i}\right\rangle \quad \forall \psi \in C^{1}\left(\mathbb{T}^{n}\right)^{m}
$$

Theorem 9 Assume (1)-(4). Then, if $\boldsymbol{\lambda}>\mathbf{0}$,

$$
\lambda v_{k}^{\lambda}(z)=\min _{\mu \in \mathfrak{C}(z, k, \lambda)} \sum_{i \in I}\left\langle\mu_{i}, L_{i}\right\rangle
$$

Discounted Mather measures $\mathfrak{M}(\boldsymbol{z}, \boldsymbol{k}, \boldsymbol{\lambda})$.
Proof (sketch). We have $\left\|\left(\boldsymbol{v}^{\boldsymbol{\lambda}}, \boldsymbol{D} \boldsymbol{v}^{\boldsymbol{\lambda}}\right)\right\|_{\infty}<\infty$, We may assume that for some $\boldsymbol{R}>\mathbf{0}$,

$$
\left\{\begin{array}{l}
L_{i}(x, \xi, \eta)=+\infty \quad \text { if }(\xi, \eta) \notin K_{i} \\
L_{i} \in C\left(\mathbb{T}^{n} \times K_{i}\right)
\end{array}\right.
$$

where

$$
K_{i}=\bar{B}_{R}^{n} \times\left(\bar{B}_{R}^{m} \cap \boldsymbol{Y}_{i}\right), \quad i \in \mathbb{I}
$$

$\mathcal{F}(\lambda)$ all pairs $u=\left(u_{i}\right)_{i \in \mathbb{I}} \in C\left(\mathbb{T}^{n}\right)^{m}$ and $\phi=\left(\phi_{i}\right)_{i \in \mathbb{I}} \in \prod_{i \in \mathbb{I}} C\left(\mathbb{T}^{n} \times \boldsymbol{K}_{i}\right)$ such that

$$
\lambda u(x)+H_{\phi}(x, D u(x), u(x)) \leq 0 \quad \text { in } \mathbb{T}^{n},
$$

where $\boldsymbol{H}_{\boldsymbol{\phi}}=\left(\boldsymbol{H}_{\phi, i}\right)_{i \in \mathbb{I}}$ and

$$
H_{\phi, i}(x, p, v)=\max _{(\xi, \eta) \in K_{i}}\left[p \cdot \xi+v \cdot \eta-\phi_{i}(x, \xi, \eta)\right] .
$$

Our claim now is: Theorem 9 holds when we replace $\mathfrak{C}(z, k, \lambda)$ by $\mathfrak{C}_{K}(z, k, \lambda):=\left\{\mu=\left(\mu_{i}\right) \in \mathfrak{C}(z, k, \lambda) \mid \operatorname{supp} \mu_{i} \subset \mathbb{T}^{n} \times K_{i}\right\}$. Similarly, $\boldsymbol{P}_{\boldsymbol{K}}(\boldsymbol{\lambda})$ for $\boldsymbol{\lambda} \geq \mathbf{0}$.

Set

$$
\mathcal{G}(z, k, \lambda)=\left\{\phi-\lambda u_{k}(z) T^{\lambda} \mathbf{1} \mid(u, \phi) \in \mathcal{F}(\lambda)\right\}
$$

where $\mathbf{1}=(\mathbf{1}, \ldots, \mathbf{1}) \in \mathbb{R}^{m}$.
This is a closed convex cone in $\prod_{i \in \mathbb{I}} \boldsymbol{C}\left(\mathbb{T}^{\boldsymbol{n}} \times \boldsymbol{K}_{\boldsymbol{i}}\right)$ with vertex at the origin.

Theorem 10 Let $(\boldsymbol{z}, \boldsymbol{k}, \boldsymbol{\lambda}) \in \mathbb{T}^{\boldsymbol{n}} \times \mathbb{I} \times(\mathbf{0}, \infty)$ and $\boldsymbol{\mu} \in \mathcal{P}_{\boldsymbol{K}}(\boldsymbol{\lambda})$. Then, $\boldsymbol{\mu} \in \mathfrak{C}_{\boldsymbol{K}}(\boldsymbol{z}, \boldsymbol{k}, \boldsymbol{\lambda})$ if and only if

$$
\sum_{i \in \mathbb{I}}\left\langle\mu_{i}, g_{i}\right\rangle \geq 0 \quad \forall g=\left(g_{i}\right) \in \mathcal{G}(z, k, \lambda)
$$

Proof (pictorial) $(\exists \boldsymbol{\nu} \in \mathfrak{M}(\boldsymbol{z}, \boldsymbol{k}, \boldsymbol{\lambda}))$

$$
\prod_{i \in \mathbb{I}} \boldsymbol{C}\left(\mathbb{T}^{n} \times \boldsymbol{K}_{i}\right)
$$

Thank you for your attention!

Appendix

Theorem 11 Let $\chi, \boldsymbol{u} \in \boldsymbol{C}\left(\mathbb{T}^{n}\right)$. Let $(z, \boldsymbol{\lambda}) \in \mathbb{T}^{n} \times[\mathbf{0}, \infty)$. Assume $(\mathrm{H} 0)-(\mathrm{H} 2)$ and that \boldsymbol{u} is a subsolution of $\boldsymbol{\lambda} \boldsymbol{u}+\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{D u})=\boldsymbol{\chi}$ in \mathbb{T}^{n}. Then

$$
\lambda u(z) \leq\langle\mu, L+\chi\rangle \quad \forall \mu \in \mathfrak{C}(z, \lambda)
$$

Proof (sketch). Assume that $\boldsymbol{u} \in \boldsymbol{C}^{\mathbf{1}}$. Then

$$
\lambda u(x)+\xi \cdot D u(x) \leq L(x, \xi)+\chi(x)
$$

which implies

$$
\begin{aligned}
\lambda u(z) & =\langle\mu, \lambda u+\xi \cdot D u\rangle \quad(\because \mu \in \mathfrak{C}(z, \lambda)) \\
& \leq\langle\mu, L+\chi\rangle \forall \mu \in \mathfrak{C}(z, \lambda)
\end{aligned}
$$

Claim 1: Let $\boldsymbol{v} \in \mathcal{V}$ and $\boldsymbol{\mu} \in \mathfrak{M}$. If we set $\boldsymbol{\chi}:=-\boldsymbol{\lambda} \boldsymbol{v}^{\boldsymbol{\lambda}}$, then

$$
H\left(x, D v^{\lambda}\right)=\chi \quad \text { in } \mathbb{T}^{n}
$$

and, by Theorem 11,

$$
\begin{aligned}
0 & \leq\langle\mu, L+\chi\rangle=\left\langle\mu, L-\lambda v^{\lambda}\right\rangle \\
& =\underbrace{\langle\mu, L\rangle}_{=0}-\left\langle\mu, \lambda v^{\lambda}\right\rangle=-\lambda\left\langle\mu, v^{\lambda}\right\rangle,
\end{aligned}
$$

and

$$
\left\langle\mu, v^{\lambda}\right\rangle \leq 0
$$

In the limit as $\boldsymbol{\lambda} \rightarrow \mathbf{0 +}$, we get Claim 1 .

Claim 2: Fix any $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$ and $z \in \mathbb{T}^{n}$. Choose a sequence $\boldsymbol{\lambda}_{\boldsymbol{j}} \rightarrow \mathbf{0}+$ such that

$$
v^{\lambda_{j}} \rightarrow v \quad \text { in } C\left(\mathbb{T}^{n}\right)
$$

By Theorem 4, we may choose a discounted Mather measure $\mu_{j} \in \mathfrak{M}\left(z, \lambda_{j}\right)$. Observe that

$$
\lambda_{j} w+H(x, D w)=\lambda_{j} w
$$

and, by Theorem 11,

$$
\begin{aligned}
\lambda_{j} w(z) & \leq\left\langle\mu_{j}, L+\lambda_{j} w\right\rangle=\underbrace{\left\langle\mu_{j}, L\right\rangle}_{=\lambda_{j} v^{\lambda_{j}}(z)}+\lambda_{j}\left\langle\mu_{j}, w\right\rangle \\
& =\lambda_{j} v^{\lambda_{j}}(z)+\lambda_{j}\left\langle\mu_{j}, w\right\rangle
\end{aligned}
$$

Dividing the above by $\boldsymbol{\lambda}_{\boldsymbol{j}}$ and taking the limit along a subsequence of $\left(\boldsymbol{\lambda}_{j}\right)$, we get

$$
w(z) \leq v(z)+\langle\mu, w\rangle
$$

for some $\boldsymbol{\mu} \in \mathfrak{M}$ and, hence, $\boldsymbol{w}(\boldsymbol{z}) \leq \boldsymbol{v}(\boldsymbol{z})$.

- Since $\left(v^{\lambda}, L\right) \in \mathcal{F}(\lambda)$, we have $L-\lambda v_{k}^{\lambda}(z) T^{\lambda} \mathbf{1} \in \mathcal{G}(z, k, \lambda)$ and, for all $\mu \in \mathfrak{C}(z, k, \lambda)$,

$$
0 \leq \sum_{i \in \mathbb{I}}\left\langle\mu_{i}, L_{i}-\lambda v_{k}^{\lambda}(z) T^{\lambda}\right\rangle=-\lambda v_{k}^{\lambda}(z)+\sum_{i \in \mathbb{I}}\left\langle\mu_{i}, L_{i}\right\rangle .
$$

- $\exists \nu \in \mathfrak{C}(z, k, \lambda)$ minimizer: Note that if $\|\phi\|_{\infty}<\mathbf{1}$, then $\left(v^{\lambda}, L+\mathbf{1}+\phi\right) \in \mathcal{F}(\lambda)$. This implies that $\operatorname{int} \mathcal{G}(z, k, \lambda) \neq \emptyset$. We may show that $L-\lambda v_{k}^{\lambda}(z) T^{\lambda} \mathbf{1} \in \partial \mathcal{G}(z, k, \lambda)$ By the Hahn-Banach theorem, $\exists \boldsymbol{\nu} \in\left(\prod_{i \in \mathbb{I}} C\left(\boldsymbol{K}_{i}\right)\right)^{*}$ such that $\boldsymbol{\nu} \neq \mathbf{0}$ and

$$
\left\langle\nu, L-\lambda v_{k}^{\lambda}(z) T^{\lambda} \mathbf{1}\right\rangle \leq\langle\nu, g\rangle \quad \forall g \in \mathcal{G}(z, k, \lambda) .
$$

Since $t\left(L-\lambda v_{k}^{\lambda}(z) T^{\lambda} \mathbf{1}\right) \in \mathcal{G}(z, k, \lambda)$, we see that

$$
\left\langle\nu, L-\lambda v_{k}^{\lambda}(z) T^{\lambda} \mathbf{1}\right\rangle=0 .
$$

- For $\phi=\left(\phi_{i}\right)$, if $\phi_{i} \geq \mathbf{0} \forall i \in \mathbb{I}$, then $\left(v^{\lambda}, L+\phi\right) \in \mathcal{F}(\boldsymbol{\lambda})$. This, with the Riesz theorem, implies that $\nu_{i} \geq \mathbf{0}$ and are Radon measures.

