The vanishing discount problem for systems of Hamilton-Jacobi equations

Hitoshi Ishii

Tsuda University (Waseda University)

Asia-Pacific Analysis and PDE seminar. May 18, 2020

Vanishing discount problem

Convex, coercive HJ equations

Ergodic problem

An approach to Theorem 3

Systems of HJ equations

Appendix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

VANISHING DISCOUNT PROBLEM

Scalar Case: We consider the Hamilton-Jacobi equation

$$(\mathsf{P}_{\lambda})$$
 $\lambda v(x) + H(x, Dv(x)) = 0$ in \mathbb{T}^n .

Here

$$\left(egin{array}{c} v=v^\lambda & ext{the unknown function on }\mathbb{T}^n,\ Dv=(v_{x_1},...,v_{x_n}),\ \lambda>0 & ext{a given constant, discount factor,}\ H & ext{a given function of }(x,p)=(x,Dv(x)). \end{array}
ight.$$

Problem: asymptotic behavior of v^{λ} as $\lambda \to 0$.

p.1

CONVEX, COERCIVE HJ EQUATIONS Hypotheses:

(H0) Continuity: $H \in C(\mathbb{T}^n \times \mathbb{R}^n)$.

(H1) \boldsymbol{H} is convex,

 $p\mapsto H(x,p)$ is convex.

(H2) \boldsymbol{H} is coercive,

$$\lim_{|p| o \infty} \min_{x \in \mathbb{T}^n} H(x,p) = \infty.$$

Property of *H*:

$$H(x,p) \ge \delta |p| - C \quad (\exists \delta > 0, \exists C > 0).$$

Example: $H(x,p) = |p|^m - f(x)$, $m \ge 1$, $f \in C(\mathbb{T}^n)$.

p.2

Theorem 1 For each $\lambda > 0$ problem (P_{λ}) has a unique solution v^{λ} . Furthermore,

 $(\lambda v^{\lambda})_{\lambda>0}$ is uniformly bounded, $(v^{\lambda})_{\lambda>0}$ is equi-Lipschitz continuous.

• If $C_0 \geq |H(x,0)|$, then

 $\lambda(C_0/\lambda)+H(x,0)\geq 0, \qquad \lambda(-C_0/\lambda)+H(x,0)\leq 0,$

and, by comparison, $-C_0/\lambda \leq v^\lambda(x) \leq C_0/\lambda.$

ullet Since $H(x,p)\geq \delta |p|-C$, we have

 $|\delta|Dv^{\lambda}(x)| \leq C + \lambda \|v^{\lambda}\|_{\infty}.$

Notation. Lagrangian of *H*:

$$L(x,\xi) := \sup_{p \in \mathbb{R}^n} [\xi \cdot p - H(x,p)].$$

Properties: *L* is convex and lower semicontinuous on $\mathbb{T}^n \times \mathbb{R}^n$.

$$egin{aligned} L(x,\xi) &\geq -H(x,0), \ L(x,\xi) &\geq A|\xi| - H(x,A\xi/|\xi|) \ &\geq A|\xi| - \max_{|p|\leq A} H(x,p) \ \ orall A > 0, \ L(x,\xi) &\leq \sup_p (|\xi||p| - \delta|p| + C) = C \quad orall \xi \in B_\delta. \end{aligned}$$

Recall here that $H(x,p) \geq \delta |p| - C$.

p.4

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

ERGODIC PROBLEM

Formal expansion of the solution of (P_{λ}) :

$$v^{\lambda}(x) pprox a_0(x)\lambda^{-1} + a_1(x) + a_2(x)\lambda + \cdots$$

Plug this into (P_{λ}) :

$$a_0(x)+a_1(x)\lambda+a_2(x)\lambda^2+\cdots +H(x,Da_0(x)\lambda^{-1}+Da_1(x)+Da_2(x)\lambda+\cdots)pprox 0.$$

We deduce that

$$Da_0(x)=0$$
 i.e. $a_0(x)\equiv a_0$ (constant), $a_0+H(x,Da_1(x))=0.$

The ergodic problem or additive eigenvalue problem:

p.5

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The problem of finding a constant $c \in \mathbb{R}$ and a function $u \in C(\mathbb{T}^n)$ satisfying

(E)
$$H(x, Du(x)) = c$$
 in \mathbb{T}^n .

A classical result:

Theorem 2 (Lions-Papanicolaou-Varadhan, 1987) Under (H0), (H2), there exists a solution $(c, u) \in \mathbb{R} \times C(\mathbb{T}^n)$ of (E). Moreover, the constant c is unique.

• The constant *c* is called the critical value, additive eigenvalue, or ergodic constant.

Their proof is to show that for some $(c, u) \in \mathbb{R} \times C(\mathbb{T}^n)$,

$$egin{cases} -\lambda v^\lambda(x) &
ightarrow c & {
m uniformly on } \mathbb{T}^n, \ v^\lambda(x) + \lambda^{-1}c &
ightarrow u(x) & {
m uniformly on } \mathbb{T}^n \ & {
m along \ a \ subsequence }, \end{cases}$$

・ロト 4個ト 4 目 ト 4 目 ト p.6 の Q Q

 $\begin{array}{ll} \text{Main question:} & \text{does the whole family} \quad \{v^\lambda+\lambda^{-1}c\}_{\lambda>0}\\ \text{converges to a function as } \lambda\to 0+? \end{array}$

• The ergodic problem (E) has <u>multiple solutions</u>. If u is a solution of (E), then u + const is a solution. Consider the case

$$Du \cdot (Du - D\psi) = 0$$
 in \mathbb{T}^n , with $\psi \in C^1(\mathbb{T}^n)$.

We have many solutions:

$$u=C_1, \qquad u=\psi+C_2, \qquad u=\min\{C_1,\psi+C_2\}.$$

p.7

• Ergodic problem (E) arises in the <u>ergodic optimal control</u>, the <u>homogenization</u> of HJ equations, and the <u>large-time behavior</u> of solutions of evolutionary HJ equations.

A decisive result on the main question:

Theorem 3 (Davini-Fathi-Iturriaga-Zavidovique, 2016) Assume (H0)–(H2). Let c be the critical value. Then, for some function $v^0 \in C(\mathbb{T}^n)$, as $\lambda \to 0+$, $v^{\lambda}(x) + \lambda^{-1}c \to v^0(x)$ in $C(\mathbb{T}^n)$.

• If *H* is not convex, the convergence of the whole family does not hold in general. A counterexample by B. Ziliotto (2019).

p.8

Related work:

1) A. Davini, A. Fathi, R. Iturriaga, M. Zavidovique,

Coercive, convex HJ equation on \mathbb{T}^n (closed manifold).

2) E. S. Al-Aidarous, E. O. Alzahrani, HI, A. M. M. Younas,

Coercive, convex HJ equation on a bounded domain with the Neumann type BC.

3) H. Mitake, H. V. Tran

Viscous HJ equation on \mathbb{T}^n , with coercive and convex

Hamiltonian. (2nd-order degenerate elliptic PDEs.)

4) D. Gomes, H. Mitake, H. V. Tran

Coercive, quasi-convex HJ equation on \mathbb{T}^n .

5) HI, H. Mitake, H. V. Tran,

2nd-order fully nonlinear, convex, degenerate elliptic PDEs on \mathbb{T}^n

or on a bounded domain with BC.

6) B. Ziliotto,

A counterexample, with non-convex Hamiltonian.

• Use of Mather measures.

An Approach to Theorem 3

We review the proof of Theorem 3 (Davini et al.).

 $\mathcal{P} = \mathcal{P}(\mathbb{T}^n \times \mathbb{R}^n)$ all Borel probability measures on $\mathbb{T}^n \times \mathbb{R}^n$. $\mathcal{P}_1 = \mathcal{P}_1(\mathbb{T}^n \times \mathbb{R}^n)$ all $\mu \in \mathcal{P}$ such that

$$\langle \mu, |\xi|
angle := \int_{\mathbb{T}^n imes \mathbb{R}^n} |\xi| \, \mu(dxd\xi) < \infty.$$

(the function $(x,\xi)\mapsto |\xi|$ is denoted by $|\xi|)$

Fix
$$(z,\lambda)\in\mathbb{T}^n imes [0,\,\infty).$$

 $\mathfrak{C}(z,\lambda)$ (closed measures) := { $\mu \in \mathcal{P}_1 \mid \lambda \psi(z) = \langle \mu, \xi \cdot D\psi + \lambda \psi \rangle \ \forall \psi \in C^1(\mathbb{T}^n)$ }.

Note that

$$\lambda u(x) + H(x, Du(x)) = \sup_{\xi} (\lambda u(x) + \xi \cdot Du(x) - L(x, \xi)).$$

When $\lambda = 0$, the defining condition reads

$$0 = \langle \mu, \xi \cdot D\psi
angle \ \ orall \psi \in C^1(\mathbb{T}^n).$$

So, we write $\mathfrak{C}(0)$ for $\mathfrak{C}(z,0)$.

Theorem 4 Assume (H0)–(H2). If
$$\lambda > 0$$
, then $\lambda v^{\lambda}(z) = \min_{\mu \in \mathfrak{C}(z,\lambda)} \langle \mu,L \rangle.$

• Any minimizer μ of the optimization problem above is called a discounted Mather measure. $\mathfrak{M}(z,\lambda) = \mathfrak{M}(z,\lambda,L).$

Theorem 5 Assume (H0)–(H2). Let c be the critical value. Then $-c = \min_{\mu \in \mathfrak{C}(0)} \langle \mu, L \rangle.$

p.11

• Any minimizer μ of the optimization problem

$$\min_{\mu\in\mathfrak{C}(0)}\langle\mu,L
angle.$$

is called a Mather measure. $\mathfrak{M} = \mathfrak{M}(L)$.

• We assume henceforth that c = 0. (Replace H by H - c if needed.)

The family $(v^{\lambda})_{\lambda>0}$ is equi-Lipschitz and uniformly bounded on \mathbb{T}^n (\Rightarrow relatively compact in $C(\mathbb{T}^n)$ by A² theorem).

(Uniform boundedness) Let $v_0 \in C(\mathbb{T}^n)$ be a solution of (E). Let C > 0 be a constant such that $||v_0||_{\infty} \leq C$, and note that $v_0 + C$ (reps. $v_0 - C$) is a supersolution (resp. a subsolution) of (P_{λ}) .

By the comparison theorem, which is valid for (P_{λ}) with $\lambda > 0$,

$$v_0-C \leq v^\lambda \leq v_0+C \;\; orall \lambda > 0.$$

 $(\square) \land (\square) : (\square) (\square) : (\square)$

 \mathcal{V} all accumulation points of $(v^{\lambda})_{\lambda>0}$ in $C(\mathbb{T}^n)$ as $\lambda \to 0+$. By the observation above, $\mathcal{V} \neq \emptyset$.

To show Theorem 3 (Davini et al.), it is enough to prove that $\#(\mathcal{V}) \leq 1$.

The main part of the proof (Theorem 3):

 $(\mathsf{Claim}\ 1) \qquad \quad \langle \mu, v \rangle \leq 0 \qquad \quad \forall v \in \mathcal{V}, \ \forall \mu \in \mathfrak{M}.$

(Claim 2) For $\forall v, w \in \mathcal{V}, \, \forall z \in \mathbb{T}^n$, $\exists \mu \in \mathfrak{M}$ s.t.

$$w(z) \leq v(z) + \langle \mu, w
angle.$$

Claims 1 and 2 show that $v, w \in \mathcal{V} \Rightarrow v = w$. I.e., $\#\mathcal{V} \leq 1$. Proof (sketch) of Claims 1 and 2

p.13

(日) (日) (日) (日) (日) (日) (日) (日)

Davini et al. have obtained two representations of the limit function of (v^{λ}) . Here is one of them.

Theorem 6 Assume (H0)-(H2) and that c = 0. Let $v^0 \in C(\mathbb{T}^n)$ be the limit function of (v^{λ}) , that is, $v^0 = \lim_{\lambda \to 0+} v^{\lambda}$ in $C(\mathbb{T}^n)$. Then $v^0(x) = \max\{w(x) \mid w \in S, \ \langle \mu, w \rangle \leq 0 \ \forall \mu \in \mathfrak{M}\},$ where S denotes the set of all solutions of (E).

p.14

Remarks. • Davini et al. have proved Theorem 4 by using techniques from optimal control or dynamical systems (value functions, the Hopf-Lax-Oleinik formula). Mitake-Tran use the adjoint method introduced by L. C. Evans. Mitake-Tran-HI use the convex duality argument similar to those used by Gomes (Duality principles for fully nonlinear elliptic equations, 2005) and Mikami-Thieullen (Duality theorem for the stochastic optimal control problem, 2006). A feature of this approach by Mitake-Tran-HI is that it belongs to functional analysis and is easily adopted to different situations, for instance, 2nd-order elliptic equations, nonlocal equations, systems of PDEs without going into detailed studies of the underlying dynamics.

Siconolfi-HI use the convex duality in the form of the Hahn-Banach theorem.

p.15 ৰ অ > ৰঞ্জ > ৰছ > ৰছ - ৩৫৫ • The measures $\mu \in \bigcup_{z,\lambda} \mathfrak{M}(z,\lambda,L)$ are supported in a common compact subset of $\mathbb{T}^n \times \mathbb{R}^n$. This is a consequence of the fact that $\sup_{\lambda>0} \|Dv^{\lambda}\|_{\infty} < \infty$ (equi-Lipschitz). The set $\bigcup_{z,\lambda} \mathfrak{M}(z,\lambda,L)$ is relatively compact in the topology of the weak convergence in the sense of measures.

p.16

Systems of HJ equations

Some recent results with Liang Jin.

The problem is now the m-system

$$\left\{egin{aligned} \lambda v_1^\lambda + H_1(x,Dv_1^\lambda,v^\lambda) &= 0 \quad ext{in } \mathbb{T}^n, \ &dots \ &dots\ \ &dots \ &dots \ &dots \ &dots \$$

We write for the system above simply

$$(\mathsf{P}_\lambda)$$
 $\lambda v^\lambda + H(x,Dv^\lambda,v^\lambda) = 0$ in $\mathbb{T}^n,$
where $v^\lambda = (v_i^\lambda)$ and $H = (H_i).$
Assume

(1) $H_i \in C(\mathbb{T}^n \times \mathbb{R}^n \times \mathbb{R}^m).$ (2) H_i is coercive, that is,

 $\lim_{|p| o\infty} H_i(x,p,u) = \infty$ uniformly for $(x,u)\in \mathbb{T}^n imes B^m_R,\, orall R>0.$

· · · · · · · · · · · · · · · · P.17 oac

(3)
$$(p, u) \mapsto H_i(x, p, u)$$
 is convex for any $x \in \mathbb{T}^n$.
(4) $H = (H_i)$ is monotone, that is, for $u, v \in \mathbb{R}^m$,
 $(u-v)_k = \max_i (u-v)_i \ge 0 \implies H_k(x, p, u) \ge H_k(x, p, v)$.
(5) $H(x, Du, u) = 0$ has a solution $u \in C(\mathbb{T}^n)^m$.

Theorem 7 Assume (1)–(5) above. Then, as $\lambda \to 0+$, we have

$$v^{\lambda}
ightarrow v^{0}$$
 in $C(\mathbb{T}^{n})^{m}$

for some $v^0 \in C(\mathbb{T}^n)^m$.

Davini-Zavidovique (2019) have studied the case where the coupling is linear and the coupling coefficients are constants.

p.18

Examples (coupling)

(E1)
$$\begin{cases} \lambda u_1 + |Du_1| + u_1 - u_2 = f_1(x), \\ \lambda u_2 + |Du_2|^2 + u_2 - u_1 = f_2(x). \end{cases}$$

(E2)
$$\begin{cases} \lambda u_1 + |Du_1| + (u_1 - u_2)^+ = f_1(x), \\ \lambda u_2 + |Du_2| + (u_2 - u_1)^+ = f_2(x). \end{cases}$$

(E3)
$$\begin{cases} \lambda u_1 + |Du_1| + u_1 = f_1(x), \\ \lambda u_2 + |Du_2|^2 + u_2 = f_2(x). \end{cases}$$

		-1	2
n			u
μ	٠	-	
~	•	_	-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Some ideas for the proof.

• Set
$$\mathbb{I} = \{1, \dots, m\}$$
 and
 $L_i(x, \xi, \eta) = \sup_{(p,u)} [\xi \cdot p + \eta \cdot u - H_i(x, p, u)],$
 $Y_i = \{\eta \in \mathbb{R}^m \mid \sum_{j \in \mathbb{I}} \eta_j \ge 0, \ \eta_j \le 0 \text{ for } j \neq i\}.$

Theorem 8 Assume (1)–(3). Then,
$$H$$
 monotone $\iff L_i(x,\xi,\eta) = \infty$ for $\eta \in \mathbb{R}^m \setminus Y_i$

-		0	n
ρ	•	2	υ

• When $\lambda>0$, we set $T^{\lambda}(\eta)=1+\lambda^{-1}\sum_{j}\eta_{j}$ for $\eta\in\mathbb{R}^{m}.$ Note that

$$T^{\lambda}(\eta) \geq 1 \ orall \eta \in Y_i, \ i \in \mathbb{I},$$

 $H^{\lambda}_{\phi+\lambda T^{\lambda_1}}(x, D(u+1), u+1) = H^{\lambda}_{\phi}(x, Du, u),$
where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^m$ and
 $H^{\lambda}_{\phi}(x, pu) = \left(\lambda u_i + \sup_{(\xi,\eta)} (\xi \cdot +\eta \cdot u - \phi_i(x, \xi, \eta))\right)_{i \in \mathbb{I}}$.
 $\mathcal{P}(\lambda)$ the set of collections $\mu = (\mu_i)_{i \in \mathbb{I}}$ of
nonnegative Borel measures μ_i on $\mathbb{T}^n \times \mathbb{R}^n \times Y_i$ such that
 $\langle \mu_i, |\xi| + |\eta| \rangle < \infty \quad \forall i \in \mathbb{I}$ and $\sum_{i \in \mathbb{I}} \langle \mu_i, T^{\lambda} \rangle = 1.$

 $\mathcal{P}(0)$ the set of collections $\mu = (\mu_i)$ of nonnegative Borel measures μ_i on $\mathbb{T}^n \times \mathbb{R}^n \times Y_i$ such that

$$\langle \mu_i, |\xi|+|\eta|
angle <\infty$$
 and $\sum_{i\in\mathbb{I}}\langle \mu_i,1
angle \leq 1.$

+ - + + + + + + + + + p.21 oq ()

• Fix $(z, k, \lambda) \in \mathbb{T}^n \times I \times [0, \infty)$. $\mathfrak{C}(z, k, \lambda)$, closed measures all $\mu = (\mu_i) \in \mathcal{P}(\lambda)$ such that $\lambda \psi_k(z) = \sum_{i \in \mathbb{I}} \langle \mu_i, \xi \cdot D\psi_i + \eta \cdot \psi + \lambda \psi_i \rangle \quad \forall \psi \in C^1(\mathbb{T}^n)^m$.

Theorem 9 Assume (1)–(4). Then, if
$$\lambda > 0$$
, $\lambda v_k^{\lambda}(z) = \min_{\mu \in \mathfrak{C}(z,k,\lambda)} \sum_{i \in I} \langle \mu_i, L_i \rangle.$

Discounted Mather measures $\mathfrak{M}(z,k,\lambda)$. Proof (sketch). We have $\|(v^{\lambda}, Dv^{\lambda})\|_{\infty} < \infty$, We may assume that for some R > 0,

$$egin{cases} L_i(x,\xi,\eta)=+\infty & ext{if} \ (\xi,\eta)
ot\in K_i,\ L_i\in C(\mathbb{T}^n imes K_i), \end{cases}$$

where

$$K_i = \overline{B}_R^n imes (\overline{B}_R^m \cap Y_i), \ \ i \in \mathbb{I}.$$

$$egin{aligned} \mathcal{F}(\lambda) & ext{ all pairs } u = (u_i)_{i \in \mathbb{I}} \in C(\mathbb{T}^n)^m ext{ and } \ \phi &= (\phi_i)_{i \in \mathbb{I}} \in \prod_{i \in \mathbb{I}} C(\mathbb{T}^n imes K_i) ext{ such that } \ \lambda u(x) + H_\phi(x, Du(x), u(x)) \leq 0 & ext{ in } \mathbb{T}^n, \ ext{where } H_\phi &= (H_{\phi,i})_{i \in \mathbb{I}} ext{ and } \ H_{\phi,i}(x,p,v) &= \max_{(\xi,\eta) \in K_i} [p \cdot \xi + v \cdot \eta - \phi_i(x,\xi,\eta)]. \end{aligned}$$

Our claim now is: Theorem 9 holds when we replace $\mathfrak{C}(z,k,\lambda)$ by

 $\mathfrak{C}_K(z,k,\lambda) := \{\mu = (\mu_i) \in \mathfrak{C}(z,k,\lambda) \mid \operatorname{supp} \mu_i \subset \mathbb{T}^n imes K_i\}.$ Similarly, $\mathcal{P}_K(\lambda)$ for $\lambda \geq 0$.

p.23

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Set

$$\mathcal{G}(z,k,\lambda) = \{\phi - \lambda u_k(z)T^{\lambda}\mathbf{1} \mid (u,\phi) \in \mathcal{F}(\lambda)\},\$$

where $\mathbf{1} = (1,\ldots,1) \in \mathbb{R}^m$.
This is a closed convex cone in $\prod_{i \in \mathbb{I}} C(\mathbb{T}^n \times K_i)$ with vertex at the origin.

Theorem 10 Let
$$(z, k, \lambda) \in \mathbb{T}^n \times \mathbb{I} \times (0, \infty)$$
 and
 $\mu \in \mathcal{P}_K(\lambda)$. Then, $\mu \in \mathfrak{C}_K(z, k, \lambda)$ if and only if
 $\sum_{i \in \mathbb{I}} \langle \mu_i, g_i \rangle \geq 0 \quad \forall g = (g_i) \in \mathcal{G}(z, k, \lambda).$

p.24

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

Proof (pictorial) $(\exists
u \in \mathfrak{M}(z,k,\lambda))$

p.25

=____ 로 _ 《로》《로》《唱》《日》

 $\prod_{i\in\mathbb{I}}C(\mathbb{T}^n imes K_i)$

THANK YOU FOR YOUR ATTENTION!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Appendix

<□ > < @ > < E > < E > E のQ @

Theorem 11 Let
$$\chi$$
, $u \in C(\mathbb{T}^n)$. Let
 $(z,\lambda) \in \mathbb{T}^n \times [0,\infty)$. Assume (H0)–(H2) and that u is a
subsolution of $\lambda u + H(x,Du) = \chi$ in \mathbb{T}^n . Then
 $\lambda u(z) \leq \langle \mu, L + \chi \rangle \quad \forall \mu \in \mathfrak{C}(z,\lambda).$

Proof (sketch). Assume that $u \in C^1$. Then

$$\lambda u(x) + \xi \cdot Du(x) \leq L(x,\xi) + \chi(x),$$

which implies

$$egin{aligned} \lambda u(z) &= \langle \mu, \lambda u + \xi \cdot D u
angle \quad (\because \ \mu \in \mathfrak{C}(z,\lambda)) \ &\leq \langle \mu, L + \chi
angle \ orall \mu \in \mathfrak{C}(z,\lambda). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Claim 1: Let $v\in \mathcal{V}$ and $\mu\in\mathfrak{M}.$ If we set $\chi:=-\lambda v^\lambda$, then $H(x,Dv^\lambda)=\chi$ in $\mathbb{T}^n,$

and, by Theorem 11,

$$egin{aligned} 0 &\leq \langle \mu, L + \chi
angle &= \langle \mu, L - \lambda v^\lambda
angle \ &= \underbrace{\langle \mu, L
angle}_{=0} - \langle \mu, \lambda v^\lambda
angle = -\lambda \langle \mu, v^\lambda
angle, \end{aligned}$$

and

$$\langle \mu, v^\lambda
angle \leq 0.$$

In the limit as $\lambda
ightarrow 0+$, we get Claim 1.

Claim 2: Fix any $v, w \in \mathcal{V}$ and $z \in \mathbb{T}^n$. Choose a sequence $\lambda_j \to 0+$ such that

$$v^{\lambda_j} o v$$
 in $C(\mathbb{T}^n)$.

By Theorem 4, we may choose a discounted Mather measure $\mu_j \in \mathfrak{M}(z,\lambda_j).$ Observe that

$$\lambda_j w + H(x, Dw) = \lambda_j w,$$

and, by Theorem 11,

$$egin{aligned} \lambda_j w(z) &\leq \langle \mu_j, L + \lambda_j w
angle &= \underbrace{\langle \mu_j, L
angle}_{=\lambda_j v^{\lambda_j}(z)} + \lambda_j \langle \mu_j, w
angle \ &= \lambda_j v^{\lambda_j}(z) + \lambda_j \langle \mu_j, w
angle. \end{aligned}$$

Dividing the above by λ_j and taking the limit along a subsequence of (λ_j) , we get

$$w(z) \leq v(z) + \langle \mu, w
angle$$

for some $\mu\in\mathfrak{M}$ and, hence, $w(z)\leq v(z).$

• Since
$$(v^{\lambda}, L) \in \mathcal{F}(\lambda)$$
, we have
 $L - \lambda v_{k}^{\lambda}(z)T^{\lambda}\mathbf{1} \in \mathcal{G}(z, k, \lambda)$ and, for all $\mu \in \mathfrak{C}(z, k, \lambda)$,
 $0 \leq \sum_{i \in \mathbb{I}} \langle \mu_{i}, L_{i} - \lambda v_{k}^{\lambda}(z)T^{\lambda} \rangle = -\lambda v_{k}^{\lambda}(z) + \sum_{i \in \mathbb{I}} \langle \mu_{i}, L_{i} \rangle.$

• $\exists \nu \in \mathfrak{C}(z, k, \lambda)$ minimizer: Note that if $\|\phi\|_{\infty} < 1$, then $(v^{\lambda}, L + \mathbf{1} + \phi) \in \mathcal{F}(\lambda)$. This implies that $\inf \mathcal{G}(z, k, \lambda) \neq \emptyset$. We may show that $L - \lambda v_k^{\lambda}(z)T^{\lambda}\mathbf{1} \in \partial \mathcal{G}(z, k, \lambda)$ By the Hahn-Banach theorem, $\exists \nu \in \left(\prod_{i \in \mathbb{I}} C(K_i)\right)^*$ such that $\nu \neq 0$ and

$$\langle
u, L - \lambda v_k^\lambda(z) T^\lambda \mathbf{1}
angle \leq \langle
u, g
angle \ \ \forall g \in \mathcal{G}(z,k,\lambda).$$

Since $t(L-\lambda v_k^\lambda(z)T^\lambda\mathbf{1})\in \mathcal{G}(z,k,\lambda)$, we see that

$$\langle
u,L-\lambda v_k^\lambda(z)T^\lambda \mathbf{1}
angle=0.$$

• For $\phi = (\phi_i)$, if $\phi_i \ge 0 \ \forall i \in \mathbb{I}$, then $(v^{\lambda}, L + \phi) \in \mathcal{F}(\lambda)$. This, with the Riesz theorem, implies that $\nu_i \ge 0$ and are Radon measures.