Hidden Convexity in Nonlinear Elasticity

Aaron Zeff Palmer
with N. Ghoussoub, Y-H. Kim and H. Lavenant (now Bocconi U) University of British Columbia

Asia-Pacific Analysis and PDE Seminar March 22, 2021

- Optimal transport and nonlinear elasticity.
- Optimal transport and nonlinear elasticity.
- Convexity condition for 'deformed' pressure. [Ghoussoub-Kim-Lavenant-P Hidden Convexity in a Problem of Nonlinear Elasticity. SIAM J. Math. Anal. 2021]
- Optimal transport and nonlinear elasticity.
- Convexity condition for 'deformed' pressure. [Ghoussoub-Kim-Lavenant-P Hidden Convexity in a Problem of Nonlinear Elasticity. SIAM J. Math. Anal. 2021]
- Examples and counterexamples.
- Optimal transport and nonlinear elasticity.
- Convexity condition for 'deformed' pressure. [Ghoussoub-Kim-Lavenant-P Hidden Convexity in a Problem of Nonlinear Elasticity. SIAM J. Math. Anal. 2021]
- Examples and counterexamples.
- Measure-valued convex relaxation of nonlinear elasticity.

Optimal Transport

Move mass from μ to ν, optimally! (Monge 1781) Find a map

$$
x \mapsto T(x)
$$

to minimize the total mass distance traveled: cost $c(x, y)=|y-x|$.

$T \downarrow$

Optimal Transport

Move mass from μ to ν, optimally! (Monge 1781) Find a map

$$
x \mapsto T(x)
$$

to minimize the total mass distance traveled: cost $c(x, y)=|y-x|$.
(Kantorovich 1942) Use a joint probability distribution

$$
(X, Y) \sim \pi
$$

with fixed marginals.

$$
T \downarrow
$$

Duality

Theorem (Kantorovich 1942)

The minimal value of the optimal transport problem with measures $\mu(d x)$, $\nu(d y)$, and cost $c(x, y)$ equals the maximal value of a dual problem for potential functions $\phi(x), \psi(y)$:

$$
\min _{\pi \ldots} \iint c(x, y) \pi(d x, d y)=\sup _{\phi, \psi} \int \psi(y) \nu(d y)-\int \phi(x) \mu(d x)
$$

with constraint $\psi(y)-\phi(x) \leqslant c(x, y)$ (equality where $\pi(d x, d y)>0)$.

Duality

Theorem (Kantorovich 1942)

The minimal value of the optimal transport problem with measures $\mu(d x)$, $\nu(d y)$, and cost $c(x, y)$ equals the maximal value of a dual problem for potential functions $\phi(x), \psi(y)$:

$$
\min _{\pi \ldots} \iint c(x, y) \pi(d x, d y)=\sup _{\phi, \psi} \int \psi(y) \nu(d y)-\int \phi(x) \mu(d x)
$$

with constraint $\psi(y)-\phi(x) \leqslant c(x, y)$ (equality where $\pi(d x, d y)>0)$.

- Linear programming took off with the help of the simplex algorithm (Dantzig 1947)

Contributions of Brenier

- Polar factorization (Brenier 1991): Every (nondegenerate) vector field $f \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ decomposes uniquely as $f=\nabla \phi \circ S$ where ϕ is convex and $S: \Omega \rightarrow \Omega$ is volume preserving.

Contributions of Brenier

- Polar factorization (Brenier 1991): Every (nondegenerate) vector field $f \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ decomposes uniquely as $f=\nabla \phi \circ S$ where ϕ is convex and $S: \Omega \rightarrow \Omega$ is volume preserving.

- (Benamou-Brenier 2000) Minimize Lagrangian over velocity field v_{t}

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{1}{2}\left|v_{t}\right|^{2} \pi_{t}(d x): \quad \partial_{t} \pi_{t}+\nabla \cdot v_{t} \pi_{t}=0, \quad \pi_{0}=\mu, \quad \pi_{1}=\nu
$$

Contributions of Brenier

- Polar factorization (Brenier 1991): Every (nondegenerate) vector field $f \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ decomposes uniquely as $f=\nabla \phi \circ S$ where ϕ is convex and $S: \Omega \rightarrow \Omega$ is volume preserving.

- (Benamou-Brenier 2000) Minimize Lagrangian over velocity field v_{t}

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{1}{2}\left|v_{t}\right|^{2} \pi_{t}(d x): \quad \partial_{t} \pi_{t}+\nabla \cdot v_{t} \pi_{t}=0, \quad \pi_{0}=\mu, \quad \pi_{1}=\nu
$$

- [Brenier The initial value problem for the Euler equations of incompressible fluids viewed as a concave maximization problem. CMP 2018]

Mathematical Elasticity

- Reference Configuration: $\Omega \subset \mathbb{R}^{3}$.

Mathematical Elasticity

- Reference Configuration: $\Omega \subset \mathbb{R}^{3}$.
- Deformed Configuration: $D \subset \mathbb{R}^{3}$.

Mathematical Elasticity

- Reference Configuration: $\Omega \subset \mathbb{R}^{3}$.
- Deformed Configuration: $D \subset \mathbb{R}^{3}$.
- Deformations are maps u: $\Omega \rightarrow D$.

Mathematical Elasticity

- Reference Configuration: $\Omega \subset \mathbb{R}^{3}$.
- Deformed Configuration: $D \subset \mathbb{R}^{3}$.
- Deformations are maps u: $\Omega \rightarrow D$.
- Hyper-Elastic stored energy function:

$$
E(\mathbf{u})=\int_{\Omega} W(\nabla \mathbf{u}) d \mathcal{L}_{\Omega}
$$

Mathematical Elasticity

- Reference Configuration: $\Omega \subset \mathbb{R}^{3}$.
- Deformed Configuration: $D \subset \mathbb{R}^{3}$.
- Deformations are maps u: $\Omega \rightarrow D$.
- Hyper-Elastic stored energy function:

$$
E(\mathbf{u})=\int_{\Omega} W(\nabla \mathbf{u}) d \mathcal{L}_{\Omega}
$$

- Dirichlet Boundary conditions: $\mathbf{u}=\mathbf{g}$ on $\partial \Omega($ where $\mathbf{g}(\partial \Omega)=\partial D)$

Mathematical Elasticity

- Reference Configuration: $\Omega \subset \mathbb{R}^{3}$.
- Deformed Configuration: $D \subset \mathbb{R}^{3}$.
- Deformations are maps u: $\Omega \rightarrow D$.
- Hyper-Elastic stored energy function:

$$
E(\mathbf{u})=\int_{\Omega} W(\nabla \mathbf{u}) d \mathcal{L}_{\Omega}
$$

- Dirichlet Boundary conditions: $\mathbf{u}=\mathbf{g}$ on $\partial \Omega$ (where $\mathbf{g}(\partial \Omega)=\partial D)$
- Incompressibility: $\operatorname{det}(\nabla \mathbf{u})=1$ or, if \mathbf{u} is injective,

$$
\mathbf{u}_{\#} \mathcal{L}_{\Omega}=\mathcal{L}_{D}
$$

Incompressible Elasticity Known / Unkown

Known:

- Global Minimizers (Ball 1976)
- Existence of pressure for small data.
- Existence of pressure for regular deformations.

Incompressible Elasticity Known / Unkown

Known:

- Global Minimizers (Ball 1976)
- Existence of pressure for small data.
- Existence of pressure for regular deformations.

Unknown:

- Existence of pressure for global minimizers.
- Uniqueness of minimizers. (Some examples of nonuniqueness known.)
- Higher regularity.
- A priori bounds.

Elasticity equilibrium as a polar factorization

- Euler-Lagrange equations: pressure, $p: \Omega \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\nabla \cdot D W(\nabla \mathbf{u}) & =\nabla \mathbf{u}^{-\top} \nabla p \\
\operatorname{det}(\nabla \mathbf{u}) & =1 .
\end{aligned}
$$

Elasticity equilibrium as a polar factorization

- Euler-Lagrange equations: pressure, $p: \Omega \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\nabla \cdot D W(\nabla \mathbf{u}) & =\nabla \mathbf{u}^{-\top} \nabla p \\
\operatorname{det}(\nabla \mathbf{u}) & =1 .
\end{aligned}
$$

- Change variables to the deformed configuration $\omega(\mathbf{y})=p\left(\mathbf{u}^{-1}(\mathbf{y})\right)$. Then

$$
\nabla \mathbf{u}^{-\top} \nabla p=\nabla \omega \circ \mathbf{u}
$$

Elasticity equilibrium as a polar factorization

- Euler-Lagrange equations: pressure, $p: \Omega \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\nabla \cdot D W(\nabla \mathbf{u}) & =\nabla \mathbf{u}^{-\top} \nabla p \\
\operatorname{det}(\nabla \mathbf{u}) & =1 .
\end{aligned}
$$

- Change variables to the deformed configuration $\omega(\mathbf{y})=p\left(\mathbf{u}^{-1}(\mathbf{y})\right)$. Then

$$
\nabla \mathbf{u}^{-\top} \nabla p=\nabla \omega \circ \mathbf{u}
$$

- If ω is convex then ω and \mathbf{u} give a polar factorization of the body forces $\nabla \cdot D W(\nabla \mathbf{u})$.

Elasticity as convex minimization.

- The constraint $\operatorname{det}(\nabla \mathbf{u})=1$ is non-convex.

Elasticity as convex minimization.

- The constraint $\operatorname{det}(\nabla \mathbf{u})=1$ is non-convex.
- The relaxation $\mathbf{u}_{\#} \mathcal{L}_{\Omega}=\mathcal{L}_{D}$ is still non-convex.

Elasticity as convex minimization.

- The constraint $\operatorname{det}(\nabla \mathbf{u})=1$ is non-convex.
- The relaxation $\mathbf{u}_{\#} \mathcal{L}_{\Omega}=\mathcal{L}_{D}$ is still non-convex.
- If ω and W are convex then \mathbf{u} is the unique minimizer of the convex functional

$$
\begin{equation*}
\int_{\Omega}[W(\nabla \mathbf{u})+\omega(\mathbf{u})] d \mathcal{L}_{\Omega} \tag{1}
\end{equation*}
$$

with Dirichlet boundary conditions but without incompressibility.

Energy minimization

Theorem

Suppose \mathbf{u} is an elastic equilibrium with deformed pressure $\omega=p \circ \mathbf{u}^{-1}$. If ω and W are convex, then \mathbf{u} is a global energy minimizer and minimizes the convex functional (1).

Proof.

- \mathbf{u} is a critical point of (1) so is a minimizer of (1) by convexity.
- Let \mathbf{v} be another admissible incompressible deformation. Then

$$
\int_{\Omega} \omega(\mathbf{v}) d \mathcal{L}_{\Omega}=\int_{D} \omega d \mathcal{L}_{D}=\int_{\Omega} \omega(\mathbf{u}) d \mathcal{L}_{\Omega}
$$

- It follows

$$
\int_{\Omega} W(\nabla \mathbf{v}) d \mathcal{L}_{\Omega}=\int_{\Omega}[W(\nabla \mathbf{v})+\omega(\mathbf{v})-\omega(\mathbf{u})] d \mathcal{L}_{\Omega} \geqslant \int_{\Omega} W(\nabla \mathbf{u}) d \mathcal{L}_{\Omega}
$$

Examples / Counter examples

- Ex: Affine boundary conditions, $\mathbf{u}=\mathbf{A x}+\mathbf{b}$ on $\partial \Omega$. Then $p=\omega=0$. The affine map is the energy minimizer.

Examples / Counter examples

- Ex: Affine boundary conditions, $\mathbf{u}=\mathbf{A x}+\mathbf{b}$ on $\partial \Omega$. Then $p=\omega=0$. The affine map is the energy minimizer.
- X Ex: Linearize around identity with $W(\nabla \mathbf{u})=\frac{1}{2}|\nabla \mathbf{u}|^{2}$ to get Stokes equation. Pressure is harmonic, not convex.

Examples / Counter examples

- Ex: Affine boundary conditions, $\mathbf{u}=\mathbf{A x}+\mathbf{b}$ on $\partial \Omega$. Then $p=\omega=0$. The affine map is the energy minimizer.
- X Ex: Linearize around identity with $W(\nabla \mathbf{u})=\frac{1}{2}|\nabla \mathbf{u}|^{2}$ to get Stokes equation. Pressure is harmonic, not convex.
- Ex: Identity boundry conditions, ψ is convex, minimizing

$$
W(\nabla \mathbf{u})-\nabla \psi(\mathbf{x}) \cdot \mathbf{u}(x)
$$

results in pressure $\omega=p=\psi$.

Examples / Counter examples

- Ex: Affine boundary conditions, $\mathbf{u}=\mathbf{A x}+\mathbf{b}$ on $\partial \Omega$. Then $p=\omega=0$. The affine map is the energy minimizer.
- X Ex: Linearize around identity with $W(\nabla \mathbf{u})=\frac{1}{2}|\nabla \mathbf{u}|^{2}$ to get Stokes equation. Pressure is harmonic, not convex.
- Ex: Identity boundry conditions, ψ is convex, minimizing

$$
W(\nabla \mathbf{u})-\nabla \psi(\mathbf{x}) \cdot \mathbf{u}(x)
$$

results in pressure $\omega=p=\psi$.

- Ex: If pressure, ω_{0}, is λ-semiconvex at an equilibrium \mathbf{u}_{0}, then modify the energy by $W(\nabla \mathbf{u})-2 \lambda \mathbf{u} \cdot \mathbf{u}_{0}$, and the pressure becomes $\omega(\mathbf{y})=\omega_{0}(\mathbf{y})+\lambda|y|^{2}$.

Directions

- How are regularity of ω and \mathbf{u} related (elliptic systems regularity / OT regularity)

Directions

- How are regularity of ω and \mathbf{u} related (elliptic systems regularity / OT regularity)
- Maximum principle (Pogorelov) type arguments to control semiconvexity of ω ?

Directions

- How are regularity of ω and \mathbf{u} related (elliptic systems regularity / OT regularity)
- Maximum principle (Pogorelov) type arguments to control semiconvexity of ω ?
- Handling other boundary conditions? The deformed domain D is no longer fixed.

Compressible Elasticity

- Consider the problem of minimizing

$$
W(\nabla \mathbf{u})+\Phi\left(\mathbf{u}_{\#} \mathcal{L}_{\Omega}\right)
$$

Compressible Elasticity

- Consider the problem of minimizing

$$
W(\nabla \mathbf{u})+\Phi\left(\mathbf{u}_{\#} \mathcal{L}_{\Omega}\right)
$$

- The deformed pressure is given by $\omega \in \partial \Phi$.

Compressible Elasticity

- Consider the problem of minimizing

$$
W(\nabla \mathbf{u})+\Phi\left(\mathbf{u}_{\#} \mathcal{L}_{\Omega}\right)
$$

- The deformed pressure is given by $\omega \in \partial \Phi$.
- Example: If $W(\nabla \mathbf{u})+h(\operatorname{det} \nabla u)$ corresponds to

$$
\Phi(\mu)=\int_{D} \phi\left(\frac{d \mu}{d \mathcal{L}_{D}}\right) d \mathcal{L}_{D}
$$

with $\phi(s)=h\left(s^{-1}\right) s$.

Compressible Elasticity

- Consider the problem of minimizing

$$
W(\nabla \mathbf{u})+\Phi\left(\mathbf{u}_{\#} \mathcal{L}_{\Omega}\right)
$$

- The deformed pressure is given by $\omega \in \partial \Phi$.
- Example: If $W(\nabla \mathbf{u})+h(\operatorname{det} \nabla u)$ corresponds to

$$
\Phi(\mu)=\int_{D} \phi\left(\frac{d \mu}{d \mathcal{L}_{D}}\right) d \mathcal{L}_{D}
$$

with $\phi(s)=h\left(s^{-1}\right) s$.

- Same energy minimization result when ω is convex.

Connection with Wasserstein Harmonic Maps

- Direct convex relaxation of $\mathbf{u}: \Omega \rightarrow D$ to $\pi \in \mathcal{M}(\Omega \times D)$ with fixed marginals.

Connection with Wasserstein Harmonic Maps

- Direct convex relaxation of $\mathbf{u}: \Omega \rightarrow D$ to $\pi \in \mathcal{M}(\Omega \times D)$ with fixed marginals.
- Matrix-valued 'momentum measure' $\mathbf{J} \in \mathcal{M}(\Omega \times D)^{d^{2}}$. Continuity equation (plus b.c.'s):

$$
\nabla_{\Omega} \pi+\nabla_{D} \cdot \mathbf{J}=0
$$

Connection with Wasserstein Harmonic Maps

- Direct convex relaxation of $\mathbf{u}: \Omega \rightarrow D$ to $\pi \in \mathcal{M}(\Omega \times D)$ with fixed marginals.
- Matrix-valued 'momentum measure' $\mathbf{J} \in \mathcal{M}(\Omega \times D)^{d^{2}}$. Continuity equation (plus b.c.'s):

$$
\nabla_{\Omega} \pi+\nabla_{D} \cdot \mathbf{J}=0
$$

- Stored energy becomes

$$
\int_{\Omega} \int_{D} W\left(\frac{d \mathbf{J}}{d \pi}\right) d \pi
$$

Connection with Wasserstein Harmonic Maps

- Direct convex relaxation of $\mathbf{u}: \Omega \rightarrow D$ to $\pi \in \mathcal{M}(\Omega \times D)$ with fixed marginals.
- Matrix-valued 'momentum measure' $\mathbf{J} \in \mathcal{M}(\Omega \times D)^{d^{2}}$. Continuity equation (plus b.c.'s):

$$
\nabla_{\Omega} \pi+\nabla_{D} \cdot \mathbf{J}=0
$$

- Stored energy becomes

$$
\int_{\Omega} \int_{D} W\left(\frac{d \mathbf{J}}{d \pi}\right) d \pi
$$

- When ω is convex then it is a solution to the dual problem; this measure-valued relaxed problem coincides with the original.

