The Bernstein problem for parametric elliptic functionals

Connor Mooney

UC Irvine

June 29, 2020

Connor Mooney (UC Irvine)

Bernstein problem

June 29, 2020 1 / 21

Theorem (Bernstein, 1915-17)

Assume $u \in C^2(\mathbb{R}^2)$ solves the minimal surface equation

$$div\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0.$$

Then u is linear.

• Different from linear case (many entire harmonic functions)

Bernstein Problem:

Prove the same result in higher dimensions, or construct a counterexample.

Solution to the Bernstein problem:

- n = 2 (Bernstein, 1915-17): Topological argument
- New proof (Fleming, 1962): Monotonicity formula, nontrivial solution in ℝⁿ ⇒ non-flat area-minimizing hypercone K ⊂ ℝⁿ⁺¹

•
$$n = 3$$
 (De Giorgi, 1965): $K = C \times \mathbb{R}$

- n = 4 (Almgren, 1966), n ≤ 7 (Simons, 1968): Stable minimal cones are flat in low dimensions
- $n \ge 8$ (Bombieri-De Giorgi-Giusti, 1969): Counterexample!

The Bernstein Problem

Connor Mooney (UC Irvine)

The Bernstein Problem

< ロ > < 同 > < 回 > < 回 > < 回 >

The Bernstein Problem

 $K = C \times R$ non-flat area-min. cone in R^n

Bernstein's theorem generalizes to all dimensions with growth hypotheses:

•
$$|\nabla u| < C$$
 (De Giorgi-Nash, 1958)

- u(x) < C(1 + |x|) (Bombieri-De Giorgi-Miranda, 1969)
- $|\nabla u(x)| = o(|x|)$ (Ecker-Huisken, 1990)

Some beautiful open problems:

- Do all entire solutions of the MSE have polynomial growth?
- Does there exist a nonlinear polynomial that solves the MSE?

Object of interest: $\Sigma \subset \mathbb{R}^{n+1}$ oriented hypersurface, minimizes

$$A_{\Phi}(\Sigma) := \int_{\Sigma} \Phi(\nu) \, dA.$$

Here $\nu =$ unit normal, and Φ is 1-homogeneous, positive and $C^{2, \alpha}$ on \mathbb{S}^n , and $\{\Phi < 1\}$ uniformly convex ("uniform ellipticity")

E-L Equation: $\Phi_{ij}(\nu)II_{ij} = 0$ ("balancing of principal curvatures")

Φ-Bernstein Problem:

If Σ is the graph of a function $u : \mathbb{R}^n \to \mathbb{R}$, is it necessarily a hyperplane?

Connor Mooney (UC Irvine)

• < = • < = •

Positive results:

- n = 2 (Jenkins, 1961): ν is quasiconformal
- n = 3 (Simon, 1977): Regularity theorem of Almgren-Schoen-Simon (1977) for parametric problem
- $n \leq 7$ if $\|\Phi 1\|_{C^{2,1}(\mathbb{S}^n)}$ small (Simon, 1977)
- |
 abla u| < C (De Giorgi-Nash) or |u(x)| < C(1+|x|) (Simon, 1971)

Question: $4 \le n \le 7$???

Theorem (M., '19)

There exists a quadratic polynomial on \mathbb{R}^6 whose graph minimizes A_{Φ} for a uniformly elliptic integrand Φ .

- Φ necessarily far from 1 on \mathbb{S}^6 (level sets "box-shaped")
- $\bullet\,$ The analogous quadratic polynomial does not work in \mathbb{R}^4

• Open: n = 4, 5

Approach of Bombieri-De Giorgi-Giusti ($\Phi(x) = |x|$):

Let $(x, y) \in \mathbb{R}^8$ with $x, y \in \mathbb{R}^4$, and let $C := \{|x| = |y|\}$

- Find a smooth perturbation Σ of the Simons cone C, whose dilations foliate one side (ODE analysis)
- Notice that $\Sigma \sim \{r^3 \cos(2\theta) = 1\}$ far from the origin (here $r^2 = |x|^2 + |y|^2$, $\tan \theta = |y|/|x|$)
- Build global super/sub-solutions $\sim r^3 \cos(2\theta)$ in $\{|x| > |y|\}$ (hard), solve Dirichlet problem in larger and larger balls

June 29, 2020 14 / 21

э

Our approach: Fix u, build Φ

Equation is φ_{ij}(∇u)u_{ij} = 0 (here φ(p) := Φ(−p, 1)), rewrite in terms of Legendre transform u^{*} of u as

$$(u^*)^{ij}\varphi_{ij}=0$$

(a linear hyperbolic eqn for Φ)

• Let $(x, y) \in \mathbb{R}^{2k}$, $x, y \in \mathbb{R}^k$, $u = \frac{1}{2}(|x|^2 - |y|^2)$, $\varphi = \psi(|x|, |y|)$ Equation becomes

$$\Box \psi + (k-1)\nabla \psi \cdot \left(\frac{1}{s}, -\frac{1}{t}\right) = 0$$

in positive quadrant (here $|x|=s, \ |y|=t, \ \Box=\partial_s^2-\partial_t^2)$

The case k = 3 is special:

• Equation reduces to $\Box(st \psi) = 0$, so

$$\psi(s, t) = \frac{f(s+t) + g(s-t)}{st}$$

• Choose f, g carefully s.t. Φ is uniformly elliptic (tricky part)

One choice of Φ is

$$\Phi(p, q, z) = rac{ig(|p| + |q|)^2 + 2z^2 ig)^{3/2} - ig((|p| - |q|)^2 + 2z^2 ig)^{3/2}}{2^{5/2} |p||q|},$$

with $p, q \in \mathbb{R}^3$ and $z \in \mathbb{R}$.

Some remarks:

• There are many possible choices of Φ (perturb f, g)

•
$$\{u = const.\}$$
 minimize $A_{\Phi_0}, \Phi_0 = \Phi|_{\{x_7=0\}}$ (homogeneity of u)

The case u = ¹/₂(|x|² - |y|²), k = 2: By above remark, {u = 1} must minimize a uniformly elliptic functional. This is false when k = 2 (symmetries of u + ODE analysis)

However, the cone $C := \{u = 0\} \subset \mathbb{R}^4$ does minimize a uniformly elliptic functional (Morgan, 1990)...

(Joint with Y. Yang)

An approach in the case n = 4: combine the previous ones

Proof by "foliation" of Morgan's result:

Calculations indicate can foliate sides of $C \subset \mathbb{R}^4$ by hypersurfaces that minimize uniformly elliptic functionals, look like level sets of γ -homogeneous functions with $\gamma \in (1, 2)$

Pix entire functions u on ℝ⁴ that are asymptotically γ-homogeneous with γ ∈ (1, 2), prove graphs minimize uniformly elliptic functionals (In dimension n ≥ 4: same with γ ∈ (1, n − 2))

(Joint with Y. Yang):

Controlled growth question:

• Positive result if $|\nabla u|$ grows slowly enough (e.g. $|\nabla u| = O(|x|^{\epsilon}))$?

Regularity of Φ :

• In above constructions, $\Phi \in C^{2,1}(\mathbb{S}^n)$. Can we make $\Phi \in C^{\infty}(\mathbb{S}^n)$? Analytic on \mathbb{S}^n ? Thank you!

▶ ∢ ⊒

(日)