The Bernstein problem for parametric elliptic functionals

Connor Mooney

UC Irvine
June 29, 2020

The Bernstein Problem

Theorem (Bernstein, 1915-17)

Assume $u \in C^{2}\left(\mathbb{R}^{2}\right)$ solves the minimal surface equation

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

Then u is linear.

- Different from linear case (many entire harmonic functions)

Bernstein Problem:

Prove the same result in higher dimensions, or construct a counterexample.

The Bernstein Problem

Solution to the Bernstein problem:

- $n=2$ (Bernstein, 1915-17): Topological argument
- New proof (Fleming, 1962): Monotonicity formula, nontrivial solution in $\mathbb{R}^{n} \Rightarrow$ non-flat area-minimizing hypercone $K \subset \mathbb{R}^{n+1}$
- $n=3$ (De Giorgi, 1965): $K=C \times \mathbb{R}$
- $n=4$ (Almgren, 1966), $n \leq 7$ (Simons, 1968): Stable minimal cones are flat in low dimensions
- $n \geq 8$ (Bombieri-De Giorgi-Giusti, 1969): Counterexample!

The Bernstein Problem

- $\operatorname{det} D^{2} \omega<0$ in $\mathbb{R}^{2} \Rightarrow$ tang. planes to graph (ω) disconn. it into $\geqslant 4$ unbnd'd pieces

- "cor:" $\underbrace{a_{i j}(x) \omega_{i j}=0 \text { in } \mathbb{R}^{2}}_{\text {pos }} \begin{array}{l}\omega=o(|x|)\end{array}\} \Rightarrow \omega=$ const.
- Apply to $w:=\underbrace{\tan ^{-1}\left(U_{e}\right)}$
harmonic on graph (u)

The Bernstein Problem

$K \subset \mathbb{R}^{3}$ cone + minimal \Rightarrow flat
(only I nonzero curvature)

The Bernstein Problem
 non-flat area-min. cone in \mathbb{R}^{n}

The Bernstein Problem

Bernstein's theorem generalizes to all dimensions with growth hypotheses:

- $|\nabla u|<C$ (De Giorgi-Nash, 1958)
- $u(x)<C(1+|x|)$ (Bombieri-De Giorgi-Miranda, 1969)
- $|\nabla u(x)|=o(|x|)$ (Ecker-Huisken, 1990)

Some beautiful open problems:

- Do all entire solutions of the MSE have polynomial growth?
- Does there exist a nonlinear polynomial that solves the MSE?

Parametric Elliptic Functionals

Object of interest: $\Sigma \subset \mathbb{R}^{n+1}$ oriented hypersurface, minimizes

$$
A_{\Phi}(\Sigma):=\int_{\Sigma} \Phi(\nu) d A
$$

Here $\nu=$ unit normal, and Φ is 1 -homogeneous, positive and $C^{2, \alpha}$ on \mathbb{S}^{n}, and $\{\Phi<1\}$ uniformly convex ("uniform ellipticity")

E-L Equation: $\Phi_{i j}(\nu) I_{i j}=0$ ("balancing of principal curvatures")

ϕ-Bernstein Problem:

If Σ is the graph of a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is it necessarily a hyperplane?

Ф-Bernstein Problem

$$
\underbrace{\Phi_{i j}(\nu)}_{\text {grals } \in\left[\lambda, \lambda^{-1}\right]} \mathbb{I}_{i j}=0
$$

$$
\begin{aligned}
& \varphi_{\omega_{j}}(\nabla u) U_{v j}=0 \\
& \varphi(\cdot)=\Phi(-\cdot 1)
\end{aligned}
$$

(Ellipticity degen as

$$
|\nabla u| \rightarrow \infty)
$$

$$
\int \Phi(\nu) d A=\int \Phi\left(\frac{-\nabla u, 1}{\sqrt{ }}\right) \sqrt{\cdot} d x=\int \varphi(\nabla u) d x
$$

Ф-Bernstein Problem

Positive results:

- $n=2$ (Jenkins, 1961): ν is quasiconformal
- $n=3$ (Simon, 1977): Regularity theorem of Almgren-Schoen-Simon (1977) for parametric problem
- $n \leq 7$ if $\|\Phi-1\|_{C^{2,1}\left(\mathbb{S}^{n}\right)}$ small (Simon, 1977)
- $|\nabla u|<C($ De Giorgi-Nash) or $|u(x)|<C(1+|x|)($ Simon, 1971)

Question: $4 \leq n \leq 7$???

Ф-Bernstein Problem

Theorem (M., '19)

There exists a quadratic polynomial on \mathbb{R}^{6} whose graph minimizes A_{Φ} for a uniformly elliptic integrand Φ.

- Φ necessarily far from 1 on \mathbb{S}^{6} (level sets "box-shaped")
- The analogous quadratic polynomial does not work in \mathbb{R}^{4}
- Open: $n=4,5$

ϕ-Bernstein Problem

Approach of Bombieri-De Giorgi-Giusti $(\Phi(x)=|x|)$:

Let $(x, y) \in \mathbb{R}^{8}$ with $x, y \in \mathbb{R}^{4}$, and let $C:=\{|x|=|y|\}$

- Find a smooth perturbation Σ of the Simons cone C, whose dilations foliate one side (ODE analysis)
- Notice that $\Sigma \sim\left\{r^{3} \cos (2 \theta)=1\right\}$ far from the origin (here $r^{2}=|x|^{2}+|y|^{2}, \tan \theta=|y| /|x|$)
- Build global super/sub-solutions $\sim r^{3} \cos (2 \theta)$ in $\{|x|>|y|\}$ (hard), solve Dirichlet problem in larger and larger balls

Ф-Bernstein Problem

Ф-Bernstein Problem

Φ-Bernstein Problem

Our approach: Fix u, build Φ

- Equation is $\varphi_{i j}(\nabla u) u_{i j}=0$ (here $\varphi(p):=\Phi(-p, 1)$), rewrite in terms of Legendre transform u^{*} of u as

$$
\left(u^{*}\right)^{i j} \varphi_{i j}=0
$$

(a linear hyperbolic eqn for Φ)

- Let $(x, y) \in \mathbb{R}^{2 k}, x, y \in \mathbb{R}^{k}, u=\frac{1}{2}\left(|x|^{2}-|y|^{2}\right), \varphi=\psi(|x|,|y|)$

Equation becomes

$$
\square \psi+(k-1) \nabla \psi \cdot\left(\frac{1}{s},-\frac{1}{t}\right)=0
$$

in positive quadrant (here $|x|=s,|y|=t, \square=\partial_{s}^{2}-\partial_{t}^{2}$)

Φ-Bernstein Problem

The case $k=3$ is special:

- Equation reduces to $\square(s t \psi)=0$, so

$$
\psi(s, t)=\frac{f(s+t)+g(s-t)}{s t}
$$

- Choose f, g carefully s.t. Φ is uniformly elliptic (tricky part)

One choice of Φ is

$$
\Phi(p, q, z)=\frac{\left((|p|+|q|)^{2}+2 z^{2}\right)^{3 / 2}-\left((|p|-|q|)^{2}+2 z^{2}\right)^{3 / 2}}{2^{5 / 2}|p||q|}
$$

with $p, q \in \mathbb{R}^{3}$ and $z \in \mathbb{R}$.

ϕ-Bernstein Problem

Remarks

Some remarks:

- There are many possible choices of Φ (perturb f, g)
- $\{u=$ const. $\}$ minimize $A_{\Phi_{0}}, \Phi_{0}=\left.\Phi\right|_{\left\{x_{7}=0\right\}}$ (homogeneity of u)
- The case $u=\frac{1}{2}\left(|x|^{2}-|y|^{2}\right), k=2$: By above remark, $\{u=1\}$ must minimize a uniformly elliptic functional. This is false when $k=2$ (symmetries of $u+$ ODE analysis)

However, the cone $C:=\{u=0\} \subset \mathbb{R}^{4}$ does minimize a uniformly elliptic functional (Morgan, 1990)...

Current Work

(Joint with Y. Yang)
An approach in the case $n=4$: combine the previous ones
(1) Proof by "foliation" of Morgan's result:

Calculations indicate can foliate sides of $C \subset \mathbb{R}^{4}$ by hypersurfaces that minimize uniformly elliptic functionals, look like level sets of γ-homogeneous functions with $\gamma \in(1,2)$
(2) Fix entire functions u on \mathbb{R}^{4} that are asymptotically γ-homogeneous with $\gamma \in(1,2)$, prove graphs minimize uniformly elliptic functionals
(In dimension $n \geq 4$: same with $\gamma \in(1, n-2)$)

Current Work

(Joint with Y. Yang):

Controlled growth question:

- Positive result if $|\nabla u|$ grows slowly enough (e.g. $\left.|\nabla u|=O\left(|x|^{\epsilon}\right)\right)$?

Regularity of Φ :

- In above constructions, $\Phi \in C^{2,1}\left(\mathbb{S}^{n}\right)$. Can we make $\Phi \in C^{\infty}\left(\mathbb{S}^{n}\right)$? Analytic on \mathbb{S}^{n} ?

Thank you!

