Mean Curvature Flow with Free Boundary

Martin Man-chun Li

The Chinese University of Hong Kong

Asia-Pacific Analysis and PDE Seminar

June 22, 2020

Research supported by grants from CUHK and Hong Kong Research Grants Council.

Outline

- I. Review on Mean Curvature Flow
- II. Mean Curvature Flow with boundary
- III. A new convergence result
- IV. Proof of the main result

I. Review on Mean Curvature Flow

Mean Curvature Flow

A family of hypersurfaces $\{\Sigma_t^n\}$ in \mathbb{R}^{n+1} is said to satisfy the Mean Curvature Flow if they are moving with velocity equal to the mean curvature vector:

$$\partial_t \vec{x} = \vec{H} = -H\vec{n}$$
 (MCF)

- Geometry: MCF is the negative gradient flow for area.
- Analysis: MCF is a non-linear parabolic partial differential equation.
- Physics: Models for evolution of soap films, grain boundaries cf. Mullins.

Existence and Uniqueness

By parabolic PDE theory, we have short-time existence and uniqueness:

Theorem (Hamilton (1982), Huisken (1984))

Given a compact smooth hypersurface $\Sigma \subset \mathbb{R}^{n+1}$, there exists a unique smooth maximal solution $\{\Sigma_t\}_{t \in [0,T)}$ to (MCF) with $\Sigma_0 = \Sigma$ such that

$$\max_{\Sigma_t} |A|^2 \to \infty \qquad \text{as } t \to T < +\infty.$$

Therefore, the flow will encounter singularities in finite time. This leads to

Two Fundamental Questions:

- What kind of singularities can occur?
- I How to continue the flow through singularities?

Huisken's Monotonicity Formula

Huisken (1990) proved the celebrated monotonicity formula (for t < 0)

$$\frac{d}{dt}\int_{\Sigma_t} \Phi = -\int_{\Sigma_t} \left| H\mathbf{n} + \frac{x^{\perp}}{2t} \right|^2 \leq 0 \qquad \text{where } \Phi(x,t) = (-4\pi t)^{-\frac{n}{2}} e^{\frac{|x|^2}{4t}}.$$

As a consequence, the singularities are modelled on *self-similar solutions*.

FIGURE 1. Cylinders, spheres, and planes are self-similar solutions of MCF. The shape is preserved, but the scale changes with time.

Singularity Models in \mathbb{R}^3

There are 3 types of self-similar solutions: *shrinkers, translators* and *expanders*. Among them, the most important ones are shrinkers, which only undergo homothetic changes under the flow.

Other than round spheres and cylinders, **Angenent (1989)** constructed a shrinking donut. Numerical evidence by **Chopp (1994)** and **Ilmanen (1995)** suggests that many other examples exist. Some of these examples are constructed recently by gluing methods cf. **Nguyen (2014)**, **Kapouleas-Kleene-Möller (2018)**.

It seems out of reach to obtain a complete classification of singularity models. Instead, one may ask the following questions:

- What are the generic singularities? c.f. Colding-Minicozzi (2012)
- What if we impose further geometric assumptions?

Consequences of Maximum Principle

• Avoidance Principle: Two hypersurfaces that are initially disjoint remain disjoint. In particular, embeddedness is preserved under the flow. Moreover, compact MCF in \mathbb{R}^{n+1} must become extinct in finite time.

- Let κ₁ ≤ κ₂ ≤ ··· ≤ κ_n be the principal curvatures of Σ_t, Huisken (1984) and Huisken-Sinestrari (2009) proved that the following conditions are preserved under the flow:
 - **1** *convex*: $\kappa_1 > 0$
 - (a) two-convex: $\kappa_1 + \kappa_2 > 0$
 - **3** mean convex: $H = \kappa_1 + \cdots + \kappa_n > 0$

Contracting hypersurfaces to a point in \mathbb{R}^{n+1}

Under certain assumptions, only the singularity of shrinking spheres can occur.

Theorem (Huisken (1984))

Any compact convex hypersurface in \mathbb{R}^{n+1} converges to a "round point".

When n = 1, **Gage-Hamilton (1986)** and **Grayson (1987)** showed that any simple closed curve in \mathbb{R}^2 converges to a round point. Andrews-Bryan (2011) gave a new proof using the two-point maximum principle.

FIGURE 2. The snake manages to unwind quickly enough to become convex before extinction.

MCF in Riemannian manifolds

Theorem (Huisken (1986))

Let (M^{n+1}, g) be a complete Riemannian manifold with positive injectivity radius inj $(M, g) \ge i_0 > 0$ that satisfies the following uniform curvature bounds:

 $-K_1 \leq K \leq K_2$ and $|\nabla Rm| \leq L$,

Then, any initial hypersurface Σ_0 satisfying

$$H h_{ij} > nK_1 g_{ij} + \frac{n^2}{H} L g_{ij}$$

would shrink to a round point in finite time under MCF.

In particular, any compact convex hypersurface in \mathbb{S}^{n+1} converges to a round point in finite time.

When n = 1, **Grayson (1989)** showed a dichotomy that any simple closed curve in a closed surface (M^2, g) would either (i) converge to a round point in finite time or (ii) converge to a simple closed geodesic as $t \to T$.

Weak notions of MCF

There are several ways to continue the flow after singularities have occured.

MCF with surgery

Idea: stop the flow very close to the first singular time, then remove regions of large curvature and replace by more regular ones cf. **Huisken-Sinestrari** (2009), Brendle-Huisken (2016) and Haslhofer-Kleiner (2017)

2 Level set flow

Idea: represent the evolving hypersurface as the level sets of a function v(x, t) where $\Sigma_t = \{x \in \mathbb{R}^{n+1} : v(x, t) = 0\}$ cf. Evans-Spruck (1991), Chen-Giga-Goto (1991), Colding-Minicozzi (2016-2019)

Brakke flow

Idea: use Geometric Measure Theory to define the flow of singular hypersurfaces with "good" compactness properties cf. **Brakke (1978)**, **Ilmanen (1994)**, **White (2000, 2002, 2015)**

Grayson's dumbbell

FIGURE 4. Grayson's dumbbell; initial surface and step 1.

FIGURE 5. The dumbbell; steps 2 and 3.

FIGURE 6. The dumbbell; steps 4 and 5.

FIGURE 7. The dumbbell; steps 6 and 7 (see also [May]).

II. Mean Curvature Flow with boundary

Mean Curvature Flows with boundary

Question

Can we evolve hypersurfaces with boundary under MCF?

YES, provided that suitable boundary conditions are imposed. Two types of commonly considered boundary conditions are:

- Dirichlet: The motion of the boundary ∂Σ_t is either fixed or prescribed cf.
 White (1995, 2019)
- *Neumann:* The boundary ∂Σ_t can move freely on a given hypersurface S ⊂ ℝⁿ⁺¹ and Σ_t is either orthogonal to S or with prescribed contact angle cf. Huisken (1989), Altschuler (1994), Stahl (1996)

Remark: The corresponding boundary value problems for Ricci flow is more subtle cf. **Gianniotis (2016)**

Free-boundary MCF

Definition

Let $S \subset \mathbb{R}^{n+1}$ be a smooth embedded hypersurface without boundary, oriented by the unit normal ν_S . A family $\{\Sigma_t\}$ of hypersurfaces with boundary is evolving by the free-boundary Mean Curvature Flow w.r.t. the "barrier" S if

• Σ_t satisfies (MCF) in the interior

 $\ \, {\it O} \Sigma_t \subset S \ {\it and} \ \Sigma_t \perp S \ {\it along} \ \partial \Sigma_t \ {\it from ``inside'' \ of} \ S$

Some results on free-boundary MCF

Huisken (1989) obtained long time convergence of the flow for graphs over compact domain in \mathbb{R}^n . Various graphical settings are also considered by Wheeler (2014, 2017) and Wheeler-Wheeler (2017).

Stahl (1996) established the short-time existence and uniqueness for compact initial data. **Buckland (2005)** proved a Huisken-type monotonicity formula. In the mean convex setting, **Edelen (2016)** showed the convexity estimates along the lines of **Huisken-Sinestrari (1999)**.

For weak solutions, the level set flow in the free boundary setting was first introduced by **Giga-Sato (1992)**. Edelen (2018) defined the corresponding notion of Brakke flow. Mizuno-Tonegawa (2018) and Kagaya (2017) etc. studied the Allen-Cahn equation counterpart. Recently, the regularity theory of White was generalized by Edelen-Haslhofer-Ivaki-Zhu (2019) to the free boundary setting.

III. A new convergence result

Convergence results for free-boundary MCF

Question

Under what conditions would a hypersurface converge to a "round half-point"?

FIGURE 1. A convex surface with free boundary contained in a convex barrier surface is evolving under mean curvature flow to a shrinking hemisphere.

Theorem (Stahl (1996), Edelen (2016))

Any compact convex hypersurface in \mathbb{R}^{n+1} with free boundary lying on $S = \mathbb{R}^n$ or \mathbb{S}^n converges to a "round half-point" in finite time.

What about for other S?

A new convergence result for free-boundary MCF

In a joint work with Sven Hirsch, we generalize Stahl's convergence result to general convex barrier surfaces in \mathbb{R}^3 .

Theorem (Hirsch-L. (2000) arXiv:2001.01111)

Let $S \subset \mathbb{R}^3$ be a smooth embedded oriented surface satisfying uniform bounds on the second fundamental form

 $|\nabla A_{\mathcal{S}}| + |\nabla^2 A_{\mathcal{S}}| \le L$

and bounds on the interior/exterior ball curvatures

 $0 \leq \underline{Z}_{S} \leq \overline{Z}_{S} \leq K_{2}.$

Then, any compact surface which is "sufficiently convex", depending only on L and K_2 , with free boundary lying on S will shrink to a round half-point in finite time under free-boundary MCF.

Interior/exterior ball curvatures

In studying non-collapsing of MCF, Andrews defined the interior ball curvature of S w.r.t. the outward normal ν_S at $p \in S$ by

$$\overline{Z}_{\mathcal{S}}(p) := \sup_{p \neq q \in \mathcal{S}} \left\{ rac{2 \langle p - q, \nu_{\mathcal{S}}(p) \rangle}{|p - q|^2}
ight\},$$

which is the curvature of the largest "interior" ball touching S at p.

The exterior ball curvature $\underline{Z}_{S}(p)$ is similarly defined with inf instead. The ball curvatures control both the principal curvatures and the inscribed radius of S:

•
$$\underline{Z}_S \ge 0 \Leftrightarrow S$$
 is convex

•
$$\overline{Z}_{S}(p) \geq \max \kappa_{i}(p)$$

Huisken's convergence theorem revisited

Theorem (Huisken (1986))

Let (M^{n+1}, g) be a complete Riemannian manifold with positive injectivity radius inj $(M, g) \ge i_0 > 0$ that satisfies the following uniform curvature bounds:

 $-K_1 \leq K \leq K_2$ and $|\nabla Rm| \leq L$,

Then, any initial hypersurface $\boldsymbol{\Sigma}_0$ satisfying

$$H h_{ij} > n \mathcal{K}_1 g_{ij} + \frac{n^2}{H} \mathcal{L} g_{ij} \tag{(*)}$$

would shrink to a round point in finite time under MCF.

Comparing with our main theorem:

- we require up to second order derivative bounds on A_S
- the injectivity radius bound i_0 is replaced by the ball curvature bound K_2
- we do not have a sharp preserved inequality (*)

IV. Proof of the main result

Main difficulties and key ideas in the proof

Our proof follows the general strategy in **Huisken (1984)**. There are, however, several new features in our proof which do not appear in the boundaryless case:

- opssibility of boundary extrema
- (2) uncontrollable cross terms of second fundamental form at the boundary
- **(a)** loss of umbilicity (even if Σ_0 and S are totally umbilic)

We will deal with these new difficulties as follow:

- apply **Edelen (2016)**'s weight function trick to force the extrema away from the boundary
- introduce a new perturbation of the second fundamental form to get a reasonable boundary normal derivative
- establish new convexity and pinching estimates with "controlled decay"

Step 1: Finite extinction time

Claim: H_{min} blows up in finite time

The evolution equation for H reads

$$(\partial_t - \Delta) H = |A|^2 H$$

By maximum principle, any positive lower bound on H is preserved under the flow and thus H_{min} must blow up in finite time unless H_{min} occurs at a boundary point! However, this is impossible if S is convex since the boundary derivative of Hsatisfies

$$\frac{\partial}{\partial \eta}H = h_{\nu\nu}^{\mathsf{S}}H \ge 0.$$

Step 2: Preserving convexity

Claim: For D >> 1, $h_{ij} \ge Dg_{ij}$ at $t = 0 \Rightarrow h_{ij} \ge \frac{D}{3}g_{ij}$ for all t

The evolution equation for h_{ij} reads

$$(\partial_t - \Delta) h_{ij} = -2Hh_{im}h^m_{\ j} + |A|^2h_{ij}$$

By Hamilton's tensor maximum principle, any non-negative lower bound on h_{ij} is preserved under the flow unless the minimum occurs at a boundary point! The boundary normal derivatives are given by

$$\nabla_1 h_{11} = 2h_{22}^S H + (h_{\nu\nu}^S - 3h_{22}^S)h_{11} + \nabla_{\nu}^S h_{22}^S \tag{1}$$

$$\nabla_1 h_{22} = h_{22}^S H + (h_{\nu\nu}^S - 3h_{22}^S)h_{22} - \nabla_{\nu}^S h_{22}^S$$
(2)

Here, $\{e_1, e_2, \nu\}$ is an O.N.B. for \mathbb{R}^3 along $\partial \Sigma$ such that $e_1 = \nu_S$, $e_2 \in T(\partial \Sigma)$ and $\nu \perp \Sigma$. Notice that:

- The R.H.S. of (1) and (2) do not have a sign.
- $\nabla_1 h_{12}$ is not controllable by lower order terms. (Irrelevant for umbilic S!)

Step 2: Preserving convexity (continued)

Idea: Introduce a perturbation term to h_{ij} so that the cross term vanishes.

Consider an auxiliary 5-tensor $P \text{ on } \mathbb{R}^3$, depending only on S, defined by

$$P(U, V, X, Y, Z) := (A_S(U, X)\nu_S^{\flat}(V) + A_S(V, X)\nu_S^{\flat}(U)) g_S(Y, Z) - (g_S(U, X)\nu_S^{\flat}(V) + g_S(V, X)\nu_S^{\flat}(U)) A_S(Y, Z).$$

We define the perturbed second fundamental form \tilde{A} of Σ as

$$\tilde{A}(X,Y) := A(X,Y) + P^{\Sigma}(X,Y)$$

where $P^{\Sigma}(X, Y) := P(X, Y, \nu, \nu, \nu)$. We have along $\partial \Sigma$:

• $\tilde{h}_{11} = h_{11}$, $\tilde{h}_{22} = h_{22}$ and $\tilde{h}_{12} = 0$; (note that $h_{12} = -h_{2\nu}^{S}$) cf. Edelen (2016) • $\nabla_1 \tilde{h}_{ij} = \nabla_1 h_{ij}$ (by our chosen extension) New!

Step 2: Preserving convexity (continued)

We then establish a convexity estimate for \tilde{h}_{ij} . We can exclude boundary minimum points as follow. Suppose \tilde{h}_{11} is the boundary minimum.

$$\begin{aligned} \nabla_1 \tilde{h}_{11} &= \nabla_1 h_{11} = 2h_{22}^S H + (h_{\nu\nu}^S - 3h_{22}^S)h_{11} + \nabla_{\nu}^S h_{22}^S \\ &\geq (h_{\nu\nu}^S + h_{22}^S)h_{11} + \nabla_{\nu}^S h_{22}^S \\ &= H^S h_{11} + \nabla_{\nu}^S h_{22}^S > 0 \end{aligned}$$

when h_{11} is sufficiently large. Similar calculation shows $\nabla_1 \tilde{h}_{22} > 0$. Thus any minimum of \tilde{h}_{ij} is in the interior. Using the estimate

$$|(\partial_t - \Delta)P^{\Sigma}| \leq C_S(1 + |A|^2)$$

we obtain the convexity estimate via the maximum principle for tensors.

Step 3: Preserving pinching

Claim: $h_{ij} \ge \epsilon H g_{ij}$ is preserved under the flow for some $\epsilon > 0$

• Huisken (1984) proved this for any $\epsilon \in (0, 1/2]$ with $\epsilon = 1/2$ corresponding to the situation that Σ is totally umbilic (think about shrinking sphere). It is impossible to establish this optimal pinching estimate in the free boundary setting (even when $S = \mathbb{S}^2$):

 This loss of umbilicity phenomenon is due to the (in)-compatibility of the initial data at the boundary (the flow is only C^{2+α,1+α/2} there). Note that

$$\frac{\partial}{\partial \eta} H = \mathbf{h}_{\nu\nu}^{\mathsf{S}} H$$

only holds for t > 0 unless there are higher order compatibility at t = 0

Step 4: Stampacchia iteration

Finally, we use Stampacchia iteration to prove

Claim: $\frac{|A|^2 - \frac{1}{2}H^2}{H^{2-\sigma}}$ is uniformly bounded for all time for some $\sigma > 0$

- We need again to consider the perturbed \tilde{A} and \tilde{H} .
- Using the claim, we can establish the following: for any $\eta>$ 0,

$$|A|^{2} - \frac{1}{2}H^{2} \leq \eta H^{2} + C(S, \eta, \Sigma_{0})$$

$$|\nabla H|^2 \leq \eta H^4 + C(S, \eta, \Sigma_0)$$

from which our main result follows.

Thank you for your attention.

Credits: Picture credits to Colding - Minicozzi and Ben Andrews.

