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Chern-Simons-Schrödinger equation

We consider the Chern-Simons-Schrödinger equation:
Dtφ = iDjDjφ + ig |φ |2φ ,

F01 =−Im(φD2φ),

F02 = Im(φD1φ),

F12 =− 1
2 |φ |

2,

with a scalar field φ : R1+2→ C, covariant derivatives Dα = ∂α + iAα for
α ∈ {0,1,2}, (real-valued) connection 1-form A = A0dt +A1dx1 +A2dx2, and
curvature 2-form Fjk := ∂jAk −∂kAj .

I Non-relativistic Lagrangian theory,
I Planar physical phenomena, e.g. quantum Hall effect and high

temperature superconductivity,
I Gauge invariance: for any χ : R1+2→ R,

(φ ,A) 7→ (e iχ φ ,A−dχ)

I See Jackiw-Pi (’90 PRL, ’90 PRD)



Coulomb gauge and equivariance condition

Coulomb gauge condition

∂1A1 + ∂2A2 = 0 or Ar = 0.

Equivariance ansatz:
φ(t,x) = e imθu(t, r).

I m ∈ Z is called the equivariance index.
I The full equation becomes

i∂tu+
(

∂rr +
1
r

∂r −
m2

r2

)
u− 2mAθ

r
u−A2

θu−A0u+g |u|2u = 0

with connection components
Aθ =−1

2

∫ r

0
|u|2r ′dr ′,

A0 =−
∫

∞

r
(m+Aθ )|u|2 dr

′

r ′
.



Bogomol’nyi operator
Bogomol’nyi operator

D+u := D(u)
+ u =

(
∂r −

m+Aθ [u]

r

)
u.

I It is the radial part of D1 + iD2.
I Hamiltonian structure:

i∂tφ =
δE

δφ
,

where δE
δφ

is the Fréchet derivative computed under the real inner product
(u,v)r := Re

∫
R2 uv .

I Energy functional has the expression

E [u] =
1
2

∫
|D+u|2 +

1−g

4

∫
|u|4.

The factor 1 arises from the curvature term Frθ . Thus, g < 1 is
defocusing and g ≥ 1 is focusing.

I GWP and Scattering under equivariance: Liu-Smith (’16)
I g < 1: all L2-data
I g ≥ 1: L2-data whose charge is less than that of the ground state.

I The borderline case g = 1 is called the self-dual case.



Equivariant self-dual CSS
From now on, we restrict to the self-dual case g = 1.

I (CSS) in various forms:

i∂tu =−
(

∂rr +
1
r

∂r

)
u+

(m+Aθ

r

)2
u+A0u−|u|2u, (CSS)

i∂tu+ ∆mu =−|u|2u+
2mAθ

r2
u+

A2
θ

r2
u+A0u, (lin./nonlin.)

i∂tu = L∗uD
(u)
+ u. (self-dual)

I ∆m := ∂rr + 1
r ∂r − m2

r2 is the Laplacian for m-equivariant functions.

I Lu is the linearized operator of D(u)
+ u = ∂r − 1

r (m+Aθ [u]).

L∗uf = D
(u)∗
+ f +u

∫
∞

r Reuf dr ′ is its adjoint.
I Connection components:

Aθ [u] =−1
2

∫ r

0
|u|2r ′dr ′,

A0[u] =−
∫

∞

r
(m+Aθ [u])|u|2 dr

′

r ′
.

I Tail of Aθ :

Aθ (0) = 0, Aθ (r) ↓ Aθ (∞) =− 1
4π

M[u] 6= 0.



Symmetries and conservation laws

I Symmetries:

u(t, r) 7→


e iθu(t, r) (phase rotation)

λu(λ
2t,λ r) (L2-critical scaling)

1
t e

i |x |
2

4t φ(− 1
t ,

x
t ) (pseudoconformal)

Also, there are space/time translation, spatial rotation, time reversal, and
Galilean boost.

I Charge and Energy:

M[u] =
∫
|u|2, E [u] =


∫ 1

2
|∂ru|2 +

1
2

(m+Aθ

r

)2
|u|2− 1

4
|u|4,∫ 1

2
|D+u|2.

I Virial Identities:
∂t

(∫
|r |2|u|2

)
= 4

∫
R2

Im(u · r∂ru),

∂t

(∫
R2

Im(u · r∂ru)
)

= 4E .



Cauchy theory

The evolution by (CSS) should be understood modulo gauge equivalence. To
study the Cauchy theory of (CSS), we should fix one representative (φ ,A) from
its (gauge-)equivalence class.

I Under the Coulomb gauge:
Large data H1-subcritical LWP (Berge-de Bouard-Saut ’95, Huh ’13, Lim
’18)
Sufficient conditions for blow-up (Berge-de Bouard-Saut ’95)
Explicit blow-up solutions for g = 1 (Jackiw-Pi ’90, Huh ’09)
Decay estimates for small data (Oh-Pusateri ’15)

I Equivariance under the Coulomb gauge:
Large data L2-critical GWP and Scattering (Liu-Smith ’16)

I Under the Heat gauge:
Small data Hε -subcritical LWP for any ε > 0 (Liu-Smith-Tataru ’14)



Static solution
A solution u(t, r) to (CSS) is said to be static if u is independent of t. From

i∂tu =
δE

δu
and E [u] =

1
2

∫
|D+u|2 ≥ 0.

I FACT: A solution is static if and only if of zero energy.
I It satisfies the Bogomol’nyi equation;

D+u =
(

∂r −
m+Aθ [u]

r

)
u = 0, Aθ [u] =−1

2

∫ r

0
|u|2r ′dr ′.

This is a nonlocal first-order ODE.
I Explicit m-equivariant static solutions (unique up to phase/scaling):

Q(r) =
√
8(m+1)

rm

1+ r2(m+1)
.

Note Q has degeneracy rm at 0 and polynomially decays r−(m+2) at ∞.

Aθ (Q)(∞) =−2(m+1) =− 1
4π

M(Q).

I Applying the pseudoconformal transformation to the static solution Q, we
have an explicit finite-time blow-up solution

S(t, r) :=
1
|t|

Q
( r

|t|

)
e
−i r2

4|t| , ∀t < 0.

And the blow-up rate is

‖∇S(t)‖L2 ∼ 1
|t|

.

We call this blow-up rate the pseudoconformal blow-up rate.
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Main Results

Question: How generic is the pseudoconformal blow-up solutions?
Let m ≥ 1. Let z∗ be a prescribed asymptotic profile satisfying (H) with
0< α∗� 1.

Assumption (H)
−(m+2)-equivariant function z̃∗ := e−i(2m+2)θ z∗ satisfies ‖z̃∗‖Hk

−(m+2)
< α∗ for

some k = k(m) >m+3.

I Hk
m is the usual Sobolev space Hk restricted on m-equivariant functions.

I Roughly speaking, z∗ is smooth, small, and degenerate at the origin
|z∗(r)|. α∗rm+2.

Our main results are threefold:

1. (Existence) There exists a pseudoconformal blow-up solution u with the
asymptotic profile z∗.

2. (Uniqueness) Such a solution u is unique in a suitable class;

3. (Instability) Such a solution u shows a rotational instability.



Existence

Theorem (Kim and K. ’19)
Let m ≥ 1. Let z∗ be an m-equivariant profile satisfying (H) with sufficiently
small α∗ > 0. Then, there exists a solution u to (CSS) on (−∞,0) such that[

u(t, r)− 1
|t|

Q
( r

|t|

)
e
−i r2

4|t|
]
e imθ → z∗ in H1

m as t→ 0−.

Moreover, u scatters backward in time. Indeed, u satisfies

‖u(t, r)− 1
|t|

Q|t|

( r

|t|

)
e iγcor(t)− z(t, r)‖H1

m
. α

∗|t|m.

I Here, z(t, r) is a solution to (zCSS) with the initial data z(0, r) = z∗(r).
More precisely, an −(m+2)-equivariant function
z̃(t,x) := e−i(2m+2)θ z(t,x) solves −(m+2)-equivariant (CSS) with the
initial data z̃(0,x) = e−i(2m+2)θ z∗(x).

I γcor(t) is a phase correction term, whose explicit formula is described in
terms of z .



Uniqueness

Theorem (Kim and K. ’19)
Let m and z∗ be as above. Assume two H1

m-solutions u1 and u2 to (CSS)
satisfy

‖uj (t, r)− 1
|t|

Q|t|

( r

|t|

)
e iγcor(t)− z(t, r)‖H1

m
≤ c|t|

for all j = 1,2 and t near zero, for sufficiently small α∗ > 0 and c > 0. Then,
u1 = u2.

I In particular, if 0< α∗� c � 1, then the solution constructed in the
above is unique.



Instability

Theorem (Kim and K. ’19)
Let m and z∗ be as above. Let u be the pseudoconformal blow-up solution
constructed in the above. There exists η∗ > 0 and one-parameter family of
H1
m-solutions {u(η)}η∈[0,η∗] to (CSS) with the following properties.

I u(0) = u,
I For η > 0, u(η) scatters both forward and backward in time,
I The map η ∈ [0,η∗] 7→ u(η) is continuous in the C(−∞,0),locH

1− topology,

I The family {u(η)}η∈[0,η∗] exhibits the rotational instability near time 0.



Rotational instability

We can write

u(η)(t,x) =
e im(θ+γ(η)(t))√

t2 + η2
Q

(η)
|t|

( r√
t2 + η2

)
+OH1

m
(α
∗),

where γ(η)(t) satisfies

|γ(0)(−τ)|. α
∗
τ,

limsup
η→0+

∣∣∣γ(η)(τ)− γ
(η)(−τ)−

(m+1
m

)
π

∣∣∣. α
∗
τ,

for all small τ > 0.

I When η > 0, one almost has

γ
(η)(t)≈ m+1

m
tan−1(

t

η
)

so the abrupt spatial rotation takes place on the time interval |t|. η.
I Notice that u(0) = u does not rotate at all.



Results in (NLS)

Our main result is analogous to mass-critical NLS, which are originally due to
Bourgain-Wang (’97), and Merle-Raphaël-Szeftel (’13).
The mass-critical nonlinear Schrödinger equation on R2:

i∂tψ + ∆ψ + |ψ|2ψ = 0, (NLS)

where ψ : R×R2→ C. There is a standing wave solution (but not static)

e itR(x),

where R is a minimizer of 1
2
∫
|ψ|2 + 1

2
∫
|∇ψ|2− 1

4
∫
|ψ|4 = 1

2M(ψ) +ENLS (ψ),
or R is the ground state soliton

∆R−R +R3 = 0.

Applying the pseudoconformal symmetry,

SNLS(t,x) :=
1
|t|

R
( x

|t|

)
e

i
|t| e
−i |x |

2
4|t| , ∀t < 0.



Bourgain-Wang solutions(NLS)

Theorem (Bourgain-Wang ’97)
Let ζ ∗ : R2→C be a profile that degenerates at the origin at large order and is
in some weighted Sobolev space. Then, there exists a (conditionally unique)
solution ψBW to (NLS) such that

ψBW(t)−SNLS(t)→ ζ
∗ as t→ 0.

Idea of proof
Via the pseudoconformal transform C , it suffices to construct a solution C ψ

such that e−itC ψ(t)−R− e−itC ζ (t)→ 0 as t→ ∞, where ζ (t) is a solution
to (NLS) with initial data ζ ∗. Write the Duhamel formulation for e−itC ψ(t)
(from t = +∞ to the present time) and run a contraction principle by exploiting
the decoupling

|R(x)C ζ (t,x)|. t−A, A� 1.

I Working directly with the pseudoconformal transform requires solutions to
belong to a weighted Sobolev space. In case of (CSS), Q has polynomial
tail r−(m+2) as r → ∞. This does not belong to Hk,k with k large.

I (Discussed later), there is a nontrivial long-range interaction in (CSS),
induced from the gauge potential.



Instability of Bourgain-Wang solutions(NLS)
Pseudoconformal blow-up solutions are believed to be non-generic. Here is an
instability result by Merle-Raphaël-Szeftel.

Theorem (Merle-Raphaël-Szeftel ’13)
There is a continuous family of solutions ψη to (NLS) for η ∈ [−1,1] such that

1. (η = 0) ψ0 = ψBW is the Bourgain-Wang solution,

2. (η > 0)ψη scatters both forward and backward in time,

3. (η < 0)ψη scatters backward and blows up forward in finite time under
the log-log law, i.e.

‖∇ψη (t)‖L2 ≈ c∗
( log | log(T − t)|

T − t

) 1
2
.

I No explicit use of the pseudoconformal transform. Instead, they use
modulation analysis with modified profiles, say Rη ,b. Here, η is fixed and

b is a parameter for the pseudoconformal phase e−ib
|y |2
4 .

I Instability direction is induced by ρNLS, which lies in the generalized null
space of the linearized operator for (NLS).

I The case η < 0 falls into the negative energy and hence to the regime of
stable log-log blow-up by Merle-Raphaël’s works.



Comparison with (CSS) and (NLS)
I All the symmetries of (CSS) are valid for (NLS), including L2-scaling and

pseudoconformal symmetries. Conservation laws are also valid.
I Profiles Q and R:

−
(

∂rr +
1
r

∂r

)
Q +

(m+Aθ [Q]

r

)2
Q = Q3−A0Q,

−∆R+R = R3,

Because of the mass-term, R shows exponential decay, whereas Q shows
polynomial decay r−(m+2).

I Generalized null spaces of LNLS and LQ :
iLNLSρNLS = i |y |2R,

iLNLSi |y |2R = 4ΛR,

iLNLSΛR =−2iR,
iLNLSiR = 0,

{
iLQρ = iQ, iLQ ir2Q = 4ΛQ,

iLQ iQ = 0, iLQΛQ = 0.

Note that iLNLSΛR 6= 0 but iLQΛQ = 0. This is again because e itR(x) is
not a static solution to (NLS), but Q is a static solution to (CSS).

I The self-duality appears at the linearized level as

iLQ = iL∗QLQ .



Comments on main theorems

I Assumption (H).
1. Degeneracy of z∗ at the origin |z∗(r)|. α∗rm+2. Required for
decoupling estimates for the marginal interaction between S(t) and z∗.
2. Long-range interaction. After approximating |S(t)|2 as a point charge
at the origin, due to

m+Aθ [S(t)]≈m−2(m+1) =−(m+2),

the natural evolution equation for z is the −(m+2)-equivariant (CSS).
I Assumption m ≥ 1 is required at many places.

1. S(t, r) is a H1
m-solution if and only if m ≥ 1.

2. Nice embedding properties: Ḣ1
m ↪→ L∞ and Hardy’s inequality.

3. Many other places where the proof breaks.
I Interaction of S(t) and z∗. In contrast to (NLS), we have to incorporate

the long-range (nonlocal) interaction between S(t) and z . Thus,
1. we evolve z under −(m+2)-equivariant (CSS),
2. there is a phase correction γcor(t) in the theorem,
3. but this does not change the blow-up rate.



Comments on main theorems

I Rotational Instability.
1. The source of the instability is the phase rotation, which shows a sharp
contrast to (NLS). Mathematically, the difference comes from that of the
spectral properties of LNLS and LQ .
2. When η = 0, u(0) does not rotate at all. But u(η) with 0< η � 1
shows a spatial rotation on |t|. η by the angle(m+1

m

)
π.

3. A rotational instability is observed in the energy-critical Schrödinger
map (1-equivariant) by Merle-Raphaël-Rodnianski ’12.
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Modulation analysis
We write

u(η)(t, r) =
e iγ(t)

λ (t)
[Q

(η)
b(t)

+ ε]
(
t,

r

λ (t)

)
+ z(t, r).

I Q(η) is some profile exhibiting the rotational instability with Q(0) = Q.
I Pseudoconformal phase fb(r) = f (r)e−i

b
4 r

2
.

I For given z∗, we fix evolution of z(t, r) by (zCSS) equation (a small
scattering global solution). (zCSS) is motivated to absorb the strong
interaction between S(t) and z .

I we have freedom to choose 3 conditions to fix dynamics of b(t),λ (t),γ(t)
and hence ε(t,x).

I Initial dataa at t = 0

(λ (0),γ(0),b(0)) = (η ,0,0), u(η)(0,x) =
1
η
Q(η)

( r

η

)
e imθ + z∗(x).

I Establish uniform estimate (wrt η) for ε,λ ,γ,b by bootstrapping
argument via Laypunov method.

b(t)≈ |t|, λ (t)≈
√

t2 + η2, γ(t)≈ γcor(t) + (m+1)tan−1(
t

η
), and

λ
3
4 ‖ε‖L2 +‖ε‖Ḣ1

m
. α

∗
λ
m+2 + λ

5
4 η

3
4 .

I The blow-up solution is constructed by limiting η → 0.



Pseudoconformal phase Qb(r) = Q(r)e−i
b
4 r

2

Recall:
D(Q)

+ Q = 0 and fb(y) := f (y)e−ib
|y |2
4 .

For a profile Q(η), assume Q
(η)]
b(t)

solves (CSS). Then, by dynamic rescaling

0 = i∂tQ
(η)]
b −L∗

Q
(η)]
b

D(Q
(η)]
b )

+ Q
(η)]
b

=
1

λ2

[
i∂sQ

(η)
b − i

λs

λ
ΛQ

(η)
b − γsQ

(η)
b −L∗

Q
(η)
b

D(Q
(η)
b )

+ Q
(η)
b

]]
=− 1

λ2

[
(L∗Q(η)D

(Q(η))
+ Q(η))b + i

(
λs

λ
+b
)

ΛQ
(η)
b + γsQ

(η)
b − (bs +b2) |y |

2

4 Q
(η)
b

]]
.

where Λ = 1+ r∂r is the L2 scaling generator. When η = 0, the above
computation suggests

λs

λ
+b = 0, γs = 0, bs +b2 = 0.

This is satisfied by S(t), i.e. (b,λ ,γ)(t) = (|t|, |t|,0).



Dynamic rescaling
I Originally, we work with u(t,x),z(t,x) but Q(η)

b (s,y),ε(s,y) where y = x
λ
.

I ] and [ notations. Let λ and γ be given. For a function f (y), we convert
f to a function on x as

f ](x) :=
1
λ
f
( x

λ

)
e iγ .

Similarly, we convert a function g(x) to a function on y as

g [(y) := λg(λy)e−iγ .

I Dynamic rescaling. We introduce (s,y) variables as

ds

dt
=

1
λ2(t)

; y :=
x

λ (t)
.

Then,

∂t f
] =

1
λ2

[
∂s f −

λs

λ
Λf + iγs f

]]
,

∂sg
[ = λ

2
[
∂tg +

λt

λ
Λg − iγtg

][
.

I In this notation, the ansatz is

u(t,x) = (Q
(η)
b + ε)] + z , or u[(s,y) = (Q

(η)
b + ε) + z[



Profile Q(η)

Our profile Q(η) will be obtained by perturbing the formal parameter ODEs

λs

λ
+b = 0, γs = 0, bs +b2 = 0.

I (NLS) case: Merle-Raphaël-Szeftel introduced the η-parameter only in
bs +b2 =−η. This is forbidden in (CSS), due to the spectral property of
LQ .

I Crucial observation: If we introduce η to the phase rotation instead, a
formal computation based on the Pohozaev identity yields that bs +b2

must have a nontrivial O(η2)-term:[
λs

λ
+b = 0, γs = η

]
=⇒ bs +b2 ≈−cη

2, c > 0.

Solving this ODE system, one obtains a rotational instability.



Profile Q(η)

Substituting the formal parameter law, we should solve

L∗Q(η)D
(Q(η))
+ Q(η) + ηQ

(η)
b + cη

2 |y |2
4 Q

(η)
b = 0. (1)

This is a second-order nonlocal PDE.
I Difficulty for the construction. It is customary to Taylor expand Q(η) in

the η-variable, which loses r2 decay at each step. This is especially
dangerous when m is small. Moreover, as Q(η) is expected to have an
exponential decay, the η-expansion will require a truncation and
complicate the argument.

I Nonlinear ansatz: it turns out that we can use self-duality to reduce (1)
to a first-order differential equation.D(Q(η))

+ P(η) = 0,

Q(η) = e−η
r2

4 P(η)
=⇒

{
L∗
Q(η)D

(Q(η))
+ Q(η) + ηθηQ

(η)
b + η2 |y |2

4 Q
(η)
b = 0,

θη = 1
2
∫
|Q(η)|2r ′dr ′− (m+1)≈m+1.

I Formal parameter law for Q(η):

λs

λ
+b = 0, γs = ηθη , bs +b2 + η

2 = 0.

Hence,

λ (t) =
√

t2 + η2, γ(t) = θη tan−1 t

η
, b(t) =−t.



Interaction between Q
(η)]
b and z

I Effect Q(η)]
b → z : There is a long-range interaction. A typical one is

(m+Aθ [Q
(η)]
b + z]

r

)2
z ≈

(m+Aθ [Q
(η)]
b ] +Aθ [z]

r

)2
≈
(−(m+2)

r

)2
z .

Thus z evolves under −(m+2)-equivariant (CSS) =:(zCSS).

I Effect z →Q
(η)]
b : Correction in the phase.

θ
z→Q

(η)]
b

Q
(η)
b

that leads to the phase correction

γ
(η)
cor (t) :=−

∫ t

0
θ
z→Q

(η)]
b

dt ′.

I Case of (NLS): the nonlinearity |ψ|2ψ is local. Thus the interaction
between Rb and ζ [ becomes small due to fast decay of Rb and
degeneracy of ζ [ at the origin. Thus it suffices to evolve ζ under (NLS)
itself, without any forcing term.



Evolution of ε

Now the equation for ε becomes

i∂sε−Lw [ε + ibΛε−ηθη ε

= i
(

λs

λ
+b
)

Λ(Q
(η)
b + ε) + (γ̃s −ηθη )Q

(η)
b + (γs −ηθη )ε

− (bs +b2 + η
2) |y |

2

4 Q
(η)
b + R̃

Q
(η)
b ,z [

+V
Q

(η)
b −Qb

z[ +Ru[−w [ .

I Here, w := Q
(η)
b + z[ and γ̃s := γs + θ

z [→Q
(η)
b

.

I The effect from Q
(η)
b to z is removed by z-evolution.

I R̃
Q

(η)
b ,z [

is the marginal interaction satisfying

‖R̃
Q

(η)
b ,z [
‖H1 . α∗λm+3| logλ |.

I Ru[−w [ = O(ε2).

I V
Q

(η)
b −Qb

arises from the difference of Q(η)
b and Qb.



Choice of modulation parameters

We haven’t specified the choice of b,λ ,γ. We spend three degrees of freedom
by

I two (generic) orthogonality conditions ⇒ Coercivity (ε,LQε) & ‖ε‖2
Ḣ1

m

,

I one dynamical law ⇒ 2( λs
λ

+b)− (bs +b2 + η2) = 0. We are motivated to
this choice to delete terms having dangerous spatial decay:

i
(

λs

λ
+b
)

ΛQ
(η)
b − (bs +b2 + η

2) |y |
2

4 Q
(η)
b

= i
(

λs

λ
+b
)

[ΛQ(η)]b +
[
2
(

λs

λ
+b
)
− (bs +b2 + η

2)︸ ︷︷ ︸
=0

]
|y |2
4 Q

(η)
b .

I The ε-equation is now simplified:

i∂sε−Lw [ε + ibΛε−ηθη ε

= i
(

λs

λ
+b
)

([ΛQ(η)]b + Λε) + (γ̃s −ηθη )Qb + (γs −ηθη )ε

+ R̃
Q

(η)
b ,z [

+V
Q

(η)
b −Qb

z[ +Ru[−w [ .



Lyapunov/virial Functional

In order to close the bootstrap, we should be able to estimate ‖ε‖Ḣ1
m
and ‖ε‖L2

by propagating smallness of ε at (ε(0) = 0) to the past times. For this, we use
a Lyapunov method. Martel (’05 AJM) was the first to use energy method in
backward construction.

I In view of coercivity it is natural to start with the energy functional.
However, it does not suffice and we need to add a correction. The
correction term is motivated from the observation that ε indeed evolves
under

i∂sε−Lw [ε + ibΛε−ηθη ε ≈ 0.

The energy functional is only adapted to i∂sε−Lw [ε ≈ 0.
I Moreover, we also need an averaging argument. As a result, we use

I := λ
−2
(
E

(qd)

w [ [ε] +
ηθη

2
M[ε] +

2b
logA

∫ A

A1/2
ΦA′ [ε]

dA′

A′

)
.

I Here, E (qd)

w [ [ε] := E [w [ + ε]−E [w []− ( δE
δu

∣∣∣
u=w [

,ε)r ,
I ΦA[ε] is a localized virial functional. The localized virial correction bΦA[ε]

was first introduced by Raphaël and Szeftel (’11 JAMS).



Final comments

I Long-range interaction between Q
(η)]
b and z requires two corrections: the

evolution of z(t,x) and phase correction of Q(η)
b .

I New instability mechanism: m+1
m π−angle spartial rotation near blow-up

time.
I Self-Duality plays a crucial role in several places: Informations on

linearized operator, construction of modified profile Q(η)

I The prescribed asymptotic profile z∗ require one additional condition (H).
(cf. Krieger-Schlag 10’ 1D NLS)

I There should be a separate argument of L2 control, as the coercivity only
control Ḣ1.



Thanks for your attention!
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