On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation

Soonsik Kwon

Korea Advanced Institute of Science and Technology

> Jun 8, 2020
> Asia-Pacific PDE Seminar
joint with Kihyun Kim(KAIST)

Outline

Chern-Simons-Schrödinger Equation

Pseudoconformal Blow-up Solutions

Strategy of the proof

Chern-Simons-Schrödinger equation

We consider the Chern-Simons-Schrödinger equation:

$$
\left\{\begin{aligned}
\mathrm{D}_{t} \phi & =i \mathbf{D}_{j} \mathbf{D}_{j} \phi+i g|\phi|^{2} \phi, \\
F_{01} & =-\operatorname{Im}\left(\bar{\phi} \mathbf{D}_{2} \phi\right), \\
F_{02} & =\operatorname{Im}\left(\bar{\phi} \mathbf{D}_{1} \phi\right), \\
F_{12} & =-\frac{1}{2}|\phi|^{2},
\end{aligned}\right.
$$

with a scalar field $\phi: \mathbb{R}^{1+2} \rightarrow \mathbb{C}$, covariant derivatives $D_{\alpha}=\partial_{\alpha}+i A_{\alpha}$ for $\alpha \in\{0,1,2\}$, (real-valued) connection 1-form $A=A_{0} d t+A_{1} d x_{1}+A_{2} d x_{2}$, and curvature 2-form $F_{j k}:=\partial_{j} A_{k}-\partial_{k} A_{j}$.

- Non-relativistic Lagrangian theory,
- Planar physical phenomena, e.g. quantum Hall effect and high temperature superconductivity,
- Gauge invariance: for any $\chi: \mathbb{R}^{1+2} \rightarrow \mathbb{R}$,

$$
(\phi, A) \mapsto\left(e^{i \chi} \phi, A-d \chi\right)
$$

- See Jackiw-Pi ('90 PRL, '90 PRD)

Coulomb gauge and equivariance condition

Coulomb gauge condition

$$
\partial_{1} A_{1}+\partial_{2} A_{2}=0 \quad \text { or } A_{r}=0
$$

Equivariance ansatz:

$$
\phi(t, x)=e^{i m \theta} u(t, r)
$$

- $m \in \mathbb{Z}$ is called the equivariance index.
- The full equation becomes

$$
i \partial_{t} u+\left(\partial_{r r}+\frac{1}{r} \partial_{r}-\frac{m^{2}}{r^{2}}\right) u-\frac{2 m A_{\theta}}{r} u-A_{\theta}^{2} u-A_{0} u+g|u|^{2} u=0
$$

with connection components

$$
\left\{\begin{array}{l}
A_{\theta}=-\frac{1}{2} \int_{0}^{r}|u|^{2} r^{\prime} d r^{\prime} \\
A_{0}=-\int_{r}^{\infty}\left(m+A_{\theta}\right)|u|^{2} \frac{d r^{\prime}}{r^{\prime}}
\end{array}\right.
$$

Bogomol'nyi operator

Bogomol'nyi operator

$$
\mathbf{D}_{+} u:=\mathbf{D}_{+}^{(u)} u=\left(\partial_{r}-\frac{m+A_{\theta}[u]}{r}\right) u
$$

- It is the radial part of $\mathrm{D}_{1}+i \mathrm{D}_{2}$.
- Hamiltonian structure:

$$
i \partial_{t} \phi=\frac{\delta E}{\delta \phi}
$$

where $\frac{\delta E}{\delta \phi}$ is the Fréchet derivative computed under the real inner product $(u, v)_{r}:=\operatorname{Re} \int_{\mathbb{R}^{2}} \bar{u} v$.

- Energy functional has the expression

$$
E[u]=\frac{1}{2} \int\left|\mathbf{D}_{+} u\right|^{2}+\frac{1-g}{4} \int|u|^{4} .
$$

The factor 1 arises from the curvature term $F_{r \theta}$. Thus, $g<1$ is defocusing and $g \geq 1$ is focusing.

- GWP and Scattering under equivariance: Liu-Smith ('16)
- $g<1$: all L^{2}-data
- $g \geq 1: L^{2}$-data whose charge is less than that of the ground state.
- The borderline case $g=1$ is called the self-dual case.

Equivariant self-dual CSS

From now on, we restrict to the self-dual case $g=1$.

- (CSS) in various forms:

$$
\begin{align*}
i \partial_{t} u & =-\left(\partial_{r r}+\frac{1}{r} \partial_{r}\right) u+\left(\frac{m+A_{\theta}}{r}\right)^{2} u+A_{0} u-|u|^{2} u, \tag{CSS}\\
i \partial_{t} u+\Delta_{m} u & =-|u|^{2} u+\frac{2 m A_{\theta}}{r^{2}} u+\frac{A_{\theta}^{2}}{r^{2}} u+A_{0} u \tag{lin./nonlin.}\\
i \partial_{t} u & =L_{u}^{*} \mathbf{D}_{+}^{(u)} u . \tag{self-dual}
\end{align*}
$$

- $\Delta_{m}:=\partial_{r r}+\frac{1}{r} \partial_{r}-\frac{m^{2}}{r^{2}}$ is the Laplacian for m-equivariant functions.
- L_{u} is the linearized operator of $\mathbf{D}_{+}^{(u)} u=\partial_{r}-\frac{1}{r}\left(m+A_{\theta}[u]\right)$. $L_{u}^{*} f=D_{+}^{(u) *} f+u \int_{r}^{\infty} \operatorname{Re} \bar{u} f d r^{\prime}$ is its adjoint.
- Connection components:

$$
\left\{\begin{array}{l}
A_{\theta}[u]=-\frac{1}{2} \int_{0}^{r}|u|^{2} r^{\prime} d r^{\prime} \\
A_{0}[u]=-\int_{r}^{\infty}\left(m+A_{\theta}[u]\right)|u|^{2} \frac{d r^{\prime}}{r^{\prime}}
\end{array}\right.
$$

- Tail of A_{θ} :

$$
A_{\theta}(0)=0, \quad A_{\theta}(r) \downarrow A_{\theta}(\infty)=-\frac{1}{4 \pi} M[u] \neq 0
$$

Symmetries and conservation laws

- Symmetries:

$$
u(t, r) \mapsto \begin{cases}e^{i \theta} u(t, r) & \text { (phase rotation) } \\ \lambda u\left(\lambda^{2} t, \lambda r\right) & \left(L^{2}\right. \text {-critical scaling) } \\ \frac{1}{t} e^{i \frac{|x|^{2}}{4 t}} \phi\left(-\frac{1}{t}, \frac{x}{t}\right) & \text { (pseudoconformal) }\end{cases}
$$

Also, there are space/time translation, spatial rotation, time reversal, and Galilean boost.

- Charge and Energy:

$$
M[u]=\int|u|^{2}, \quad E[u]=\left\{\begin{array}{l}
\int \frac{1}{2}\left|\partial_{r} u\right|^{2}+\frac{1}{2}\left(\frac{m+A_{\theta}}{r}\right)^{2}|u|^{2}-\frac{1}{4}|u|^{4} \\
\int \frac{1}{2}\left|\mathbf{D}_{+} u\right|^{2}
\end{array}\right.
$$

- Virial Identities:

$$
\left\{\begin{aligned}
\partial_{t}\left(\int|r|^{2}|u|^{2}\right) & =4 \int_{\mathbb{R}^{2}} \operatorname{Im}\left(\bar{u} \cdot r \partial_{r} u\right) \\
\partial_{t}\left(\int_{\mathbb{R}^{2}} \operatorname{Im}\left(\bar{u} \cdot r \partial_{r} u\right)\right) & =4 E
\end{aligned}\right.
$$

Cauchy theory

The evolution by (CSS) should be understood modulo gauge equivalence. To study the Cauchy theory of (CSS), we should fix one representative (ϕ, A) from its (gauge-)equivalence class.

- Under the Coulomb gauge:

Large data H^{1}-subcritical LWP (Berge-de Bouard-Saut '95, Huh '13, Lim '18)
Sufficient conditions for blow-up (Berge-de Bouard-Saut '95)
Explicit blow-up solutions for $g=1$ (Jackiw-Pi '90, Huh '09)
Decay estimates for small data (Oh-Pusateri '15)

- Equivariance under the Coulomb gauge:

Large data L^{2}-critical GWP and Scattering (Liu-Smith '16)

- Under the Heat gauge:

Small data H^{ε}-subcritical LWP for any $\varepsilon>0$ (Liu-Smith-Tataru '14)

Static solution

A solution $u(t, r)$ to (CSS) is said to be static if u is independent of t. From

$$
i \partial_{t} u=\frac{\delta E}{\delta u} \quad \text { and } \quad E[u]=\frac{1}{2} \int\left|\mathbf{D}_{+} u\right|^{2} \geq 0
$$

- FACT: A solution is static if and only if of zero energy.
- It satisfies the Bogomol'nyi equation;

$$
\mathbf{D}_{+} u=\left(\partial_{r}-\frac{m+A_{\theta}[u]}{r}\right) u=0, \quad A_{\theta}[u]=-\frac{1}{2} \int_{0}^{r}|u|^{2} r^{\prime} d r^{\prime} .
$$

This is a nonlocal first-order ODE.

- Explicit m-equivariant static solutions (unique up to phase/scaling):

$$
Q(r)=\sqrt{8}(m+1) \frac{r^{m}}{1+r^{2(m+1)}}
$$

Note Q has degeneracy r^{m} at 0 and polynomially decays $r^{-(m+2)}$ at ∞.

$$
A_{\theta}(Q)(\infty)=-2(m+1)=-\frac{1}{4 \pi} M(Q)
$$

- Applying the pseudoconformal transformation to the static solution Q, we have an explicit finite-time blow-up solution

$$
S(t, r):=\frac{1}{|t|} Q\left(\frac{r}{|t|}\right) e^{-i \frac{r^{2}}{4|t|}}, \quad \forall t<0
$$

And the blow-up rate is

$$
\|\nabla S(t)\|_{L^{2}} \sim \frac{1}{|t|}
$$

We call this blow-up rate the pseudoconformal blow-up rate.

Outline

Chern-Simons-Schrödinger Equation

Pseudoconformal Blow-up Solutions

Strategy of the proof

Main Results

Question: How generic is the pseudoconformal blow-up solutions?
Let $m \geq 1$. Let z^{*} be a prescribed asymptotic profile satisfying (H) with $0<\alpha^{*} \ll 1$.

Assumption (H)

$-(m+2)$-equivariant function $\widetilde{z}^{*}:=e^{-i(2 m+2) \theta} z^{*}$ satisfies $\left\|\widetilde{z}^{*}\right\|_{H_{-(m+2)}^{k}}<\alpha^{*}$ for some $k=k(m)>m+3$.

- H_{m}^{k} is the usual Sobolev space H^{k} restricted on m-equivariant functions.
- Roughly speaking, z^{*} is smooth, small, and degenerate at the origin $\left|z^{*}(r)\right| \lesssim \alpha^{*} r^{m+2}$.

Our main results are threefold:

1. (Existence) There exists a pseudoconformal blow-up solution u with the asymptotic profile z^{*}.
2. (Uniqueness) Such a solution u is unique in a suitable class;
3. (Instability) Such a solution u shows a rotational instability.

Existence

Theorem (Kim and K. '19)

Let $m \geq 1$. Let z^{*} be an m-equivariant profile satisfying (H) with sufficiently small $\alpha^{*}>0$. Then, there exists a solution u to (CSS) on $(-\infty, 0)$ such that

$$
\left[u(t, r)-\frac{1}{|t|} Q\left(\frac{r}{|t|}\right) e^{-i \frac{r^{2}}{4|t|}}\right] e^{i m \theta} \rightarrow z^{*} \quad \text { in } H_{m}^{1} \text { as } t \rightarrow 0^{-}
$$

Moreover, u scatters backward in time. Indeed, u satisfies

$$
\left\|u(t, r)-\frac{1}{|t|} Q_{|t|}\left(\frac{r}{|t|}\right) e^{i \gamma_{\operatorname{cor}}(t)}-z(t, r)\right\|_{H_{m}^{1}} \lesssim \alpha^{*}|t|^{m}
$$

- Here, $z(t, r)$ is a solution to $(z C S S)$ with the initial data $z(0, r)=z^{*}(r)$. More precisely, an $-(m+2)$-equivariant function $\tilde{z}(t, x):=e^{-i(2 m+2) \theta} z(t, x)$ solves $-(m+2)$-equivariant (CSS) with the initial data $\tilde{z}(0, x)=e^{-i(2 m+2) \theta} z^{*}(x)$.
- $\gamma_{\text {cor }}(t)$ is a phase correction term, whose explicit formula is described in terms of z.

Uniqueness

Theorem (Kim and K. '19)
Let m and z^{*} be as above. Assume two H_{m}^{1}-solutions u_{1} and u_{2} to (CSS) satisfy

$$
\left\|u_{j}(t, r)-\frac{1}{|t|} Q_{|t|}\left(\frac{r}{|t|}\right) e^{i \gamma_{\operatorname{cor}}(t)}-z(t, r)\right\|_{H_{m}^{1}} \leq c|t|
$$

for all $j=1,2$ and t near zero, for sufficiently small $\alpha^{*}>0$ and $c>0$. Then, $u_{1}=u_{2}$.

- In particular, if $0<\alpha^{*} \ll c \ll 1$, then the solution constructed in the above is unique.

Instability

Theorem (Kim and K. '19)

Let m and z^{*} be as above. Let u be the pseudoconformal blow-up solution constructed in the above. There exists $\eta^{*}>0$ and one-parameter family of H_{m}^{1}-solutions $\left\{u^{(\eta)}\right\}_{\eta \in\left[0, \eta^{*}\right]}$ to (CSS) with the following properties.

- $u^{(0)}=u$,
- For $\eta>0, u^{(\eta)}$ scatters both forward and backward in time,
- The map $\eta \in\left[0, \eta^{*}\right] \mapsto u^{(\eta)}$ is continuous in the $C_{(-\infty, 0), \text { loc }} H^{1-}$ topology,
- The family $\left\{u^{(\eta)}\right\}_{\eta \in\left[0, \eta^{*}\right]}$ exhibits the rotational instability near time 0 .

Rotational instability

We can write

$$
u^{(\eta)}(t, x)=\frac{e^{i m\left(\theta+\gamma^{(\eta)}(t)\right)}}{\sqrt{t^{2}+\eta^{2}}} Q_{|t|}^{(\eta)}\left(\frac{r}{\sqrt{t^{2}+\eta^{2}}}\right)+O_{H_{m}^{1}}\left(\alpha^{*}\right)
$$

where $\gamma^{(\eta)}(t)$ satisfies

$$
\left|\gamma^{(0)}(-\tau)\right| \lesssim \alpha^{*} \tau,
$$

$$
\limsup \left|\gamma^{(\eta)}(\tau)-\gamma^{(\eta)}(-\tau)-\left(\frac{m+1}{m}\right) \pi\right| \lesssim \alpha^{*} \tau, \quad \text { for all small } \tau>0 .
$$

- When $\eta>0$, one almost has

$$
\gamma^{(\eta)}(t) \approx \frac{m+1}{m} \tan ^{-1}\left(\frac{t}{\eta}\right)
$$

so the abrupt spatial rotation takes place on the time interval $|t| \lesssim \eta$.

- Notice that $u^{(0)}=u$ does not rotate at all.

Results in (NLS)

Our main result is analogous to mass-critical NLS, which are originally due to Bourgain-Wang ('97), and Merle-Raphaël-Szeftel ('13).
The mass-critical nonlinear Schrödinger equation on \mathbb{R}^{2} :

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi+|\psi|^{2} \psi=0 \tag{NLS}
\end{equation*}
$$

where $\psi: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{C}$. There is a standing wave solution (but not static)

$$
e^{i t} R(x)
$$

where R is a minimizer of $\frac{1}{2} \int|\psi|^{2}+\frac{1}{2} \int|\nabla \psi|^{2}-\frac{1}{4} \int|\psi|^{4}=\frac{1}{2} M(\psi)+E_{N L S}(\psi)$, or R is the ground state soliton

$$
\Delta R-R+R^{3}=0
$$

Applying the pseudoconformal symmetry,

$$
S_{\mathrm{NLS}}(t, x):=\frac{1}{|t|} R\left(\frac{x}{|t|}\right) e^{\frac{i}{\mid t}} e^{-i \frac{|x|^{2}}{4|t|}}, \quad \forall t<0
$$

Bourgain-Wang solutions(NLS)

Theorem (Bourgain-Wang '97)

Let $\zeta^{*}: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be a profile that degenerates at the origin at large order and is in some weighted Sobolev space. Then, there exists a (conditionally unique) solution ψ_{BW} to (NLS) such that

$$
\psi_{\mathrm{BW}}(t)-S_{\mathrm{NLS}}(t) \rightarrow \zeta^{*} \quad \text { as } t \rightarrow 0
$$

Idea of proof

Via the pseudoconformal transform \mathscr{C}, it suffices to construct a solution $\mathscr{C} \psi$ such that $e^{-i t} \mathscr{C} \psi(t)-R-e^{-i t} \mathscr{C} \zeta(t) \rightarrow 0$ as $t \rightarrow \infty$, where $\zeta(t)$ is a solution to (NLS) with initial data ζ^{*}. Write the Duhamel formulation for $e^{-i t} \mathscr{C} \psi(t)$ (from $t=+\infty$ to the present time) and run a contraction principle by exploiting the decoupling

$$
|R(x) \mathscr{C} \zeta(t, x)| \lesssim t^{-A}, \quad A \gg 1
$$

- Working directly with the pseudoconformal transform requires solutions to belong to a weighted Sobolev space. In case of (CSS), Q has polynomial tail $r^{-(m+2)}$ as $r \rightarrow \infty$. This does not belong to $H^{k, k}$ with k large.
- (Discussed later), there is a nontrivial long-range interaction in (CSS), induced from the gauge potential.

Instability of Bourgain-Wang solutions(NLS)

Pseudoconformal blow-up solutions are believed to be non-generic. Here is an instability result by Merle-Raphaël-Szeftel.

Theorem (Merle-Raphaël-Szeftel '13)

There is a continuous family of solutions ψ_{η} to (NLS) for $\eta \in[-1,1]$ such that

1. $(\eta=0) \psi_{0}=\psi_{\mathrm{BW}}$ is the Bourgain-Wang solution,
2. $(\eta>0) \psi_{\eta}$ scatters both forward and backward in time,
3. $(\eta<0) \psi_{\eta}$ scatters backward and blows up forward in finite time under the $\log -\log \operatorname{law}$, i.e.

$$
\left\|\nabla \psi_{\eta}(t)\right\|_{L^{2}} \approx c_{*}\left(\frac{\log |\log (T-t)|}{T-t}\right)^{\frac{1}{2}} .
$$

- No explicit use of the pseudoconformal transform. Instead, they use modulation analysis with modified profiles, say $R_{\eta, b}$. Here, η is fixed and b is a parameter for the pseudoconformal phase $e^{-i b \frac{y y^{2}}{4}}$.
- Instability direction is induced by $\rho_{\text {NLS }}$, which lies in the generalized null space of the linearized operator for (NLS).
- The case $\eta<0$ falls into the negative energy and hence to the regime of stable log-log blow-up by Merle-Raphaël's works.

Comparison with (CSS) and (NLS)

- All the symmetries of (CSS) are valid for (NLS), including L^{2}-scaling and pseudoconformal symmetries. Conservation laws are also valid.
- Profiles Q and R :

$$
\begin{aligned}
-\left(\partial_{r r}+\frac{1}{r} \partial_{r}\right) Q+\left(\frac{m+A_{\theta}[Q]}{r}\right)^{2} Q & =Q^{3}-A_{0} Q \\
-\Delta R+R & =R^{3}
\end{aligned}
$$

Because of the mass-term, R shows exponential decay, whereas Q shows polynomial decay $r^{-(m+2)}$.

- Generalized null spaces of $\mathscr{L}_{\text {NLS }}$ and \mathscr{L}_{Q} :

$$
\left\{\begin{array} { r l r l }
{ i \mathscr { L } _ { \mathrm { NLS } } \rho _ { \mathrm { NLS } } } & { = i | y | ^ { 2 } R , } \\
{ i \mathscr { L } _ { \mathrm { NLS } } i | y | ^ { 2 } R } & { = 4 \wedge R , } \\
{ i \mathscr { L } _ { \mathrm { NLS } } \wedge R } & { = - 2 i R , } \\
{ i \mathscr { L } _ { \mathrm { NLS } } i R } & { = 0 , }
\end{array} \quad \left\{\begin{array}{rlr}
i \mathscr{L}_{Q} \rho=i Q, & & i \mathscr{L}_{Q} i r^{2} Q=4 \wedge Q, \\
i \mathscr{L}_{Q} i Q=0, & & i \mathscr{L}_{Q} \wedge Q=0 .
\end{array}\right.\right.
$$

Note that $i \mathscr{L}_{\text {NLS }} \wedge R \neq 0$ but $i \mathscr{L}_{Q} \wedge Q=0$. This is again because $e^{i t} R(x)$ is not a static solution to (NLS), but Q is a static solution to (CSS).

- The self-duality appears at the linearized level as

$$
i \mathscr{L}_{Q}=i L_{Q}^{*} L_{Q}
$$

Comments on main theorems

- Assumption (H).

1. Degeneracy of z^{*} at the origin $\left|z^{*}(r)\right| \lesssim \alpha^{*} r^{m+2}$. Required for decoupling estimates for the marginal interaction between $S(t)$ and z^{*}.
2. Long-range interaction. After approximating $|S(t)|^{2}$ as a point charge at the origin, due to

$$
m+A_{\theta}[S(t)] \approx m-2(m+1)=-(m+2)
$$

the natural evolution equation for z is the $-(m+2)$-equivariant (CSS).

- Assumption $m \geq 1$ is required at many places.

1. $S(t, r)$ is a H_{m}^{1}-solution if and only if $m \geq 1$.
2. Nice embedding properties: $\dot{H}_{m}^{1} \hookrightarrow L^{\infty}$ and Hardy's inequality.
3. Many other places where the proof breaks.

- Interaction of $S(t)$ and z^{*}. In contrast to (NLS), we have to incorporate the long-range (nonlocal) interaction between $S(t)$ and z. Thus, 1. we evolve z under $-(m+2)$-equivariant (CSS),

2. there is a phase correction $\gamma_{\text {cor }}(t)$ in the theorem,
3. but this does not change the blow-up rate.

Comments on main theorems

- Rotational Instability.

1. The source of the instability is the phase rotation, which shows a sharp contrast to (NLS). Mathematically, the difference comes from that of the spectral properties of $\mathscr{L}_{\text {NLS }}$ and \mathscr{L}_{Q}.
2. When $\eta=0, u^{(0)}$ does not rotate at all. But $u^{(\eta)}$ with $0<\eta \ll 1$ shows a spatial rotation on $|t| \lesssim \eta$ by the angle

$$
\left(\frac{m+1}{m}\right) \pi
$$

3. A rotational instability is observed in the energy-critical Schrödinger map (1-equivariant) by Merle-Raphaël-Rodnianski ' 12.

Outline

Chern-Simons-Schrödinger Equation

Pseudoconformal Blow-up Solutions

Strategy of the proof

Modulation analysis

We write

$$
u^{(\eta)}(t, r)=\frac{e^{i \gamma(t)}}{\lambda(t)}\left[Q_{b(t)}^{(\eta)}+\varepsilon\right]\left(t, \frac{r}{\lambda(t)}\right)+z(t, r)
$$

- $Q^{(\eta)}$ is some profile exhibiting the rotational instability with $Q^{(0)}=Q$.
- Pseudoconformal phase $f_{b}(r)=f(r) e^{-i \frac{b}{4} r^{2}}$.
- For given z^{*}, we fix evolution of $z(t, r)$ by (zCSS) equation (a small scattering global solution). (zCSS) is motivated to absorb the strong interaction between $S(t)$ and z.
- we have freedom to choose 3 conditions to fix dynamics of $b(t), \lambda(t), \gamma(t)$ and hence $\varepsilon(t, x)$.
- Initial dataa at $t=0$

$$
(\lambda(0), \gamma(0), b(0))=(\eta, 0,0), \quad u^{(\eta)}(0, x)=\frac{1}{\eta} Q^{(\eta)}\left(\frac{r}{\eta}\right) e^{i m \theta}+z^{*}(x)
$$

- Establish uniform estimate (wrt η) for $\varepsilon, \lambda, \gamma, b$ by bootstrapping argument via Laypunov method.

$$
\begin{aligned}
b(t) \approx|t|, \quad & \lambda(t) \approx \sqrt{t^{2}+\eta^{2}}, \quad \gamma(t) \approx \gamma_{\mathrm{cor}}(t)+(m+1) \tan ^{-1}\left(\frac{t}{\eta}\right), \quad \text { and } \\
& \lambda^{\frac{3}{4}}\|\varepsilon\|_{L^{2}}+\|\varepsilon\|_{\dot{H}_{m}^{1}} \lesssim \alpha^{*} \lambda^{m+2}+\lambda^{\frac{5}{4}} \eta^{\frac{3}{4}}
\end{aligned}
$$

- The blow-up solution is constructed by limiting $\eta \rightarrow 0$.

Pseudoconformal phase $Q_{b}(r)=Q(r) e^{-i \frac{b}{4} r^{2}}$

Recall:

$$
\mathbf{D}_{+}^{(Q)} Q=0 \quad \text { and } \quad f_{b}(y):=f(y) e^{-i b \frac{|y|^{2}}{4}}
$$

For a profile $Q^{(\eta)}$, assume $Q_{b(t)}^{(\eta) \sharp}$ solves (CSS). Then, by dynamic rescaling

$$
\begin{aligned}
0 & =i \partial_{t} Q_{b}^{(\eta) \sharp}-L_{Q_{b}^{(\eta) \sharp}}^{*} \mathbf{D}_{+}^{\left(Q_{b}^{(\eta) \sharp}\right)} Q_{b}^{(\eta) \sharp} \\
& =\frac{1}{\lambda^{2}}\left[i \partial_{s} Q_{b}^{(\eta)}-i \frac{\lambda_{s}}{\lambda} \Lambda Q_{b}^{(\eta)}-\gamma_{s} Q_{b}^{(\eta)}-L_{Q_{b}^{(\eta)}}^{*} \mathbf{D}_{+}^{\left(Q_{b}^{(\eta)}\right)} Q_{b}^{(\eta)}\right]^{\sharp} \\
& =-\frac{1}{\lambda^{2}}\left[\left(L_{Q^{(\eta)}}^{*} \mathbf{D}_{+}^{\left(Q^{(\eta)}\right)} Q^{(\eta)}\right)_{b}+i\left(\frac{\lambda_{s}}{\lambda}+b\right) \wedge Q_{b}^{(\eta)}+\gamma_{s} Q_{b}^{(\eta)}-\left(b_{s}+b^{2}\right) \frac{|y|^{2}}{4} Q_{b}^{(\eta)}\right]^{\sharp} .
\end{aligned}
$$

where $\Lambda=1+r \partial_{r}$ is the L^{2} scaling generator. When $\eta=0$, the above computation suggests

$$
\frac{\lambda_{s}}{\lambda}+b=0, \quad \gamma_{s}=0, \quad b_{s}+b^{2}=0
$$

This is satisfied by $S(t)$, i.e. $(b, \lambda, \gamma)(t)=(|t|,|t|, 0)$.

Dynamic rescaling

- Originally, we work with $u(t, x), z(t, x)$ but $Q_{b}^{(\eta)}(s, y), \varepsilon(s, y)$ where $y=\frac{x}{\lambda}$.
- \sharp and b notations. Let λ and γ be given. For a function $f(y)$, we convert f to a function on x as

$$
f^{\sharp}(x):=\frac{1}{\lambda} f\left(\frac{x}{\lambda}\right) e^{i \gamma} .
$$

Similarly, we convert a function $g(x)$ to a function on y as

$$
g^{b}(y):=\lambda g(\lambda y) e^{-i \gamma}
$$

- Dynamic rescaling. We introduce (s, y) variables as

$$
\frac{d s}{d t}=\frac{1}{\lambda^{2}(t)} ; \quad y:=\frac{x}{\lambda(t)}
$$

Then,

$$
\begin{aligned}
& \partial_{t} f^{\sharp}=\frac{1}{\lambda^{2}}\left[\partial_{s} f-\frac{\lambda_{s}}{\lambda} \Lambda f+i \gamma_{s} f\right]^{\sharp}, \\
& \partial_{s} g^{b}=\lambda^{2}\left[\partial_{t} g+\frac{\lambda_{t}}{\lambda} \Lambda g-i \gamma_{t} g\right]^{b} .
\end{aligned}
$$

- In this notation, the ansatz is

$$
u(t, x)=\left(Q_{b}^{(\eta)}+\varepsilon\right)^{\sharp}+z, \quad \text { or } u^{b}(s, y)=\left(Q_{b}^{(\eta)}+\varepsilon\right)+z^{b}
$$

Profile $Q^{(\eta)}$

Our profile $Q^{(\eta)}$ will be obtained by perturbing the formal parameter ODEs

$$
\frac{\lambda_{s}}{\lambda}+b=0, \quad \gamma_{s}=0, \quad b_{s}+b^{2}=0
$$

- (NLS) case: Merle-Raphaël-Szeftel introduced the η-parameter only in $b_{s}+b^{2}=-\eta$. This is forbidden in (CSS), due to the spectral property of \mathscr{L}_{Q}.
- Crucial observation: If we introduce η to the phase rotation instead, a formal computation based on the Pohozaev identity yields that $b_{s}+b^{2}$ must have a nontrivial $O\left(\eta^{2}\right)$-term:

$$
\left[\frac{\lambda_{s}}{\lambda}+b=0, \quad \gamma_{s}=\eta\right] \quad \Longrightarrow \quad b_{s}+b^{2} \approx-c \eta^{2}, \quad c>0
$$

Solving this ODE system, one obtains a rotational instability.

Profile $Q^{(\eta)}$

Substituting the formal parameter law, we should solve

$$
\begin{equation*}
L_{Q^{(\eta)}}^{*} \mathbf{D}_{+}^{\left(Q^{(\eta)}\right.} Q^{(\eta)}+\eta Q_{b}^{(\eta)}+c \eta^{2} \frac{|y|^{2}}{4} Q_{b}^{(\eta)}=0 . \tag{1}
\end{equation*}
$$

This is a second-order nonlocal PDE.

- Difficulty for the construction. It is customary to Taylor expand $Q^{(\eta)}$ in the η-variable, which loses r^{2} decay at each step. This is especially dangerous when m is small. Moreover, as $Q^{(\eta)}$ is expected to have an exponential decay, the η-expansion will require a truncation and complicate the argument.
- Nonlinear ansatz: it turns out that we can use self-duality to reduce (1) to a first-order differential equation.

$$
\left\{\begin{array} { l }
{ \mathbf { D } _ { + } ^ { (Q ^ { (\eta) }) } P ^ { (\eta) } = 0 , } \\
{ Q ^ { (\eta) } = e ^ { - \eta \frac { r ^ { 2 } } { 4 } } P ^ { (\eta) } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
L_{Q^{(\eta)}}^{*} \mathbf{D}_{+}^{\left(Q^{(\eta)}\right)} Q^{(\eta)}+\eta \theta_{\eta} Q_{b}^{(\eta)}+\eta^{2} \frac{|y|^{2}}{4} Q_{b}^{(\eta)}=0 \\
\theta_{\eta}=\frac{1}{2} \int\left|Q^{(\eta)}\right|^{2} r^{\prime} d r^{\prime}-(m+1) \approx m+1
\end{array}\right.\right.
$$

- Formal parameter law for $Q^{(\eta)}$:

$$
\frac{\lambda_{s}}{\lambda}+b=0, \quad \gamma_{s}=\eta \theta_{\eta}, \quad b_{s}+b^{2}+\eta^{2}=0
$$

Hence,

$$
\lambda(t)=\sqrt{t^{2}+\eta^{2}}, \quad \gamma(t)=\theta_{\eta} \tan ^{-1} \frac{t}{\eta}, \quad b(t)=-t
$$

Interaction between $Q_{b}^{(\eta) \sharp}$ and z

- Effect $Q_{b}^{(\eta) \sharp} \rightarrow z$: There is a long-range interaction. A typical one is

$$
\left(\frac{m+A_{\theta}\left[Q_{b}^{(\eta) \sharp}+z\right]}{r}\right)^{2} z \approx\left(\frac{m+A_{\theta}\left[Q_{b}^{(\eta) \sharp}\right]+A_{\theta}[z]}{r}\right)^{2} \approx\left(\frac{-(m+2)}{r}\right)^{2} z
$$

Thus z evolves under $-(m+2)$-equivariant $(C S S)=:(z C S S)$.

- Effect $z \rightarrow Q_{b}^{(\eta) \sharp}$: Correction in the phase.

$$
\theta_{z \rightarrow Q_{b}^{(\eta) \sharp}} Q_{b}^{(\eta)}
$$

that leads to the phase correction

$$
\gamma_{\mathrm{cor}}^{(\eta)}(t):=-\int_{0}^{t} \theta_{z \rightarrow Q_{b}^{(\eta) \sharp}} d t^{\prime}
$$

- Case of (NLS): the nonlinearity $|\psi|^{2} \psi$ is local. Thus the interaction between R_{b} and ζ^{b} becomes small due to fast decay of R_{b} and degeneracy of ζ^{b} at the origin. Thus it suffices to evolve ζ under (NLS) itself, without any forcing term.

Evolution of ε

Now the equation for ε becomes

$$
\begin{aligned}
& i \partial_{s} \varepsilon-\mathscr{L}_{w^{b}} \varepsilon+i b \wedge \varepsilon-\eta \theta_{\eta} \varepsilon \\
& =i\left(\frac{\lambda_{s}}{\lambda}+b\right) \Lambda\left(Q_{b}^{(\eta)}+\varepsilon\right)+\left(\widetilde{\gamma}_{s}-\eta \theta_{\eta}\right) Q_{b}^{(\eta)}+\left(\gamma_{s}-\eta \theta_{\eta}\right) \varepsilon \\
& \quad-\left(b_{s}+b^{2}+\eta^{2}\right) \frac{|y|^{2}}{4} Q_{b}^{(\eta)}+\widetilde{R}_{Q_{b}^{(\eta)}, z^{b}}+V_{Q_{b}^{(\eta)}-Q_{b}} z^{b}+R_{u^{b}-w^{b}}
\end{aligned}
$$

- Here, $w:=Q_{b}^{(\eta)}+z^{b}$ and $\widetilde{\gamma}_{s}:=\gamma_{s}+\theta_{z^{b} \rightarrow Q_{b}^{(\eta)}}$.
- The effect from $Q_{b}^{(\eta)}$ to zis removed by z-evolution.
- $\widetilde{R}_{Q_{b}^{(\eta)}, z^{\text {b }}}$ is the marginal interaction satisfying
$\left\|\widetilde{R}_{Q_{b}^{(\eta)}, z^{2}}\right\|_{H^{1}} \lesssim \alpha^{*} \lambda^{m+3}|\log \lambda|$.
- $R_{u^{b}-w^{b}}=O\left(\varepsilon^{2}\right)$.
- $V_{Q_{b}^{(\eta)}-Q_{b}}$ arises from the difference of $Q_{b}^{(\eta)}$ and Q_{b}.

Choice of modulation parameters

We haven't specified the choice of b, λ, γ. We spend three degrees of freedom by

- two (generic) orthogonality conditions \Rightarrow Coercivity $\left(\varepsilon, \mathscr{L}_{Q} \varepsilon\right) \gtrsim\|\varepsilon\|_{\dot{H}_{m}^{1}}^{2}$,
- one dynamical law $\Rightarrow 2\left(\frac{\lambda_{s}}{\lambda}+b\right)-\left(b_{s}+b^{2}+\eta^{2}\right)=0$. We are motivated to this choice to delete terms having dangerous spatial decay:

$$
\begin{aligned}
& i\left(\frac{\lambda_{s}}{\lambda}+b\right) \wedge Q_{b}^{(\eta)}-\left(b_{s}+b^{2}+\eta^{2}\right) \frac{|y|^{2}}{4} Q_{b}^{(\eta)} \\
& =i\left(\frac{\lambda_{s}}{\lambda}+b\right)\left[\wedge Q^{(\eta)}\right]_{b}+[\underbrace{2\left(\frac{\lambda_{s}}{\lambda}+b\right)-\left(b_{s}+b^{2}+\eta^{2}\right)}_{=0}] \frac{|y|^{2}}{4} Q_{b}^{(\eta)}
\end{aligned}
$$

- The ε-equation is now simplified:

$$
\begin{aligned}
& i \partial_{s} \varepsilon-\mathscr{L}_{w^{b}} \varepsilon+i b \Lambda \varepsilon-\eta \theta_{\eta} \varepsilon \\
& =i\left(\frac{\lambda_{s}}{\lambda}+b\right)\left(\left[\Lambda Q^{(\eta)}\right]_{b}+\Lambda \varepsilon\right)+\left(\widetilde{\gamma}_{s}-\eta \theta_{\eta}\right) Q_{b}+\left(\gamma_{s}-\eta \theta_{\eta}\right) \varepsilon \\
& \quad+\widetilde{R}_{Q_{b}^{(\eta)}, z^{b}}+V_{Q_{b}^{(\eta)}-Q_{b}} z^{b}+R_{u^{b}-w^{b}}
\end{aligned}
$$

Lyapunov/virial Functional

In order to close the bootstrap, we should be able to estimate $\|\varepsilon\|_{\dot{H}_{m}^{1}}$ and $\|\varepsilon\|_{L^{2}}$ by propagating smallness of ε at $(\varepsilon(0)=0)$ to the past times. For this, we use a Lyapunov method. Martel ('05 AJM) was the first to use energy method in backward construction.

- In view of coercivity it is natural to start with the energy functional. However, it does not suffice and we need to add a correction. The correction term is motivated from the observation that ε indeed evolves under

$$
i \partial_{s} \varepsilon-\mathscr{L}_{w^{\prime}} \varepsilon+i b \wedge \varepsilon-\eta \theta_{\eta} \varepsilon \approx 0
$$

The energy functional is only adapted to $i \partial_{s} \varepsilon-\mathscr{L}_{w^{b}} \varepsilon \approx 0$.

- Moreover, we also need an averaging argument. As a result, we use

$$
\mathscr{I}:=\lambda^{-2}\left(E_{w^{b}}^{(\mathrm{qd})}[\varepsilon]+\frac{\eta \theta_{\eta}}{2} M[\varepsilon]+\frac{2 b}{\log A} \int_{A^{1 / 2}}^{A} \Phi_{A^{\prime}}[\varepsilon] \frac{d A^{\prime}}{A^{\prime}}\right)
$$

- Here, $E_{w^{b}}^{(\mathrm{qd})}[\varepsilon]:=E\left[w^{b}+\varepsilon\right]-E\left[w^{b}\right]-\left(\left.\frac{\delta E}{\delta u}\right|_{u=w^{b}}, \varepsilon\right)_{r}$,
- $\Phi_{A}[\varepsilon]$ is a localized virial functional. The localized virial correction $b \Phi_{A}[\varepsilon]$ was first introduced by Raphaël and Szeftel ('11 JAMS).

Final comments

- Long-range interaction between $Q_{b}^{(\eta) \sharp}$ and z requires two corrections: the evolution of $z(t, x)$ and phase correction of $Q_{b}^{(\eta)}$.
- New instability mechanism: $\frac{m+1}{m} \pi$-angle spartial rotation near blow-up time.
- Self-Duality plays a crucial role in several places: Informations on linearized operator, construction of modified profile $Q^{(\eta)}$
- The prescribed asymptotic profile z^{*} require one additional condition (H). (cf. Krieger-Schlag 10' 1D NLS)
- There should be a separate argument of L^{2} control, as the coercivity only control \dot{H}^{1}.

Thanks for your attention!

