Large deviations for conservative, stochastic PDE and non-equilibrium fluctuations

Benjamin Gess

Max Planck Institute for Mathematics in the Sciences, Leipzig

& Universität Bielefeld

Asia-Pacific Analysis and PDE Seminar December 2020

joint work with: Ben Fehrman, Nicolas Dirr. [Fehrman, G.; arxiv, 2020], [Dirr, Fehrman, G.; arxiv, 2020]. Conservative SPDE as fluctuating continuum models

2 Two ways to the LDP, the skeleton equation

The zero range process

(could also consider simple exclusion, independent particles).

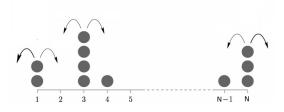


Figure: Harris, Rákos, Schütz; 2005

- State space $\mathbb{M}_N := \mathbb{N}_0^{\mathbb{T}_N}$, i.e. configurations $\eta : \mathbb{T}_N \to \mathbb{N}_0$: System in state η if container k contains $\eta(k)$ particles.
- Local jump rate function $g: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Translation invariant, asymmetric, zero mean transition probability

$$p(k,l) = p(k-l), \quad \sum_{k} kp(k) = 0.$$

- Markov jump process $\eta(t)$ on \mathbb{M}_N .
- $\eta(k,t)$ = number of particles in box k at time t.

Benjamin Gess LDP & SPDE

• Hydrodynamic limit? Multi-scale dynamics

Microscopic picture:

Particles PDE Evolution of $ho = \mathbb{E}[ho_\epsilon]$?

Macroscopic picture:

Figure: see Zimmer et. al.

Empirical density field

$$\mu^{N}(x,t) := \frac{1}{N} \sum_{k} \delta_{\frac{k}{N}}(x) \eta(k,tN^{2}).$$

• [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]

$$\mu^{N}(t) \rightharpoonup^{*} \bar{\rho}(t) dx$$

with

$$\partial_t \bar{
ho} = \frac{1}{2} \partial_{xx} \Phi(\bar{
ho})$$

with Φ the mean local jump rate $\Phi(\rho) = \mathbb{E}_{\nu_{\varrho}}[g(\eta(0))]$.

Rate of convergence?

• [Central limit fluctuations in non-equilibrium - Ferrari, Presutti, Vares; 1988]: Fluctuation density fields

$$Y^{N}(x,t) = \frac{1}{\sqrt{N}} \sum_{k} \delta_{\frac{k}{N}}(x) [\eta(k,tN^{2}) - \mathbb{E}\eta(k,tN^{2})]$$

$$= \sqrt{N} (\mu^{N}(x,t) - \mathbb{E}\mu^{N}(x,t))$$

$$(*)$$

for $t \geq 0$. Then,

$$\mathscr{L}(Y^N) \rightharpoonup^* \mathscr{L}(Y) \text{ for } N \to \infty$$

with Y the solution to

$$dY(x,t) = \partial_{xx}(\Phi'(\bar{\rho}(x,t))Y(x,t))dt + \partial_{x}(\sqrt{\Phi(\bar{\rho}(x,t))}dW(t))$$

with dW space-time white noise.

• Therefore, expect

$$d(\mu^N, \bar{\rho} dx) \approx N^{-\frac{1}{2}}.$$

• Re-interpret (\star) as fluctuation correction

$$\mu^{N}(x,t) = \sqrt{N}Y^{N}(x,t) + \mathbb{E}\mu^{N}(x,t)$$

$$= \underbrace{\frac{1}{\sqrt{N}}Y^{N}(x,t) + \bar{\rho}(x,t)}_{:=\bar{\rho}^{N}(x,t)} + \underbrace{\mathbb{E}\mu^{N}(x,t) - \bar{\rho}(x,t)}_{=O(N^{-1})}.$$

Hence,

$$d(\mu^N, \bar{\rho}^N) \approx N^{-1}$$
.

and notice that the *linearly* corrected continuum model $\bar{\rho}^N(x,t)$ satisfies

$$d\bar{\rho}^{N}(x,t) = \partial_{xx}(\Phi'(\bar{\rho}(x,t))\bar{\rho}^{N}(x,t))dt + \frac{1}{\sqrt{N}}\partial_{x}(\sqrt{\Phi(\bar{\rho}(x,t))}dW(t)) \quad (\star)$$

i.e. a linear stochastic PDE with noise of small amplitude.

• Rare events? For (\star) we have rare events

$$\mathbb{P}[\bar{\rho}^{N} \approx \rho \, dx] \approx \exp\{-N \, \bar{I}_{0}(\rho \, dx)\},\,$$

with

$$\bar{l}_0(\rho dx) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 dx ds : g \in L^2_{t,x}, \, \partial_t \rho = \partial_{xx}(\Phi'(\bar{\rho})\rho) + \partial_x(\Phi^{\frac{1}{2}}(\bar{\rho})g) \right\}.$$

• [Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis, Landim; 1995]: Let now ρ_0 constant. Then, informally,

$$\mathbb{P}[\mu^{N} \approx \rho \, dx] \approx \exp\{-N \, I_0(\rho \, dx)\},\,$$

with rate function

$$I_0(\rho dx) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 dx ds : g \in L^2_{t,x}, \underbrace{\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho)g)}_{\text{"skeleton equation"}} \right\}.$$

• Note: This does **not** coincide with the rate function of the linearly corrected continuum model $\bar{\rho}^N$,

$$\bar{I}_0(\rho dx) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 dx ds : g \in L^2_{t,x}, \, \partial_t \rho = \partial_{xx}(\Phi'(\bar{\rho})\rho) + \partial_x(\Phi^{\frac{1}{2}}(\bar{\rho})g) \right\}.$$

• Ansatz: Derive a **nonlinear** fluctuating continuum model to simultaneously obtain higher order approximation and correct rare event behavior.

Ansatz: Langevin dynamics

$$\partial_t \rho^N = \partial_{xx} \left(\Phi(\rho^N) \right) + \frac{1}{\sqrt{N}} \partial_x \left(\sqrt{\Phi(\rho^N)} dW_t \right).$$
 (*)

Model case: Dean-Kawasaki, independent particles, $\Phi(\rho) = \rho$, i.e.

$$\partial_t \rho = \partial_{xx} \rho + \frac{1}{\sqrt{N}} \partial_x (\sqrt{\rho} dW_t).$$

Informal justification:

- Opening Physics: Fluctuation-dissipation relation, "fluctuating hydrodynamics"
- Mean behavior / law of large numbers

$$ho^{\, extsf{N}}
ightarrow ar{
ho}$$
 as $extsf{N}
ightarrow \infty$.

- $\begin{array}{c} \bullet \text{ Central limit fluctuations: } Y^N := \sqrt{N}(\rho^N \bar{\rho}). \text{ Then, } \mathscr{L}(Y^N) \rightharpoonup^* \mathscr{L}(Y) \text{ with} \\ \partial_t Y = \partial_{xx} \left(\Phi'(\bar{\rho}) Y \right) + \partial_x \left(\sqrt{\Phi(\bar{\rho})} dW_t \right). \end{array}$
- **Q** Large deviations: See below, large deviations of (\star) are the same as for μ^N .

Informally, correct rare events:

Informally applying the contraction principle to the solution map

$$F: \frac{1}{\sqrt{N}}dW \mapsto \rho$$

yields as a rate function

$$I(\rho) = \inf\{I_{dW}(g) : F(g) = \rho\}.$$

• Schilder's theorem for Brownian sheet suggests

$$I_{dW}(g) = \int_0^T \int_{\mathbb{T}} |g|^2 dx dt.$$

Get

$$I(
ho) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 \, dx dt : \, \partial_t
ho = \partial_{\mathsf{XX}} (\Phi(
ho)) + \partial_{\mathsf{X}} \left(\sqrt{\Phi(
ho)} g
ight)
ight\}.$$

Obstacle

$$\partial_t \rho = \partial_{xx}(\Phi(\rho)) + \frac{1}{\sqrt{N}} \partial_x \left(\sqrt{\Phi(\rho)} dW_t\right)$$

- 1 not well-posed, supercritical -> no regularity structures
- **2** Renormalization? Does renormalization appear in rate function? E.g. compare $\Phi_{2/3}^4$ [Hairer, Weber; 2014].
- Decorrelation length of discrete system = $\frac{1}{N}$.
- Ansatz: joint limit "small noise, ultraviolet cutoff"

$$\partial_t \rho^{N,K} = \partial_{xx} \left(\Phi(\rho^{N,K}) \right) + \frac{1}{\sqrt{N}} \partial_x \left(\sqrt{\Phi(\rho^{N,K})} \circ dW_t^K \right)$$

where $W^K = \sum_{k=1}^K e_k \beta^k$ is a spectral (smooth) approximation of $W = \sum_{k=1}^\infty e_k \beta^k$.

• Gives the correct rate function for $\frac{1}{N} << \frac{1}{K}$.

Note: This is a particular case in which the link between *Macroscopic fluctuation theory* [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim; 2015] and *fluctuating hydrodynamics* [Landau-Lifshitz 1973, Spohn 1991] can be made rigorous.

Two ways to the LDP, the skeleton equation

Conservative SPDE as fluctuating continuum models

Two ways to the LDP, the skeleton equation

In the following concentrate on the case

$$\Phi(\rho) = \rho^m, \quad m \ge 1.$$

We consider stochastic PDE of the type

$$\partial_t \rho^{N,K} = \Delta\left((\rho^{N,K})^m\right) + \frac{1}{\sqrt{N}} \operatorname{div}\left((\rho^{N,K})^{\frac{m}{2}} \circ dW_t^K\right),$$
 (*)

on $\mathbb{T}^d imes (0, \infty)$, where $W^K = \sum_{k=1}^K e_k \beta^k$.

Pathwise well-posedness of (*): [Lions, Souganidis; 1998ff], [Lions, Perthame, Souganidis; 2013], [Lions, Perthame, Souganidis; 2014], [G., Souganidis; 2014], [G., Souganidis; 2015], [G., Fehrman; 2017], [Dareiotis, G.; 2019].

Two ways to the LDP:

① Γ -convergence of the rate functional: $N \uparrow \infty$ yields LDP for (*) with rate function

$$I^{K}(\rho) = \inf \left\{ \int_{0}^{T} \int_{\mathbb{T}^{d}} |g|^{2} dxdt : \partial_{t} \rho = \partial_{xx} \rho^{m} + \partial_{x} \left(\rho^{\frac{m}{2}} P^{K} g \right) \right\}.$$

12 / 19

Then consider $K \uparrow \infty$.

3 Joint scaling: Weak convergence approach to LDP $(\frac{1}{N} << \frac{1}{K})$.

- Both approaches crucially depend on understanding the skeleton PDE.
- The skeleton equation

$$egin{aligned} \partial_t
ho &= \Delta
ho^m + \operatorname{div}\left(
ho^{rac{m}{2}} g(t,x)
ight) \
ho(0,x) &=
ho_0(x), \end{aligned}$$

with $g \in L^2_{t,x}$?

This leads to the key problem

Problem

- Existence and uniqueness of solutions to (*).
- **3** Stability of solutions: Let $g^n \rightharpoonup g$ in $L^2_{t,x}$ with corresponding solutions ρ^n, ρ . Then

$$\rho^n \rightarrow \rho$$

in $L_t^{\infty} L_x^1$

- Difficulty: Stable a-priori bound? L^p framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation

We consider

$$\partial_t
ho = \Delta
ho^m + \operatorname{div}(
ho^{rac{m}{2}} g) \quad ext{on } \mathbb{R}_+ imes \mathbb{R}^d$$

with $g \in L^q(\mathbb{R}_{+,t}; L^p(\mathbb{R}^d_x; \mathbb{R}^d_x))$ and $\rho_0 \in L^r(\mathbb{R}^d_x)$.

- Via rescaling ("zooming in"):
 - p = q = 2 is critical.
 - r = 1 is critical, r > 1 is supercritical.

Apriori-bounds and energy space

Consider

$$\partial_t
ho = \Delta
ho^m + \operatorname{div}(
ho^{\frac{m}{2}}g) \quad \text{on } \mathbb{R}_+ imes \mathbb{T}^d$$
 (*)

15 / 19

with $g \in L^2(\mathbb{R}_{+,t}; L^2(\mathbb{R}^d_x; \mathbb{R}^d_x))$.

• L¹ estimate only gives

$$\int_{\mathbb{T}^d} \rho(t,x) dx = \int_{\mathbb{T}^d} \rho_0(x) dx.$$

• Use entropy-entropy dissipation: Evolution of entropy given by $\int_{\mathbb{T}^d} \log(\rho) \rho$. Informally gives

$$\int_{\mathbb{T}^d} \log(\rho) \rho \, dx \big|_0^t + \int_0^t \int_{\mathbb{T}^d} (\nabla \rho^{\frac{m}{2}})^2 \lesssim \int_0^t \int_{\mathbb{T}^d} g^2.$$

- Caution: Can only be true for non-negative solutions.
- Non-standard weak solutions, rewriting (*) as

$$\partial_t
ho = 2 \mathrm{div}(
ho^{rac{m}{2}}
abla
ho^{rac{m}{2}}) + \mathrm{div}(
ho^{rac{m}{2}} g) \quad ext{on } \mathbb{R}_+ imes \mathbb{T}^d$$

• Conclusion: Have to prove uniqueness within this class of solutions.

Ansatz for uniqueness: Show that every weak solution is a renormalized entropy solution (extending the concepts of DiPerna-Lions, Ambrosio to nonlinear PDE).

Theorem

A function $\rho \in L^{\infty}_{t}L^{1}_{v}$ is a weak solution to

$$\partial_t \rho = 2 \operatorname{div}(
ho^{rac{m}{2}}
abla
ho^{rac{m}{2}}) + \operatorname{div}(
ho^{rac{m}{2}} g)$$

if and only if ρ is a renormalized entropy solution.

Uniqueness for renormalized entropy solutions (variable doubling)

- Additional errors from space-inhomogeneity (with little regularity)
- Note: Entropy dissipation measure

$$q(x,\xi,t) = \delta(\xi - \rho(x,t))4\frac{\xi^m}{\xi^{m-1}}|\nabla\rho^{\frac{m}{2}}|^2$$

does not satisfy

$$\lim_{|\xi|\to\infty}\int_{t,x}q(x,\xi,t)\,dxdt=0.$$

Established arguments [Chen, Perthame; 2003] not applicable.

Theorem (The skeleton equation)

Let $g \in L^2([0,T] \times \mathbb{T}^d; \mathbb{R}^d)$, $\rho_0 \in L^1(\mathbb{T}^d)$ non-negative and $\int \rho_0 \log(\rho_0) dx < \infty$, $m \in [1,\infty)$.

There is a unique weak solution

$$\partial_t \rho = \Delta \rho^m + \operatorname{div}(\rho^{\frac{m}{2}}g) \quad \text{on } \mathbb{R}_+ \times \mathbb{T}^d.$$
 (*)

17/19

For two weak solutions $\rho^1, \rho^2 \in L^{\infty}([0,T];L^1(\mathbb{T}^1))$ we have

$$\|\rho^1 - \rho^2\|_{L^{\infty}([0,T];L^1(\mathbb{T}^d))} \le \|\rho_0^1 - \rho_0^2\|_{L^1(\mathbb{T}^d)}.$$

2 Let $\{g_n\}_{n\in\mathbb{N}}\subseteq L^2([0,T]\times\mathbb{T}^d;\mathbb{R}^d)$ with

$$\lim_{n\to\infty} g_n = g \text{ weakly in } L^2([0,T]\times\mathbb{T}^d;\mathbb{R}^d)$$

and let $\rho_n \in L^1([0,T];L^1(\mathbb{T}^d))$ be the corresponding solutions with control g_n . Then,

$$\lim_{n\to\infty} \rho_n = \rho \ \text{strongly in} \ L^1([0,T];L^1(\mathbb{T}^d))$$

where $ho \in L^1([0,T];L^1(\mathbb{T}^d))$ is the solution with control g.

Consider

$$d
ho^N = \Delta(
ho^N)^m dt + rac{1}{\sqrt{N}} \operatorname{div}\left(\Phi_{n(N)}^{rac{1}{2}}(
ho^N) \circ dW^{K(N)}(t)\right).$$

Theorem (Large deviation principle)

Let
$$K(N)$$
, $n(N) \to \infty$ with $\frac{K(N)^3}{N} \to 0$ for $N \to \infty$. For $\rho_0 \in L^{m+1}(\mathbb{T}^d)$ and $\rho \in L^{\infty}([0,T];L^1(\mathbb{T}^d))$ let

$$I_{\rho_0}(\rho) := \inf \left\{ \frac{1}{2} \int_0^T \|g(s)\|_{L^2_x}^2 ds : \ g \in L^2_{t,x}, \, \partial_t \rho = \Delta \rho^m + \operatorname{div}(\rho^{\frac{m}{2}}g) \right\}.$$

Then, the family $\{\rho^N\}$ satisfies the large deviation principle on $L^\infty([0,T];L^1(\mathbb{T}^d))$ with good rate function I_{ρ_0} , uniformly on compact subsets of $L^{m+1}(\mathbb{T}^d)$.

K Dareiotis and B Gess.

Nonlinear diffusion equations with nonlinear gradient noise.

Electronic Journal of Probability, 25: Paper No. 35, 43, 2020.

N. Dirr, B. Fehrman, and B. Gess.

Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. arXiv:2012.02126 [math], Dec. 2020.

B. Fehrman and B. Gess.

Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise.

Archive for Rational Mechanics and Analysis, 233(1):249–322, 2019.

B. Fehrman and B. Gess.

Large deviations for conservative stochastic PDE and non-equilibrium fluctuations. arXiv:1910.11860 [math], Mar. 2020.

B. Gess and P. E. Souganidis.

Scalar conservation laws with multiple rough fluxes.

Commun. Math. Sci., 13(6):1569-1597, 2015.

B. Gess and P. E. Souganidis.

Stochastic non-isotropic degenerate parabolic-hyperbolic equations.

Stochastic Process. Appl., 127(9):2961-3004, 2017.